CN1365946A - 一种直接合成超长连续单壁碳纳米管的工艺方法 - Google Patents

一种直接合成超长连续单壁碳纳米管的工艺方法 Download PDF

Info

Publication number
CN1365946A
CN1365946A CN02100684A CN02100684A CN1365946A CN 1365946 A CN1365946 A CN 1365946A CN 02100684 A CN02100684 A CN 02100684A CN 02100684 A CN02100684 A CN 02100684A CN 1365946 A CN1365946 A CN 1365946A
Authority
CN
China
Prior art keywords
carbon nanotube
walled carbon
product
single walled
reaction soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02100684A
Other languages
English (en)
Other versions
CN1176014C (zh
Inventor
朱宏伟
徐才录
吴德海
魏秉庆
P·M·阿加亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB021006849A priority Critical patent/CN1176014C/zh
Publication of CN1365946A publication Critical patent/CN1365946A/zh
Priority to US10/370,519 priority patent/US7615204B2/en
Priority to AU2003216383A priority patent/AU2003216383A1/en
Priority to PCT/US2003/005529 priority patent/WO2003072859A1/en
Application granted granted Critical
Publication of CN1176014C publication Critical patent/CN1176014C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种直接合成超长连续单壁碳纳米管的工艺方法,涉及一种碳纳米材料的制备工艺。本发明采用立式浮动催化裂解法,以正己烷为碳源,二茂铁为催化剂,噻吩为添加剂制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解。在特定的工艺参数下,制得的超长绳状单壁碳纳米管产物,管束定向性良好,纯度最高可达85%;管束中的单壁碳纳米管生长连续、平直,长度可达20cm(单根单壁碳纳米管长径比>108)。本发明由于采用立式浮动催化裂解法,仅需一个立式电炉,且不需要石墨基底,二茂铁直接溶解在正己烷溶液中,无需预先在氢气气氛下还原,因此操作简单、方便,可实现超长连续单壁碳纳米管束的低成本批量制备。

Description

一种直接合成超长连续单壁碳纳米管的工艺方法
技术领域
本发明涉及一种碳纳米材料的制备工艺,尤其涉及一种单壁碳纳米管的合成工艺方法。
背景技术
单壁碳纳米管的发现极大地推动了纳米科技研究及其应用领域的发展。1996年,Smalley研究小组在《科学》杂志(Science,1996,273(5274):483~487)上报道了采用激光蒸发工艺合成高纯度单壁碳纳米管的方法。1997年,Journet等人在《自然》杂志(Nature,1997,388:756~758)报道了采用直流电弧法批量制备单壁碳纳米管的工艺。另外,采用催化裂解工艺制备单壁碳纳米管也成为该研究领域的焦点之一,因为该方法是最可能实现碳纳米管大批量工业化的制备方法。Dai等人在文献(Chemical Physics Letters,1996,260:471~475)中首先采用CO气体为碳源制备了单壁碳纳米管,但其产量及产率很低。该方法制备单壁碳纳米管的工艺条件比较苛刻,参数控制比较严格。后来,乙烯、甲烷、苯等都被作为碳源制备单壁碳纳米管,通过对工艺参数的改进,产量和产率有所提高。目前单壁碳纳米管的批量制备仍是该领域的难点和热点。Cheng等人在文献(Applied Physics Letters,1998,72(25):3282~3284)中介绍了卧式浮动催化裂解工艺制备单壁碳纳米管。虽然以上方法实现了单壁碳纳米管的制备,但所得单壁碳纳米管的长度均为微米量级,且管束间定向性差,单壁碳纳米管纯度低,从而限制了理论及实验上对超长连续单壁碳纳米管的研究。制备超长连续的单壁碳纳米管是一个重点、难点,在理论及应用方面具有重要意义。这里所指的“超长”是指单壁碳纳米管的长度达到十厘米量级;“连续”是指管束中的单壁碳纳米管连续生长,无间断,并且有良好的定向性。
在催化裂解法中,立式浮动催化裂解法(Carbon,2000,38(14):1933~1937)是大批量制备多壁碳纳米管和碳纳米纤维的一种有效方法。现有的立式浮动催化裂解法以苯为碳源,二茂铁(Fe(C5H5)2)为催化剂,噻吩(C4H4S)为添加剂。设备简单,成本低,适于大批量生产。同卧式浮动催化裂解法实验设备相比,立式浮动催化裂解法仅需一个立式电炉,并且不需要石墨基底。二茂铁直接溶解在碳源中,无需预先在氢气气氛下还原,二茂铁随溶液注入蒸发器,操作简单方便。但由于苯含碳量高,仅适用于制备多壁碳纳米管和碳纳米纤维。且苯有毒性,对环境造成污染。要使用立式浮动催化裂解法实现单壁碳纳米管的制备,就需要寻找一种含碳量低且无毒性的碳源。
发明内容
本发明的目的是提供一种直接合成超长连续单壁碳纳米管的工艺方法,实现超长连续单壁碳纳米管束的低成本批量制备,使所制得的单壁碳纳米管束定向性良好,纯度高且长度长。
本发明的目的是通过如下技术方案实现的:一种直接合成超长连续单壁碳纳米管的工艺方法,采用立式浮动催化裂解法,以二茂铁(Fe(C5H5)2)为催化剂,噻吩(C4H4S)为添加剂溶入碳源中制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解,其特征在于该方法是以正己烷(C6H14)为碳源。
所述反应溶液是由正己烷、(0.010~0.020g/ml)的二茂铁和(0.2~0.6wt.%)噻吩组成的混合液。反应溶液引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
本发明由于采用立式浮动催化裂解法,该方法仅需一个立式电炉,并且不需要石墨基底,二茂铁直接溶解在正己烷溶液中,无需预先在氢气气氛下还原,且二茂铁随溶液注入蒸发器,因此操作简单、方便,可实现超长连续单壁碳纳米管束的低成本批量制备。制得的超长绳状单壁碳纳米管产物,管束定向性良好,纯度最高可达85%;管束中的单壁碳纳米管生长连续、平直,长度可达20cm(单根单壁碳纳米管长径比>108)。
附图说明
图1:为本发明(立式浮动催化裂解法)所用设备的结构原理示意图。
图2:为利用扫描电子显微镜检测的产物的微观形貌图。
图3:为利用透射电子显微镜检测的产物的微观形貌图。
具体实施方式
下面结合附图1具体说明本发明的工艺过程及实施方式:
立式浮动催化裂解法的设备主体为立式陶瓷反应管1(外径68mm,内径58mm,长度1600mm),该管垂直放置在电阻炉2(额定温度为1200℃,额定功率6KW)中。反应容器的上部是蒸发器3,包括进气口4及反应溶液(正己烷、二茂铁、噻吩的混合溶液)入口5。反应溶液6通过液体微流量泵7引入蒸发器3(蒸发温度150~200℃)随载气(氢气)以蒸汽的形式一同引入反应容器1。反应容器1下面安装产物收集瓶8、过滤器9及尾气出口10。其具体操作步骤如下:
(1)首先通氩气100ml/min并开始升高炉温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1100~1200℃),引入反应溶液开始制备产物。反应溶液6为正己烷(C6H14)、二茂铁(Fe(C5H5)2)和噻吩(C4H4S)的混合溶液。其中正己烷为碳源,二茂铁(0.010~0.020g/ml)为催化剂,噻吩(0.2~0.6wt.%)作为添加剂。
(3)反应溶液6引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
(4)保温一段时间后停止升温,通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
使用扫描电子显微镜(如图2所示)和透射电子显微镜(如图3所示)检测产物的微观形貌。
使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。
检测结果表明,立式浮动催化技术可以实现超长连续的单壁碳纳米管的批量制备。产物由大量密集排列的定向单壁碳纳米管束组成;管束中的单壁碳纳米管长度可达20cm,直径分布在1~2nm之间。单壁碳纳米管的纯度最高可达85%。
实施例1:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1100℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.010g/ml)为催化剂,噻吩(G4H4S,0.6wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为200ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和部分碳纳米管纤维组成,单壁碳纳米管含量为60%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例2:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1150℃),引入反应溶液开始制备产物。反应溶液采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.020g/ml)为催化剂,噻吩(C4H4S,0.4wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量双壁碳纳米管组成,单壁碳纳米管含量为85%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~50nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例3:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.4wt.%)作为添加剂。
(3)反应溶液引入流量为0.2ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量多壁碳纳米管、碳纳米纤维组成,单壁碳纳米管含量为80%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例4:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.2wt.%)作为添加剂。
(3)反应溶液引入流量为0.8ml/min,氢气的流量为250ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和碳纳米纤维组成,单壁碳纳米管含量为70%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例5:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.5wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为150ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和多壁碳纳米管、碳纳米纤维组成,单壁碳纳米管含量为70%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径20~60nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。
实施例6:
(1)首先通氩气100ml/min并开始升温,至1000℃左右时开始通氢气并停止氩气。
(2)升温到预定反应温度(1200℃),引入反应溶液开始制备产物。反应溶液中采用正己烷(C6H14)为碳源,二茂铁(Fe(C5H5)2,0.018g/ml)为催化剂,噻吩(C4H4S,0.5wt.%)作为添加剂。
(3)反应溶液引入流量为0.5ml/min,氢气的流量为300ml/min。
(4)保温约60min后停止升温。通氩气(100ml/min)冷却并停止氢气,温度降至室温后收集产物。
(5)使用扫描电子显微镜和透射电子显微镜检测产物的微观形貌。产物为20cm长细丝,由单壁碳纳米管和少量多壁碳纳米管组成,单壁碳纳米管含量为80%。
(6)使用显微共焦拉曼光谱仪检测产物的直径分布及晶化程度。单壁碳纳米管产物由大量密集排列的定向单壁碳纳米管束(直径10~50nm)组成。管束由直径在1~2nm间的单壁碳纳米管组成。

Claims (3)

1.一种直接合成超长连续单壁碳纳米管的工艺方法,采用立式浮动催化裂解法,以二茂铁(Fe(C5H5)2)为催化剂,噻吩(C4H4S)为添加剂溶入碳源中制成反应溶液,以蒸汽的形式随氢气一同引入反应器进行催化裂解,其特征在于该方法是以正己烷(C6H14)为碳源。
2.按照权利要求1所述的一种直接合成超长连续单壁碳纳米管的工艺方法,其特征在于所述反应溶液是由正己烷、(0.010~0.020g/ml)的二茂铁和(0.2~0.6wt.%)噻吩组成的混合液。
3.按照权利要求1所述的一种直接合成超长连续单壁碳纳米管的工艺方法,其特征在于反应溶液引入流量为0.2~0.8ml/min,氢气的流量为150~300ml/min。
CNB021006849A 2002-02-22 2002-02-22 一种直接合成超长连续单壁碳纳米管的工艺方法 Expired - Fee Related CN1176014C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB021006849A CN1176014C (zh) 2002-02-22 2002-02-22 一种直接合成超长连续单壁碳纳米管的工艺方法
US10/370,519 US7615204B2 (en) 2002-02-22 2003-02-24 Direct synthesis of long single-walled carbon nanotube strands
AU2003216383A AU2003216383A1 (en) 2002-02-22 2003-02-24 Direct synthesis of long single-walled carbon nanotube strands
PCT/US2003/005529 WO2003072859A1 (en) 2002-02-22 2003-02-24 Direct synthesis of long single-walled carbon nanotube strands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021006849A CN1176014C (zh) 2002-02-22 2002-02-22 一种直接合成超长连续单壁碳纳米管的工艺方法

Publications (2)

Publication Number Publication Date
CN1365946A true CN1365946A (zh) 2002-08-28
CN1176014C CN1176014C (zh) 2004-11-17

Family

ID=4739439

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021006849A Expired - Fee Related CN1176014C (zh) 2002-02-22 2002-02-22 一种直接合成超长连续单壁碳纳米管的工艺方法

Country Status (2)

Country Link
US (1) US7615204B2 (zh)
CN (1) CN1176014C (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387516C (zh) * 2005-11-10 2008-05-14 上海交通大学 直接连续制备超短碳纳米管的方法
CN100391834C (zh) * 2006-09-22 2008-06-04 北京交通大学 高纯度多壁碳纳米管的制备方法
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
CN100443403C (zh) * 2006-11-09 2008-12-17 上海交通大学 连续合成大直径单壁碳纳米管的方法
CN100450922C (zh) * 2006-11-10 2009-01-14 清华大学 一种超长定向的碳纳米管丝/薄膜及其制备方法
CN101927995A (zh) * 2009-04-30 2010-12-29 中国科学院成都有机化学有限公司 一种制备大内径长度可控碳纳米管的方法
CN101696491B (zh) * 2009-10-22 2011-05-04 清华大学 石墨烯/碳纳米管复合薄膜的原位制备方法
CN101230145B (zh) * 2003-02-13 2012-05-30 斯蒂茨丁荷兰聚合物学会 增强聚合物
CN102994980A (zh) * 2012-12-13 2013-03-27 苏州汉纳材料科技有限公司 高导电碳纳米管薄膜的制备方法及装置
CN103204492A (zh) * 2013-05-03 2013-07-17 苏州汉纳材料科技有限公司 一种提高单壁碳纳米管产率的新方法
CN103415465A (zh) * 2011-03-08 2013-11-27 国立大学法人名古屋大学 碳纳米管的制备方法
CN103958403A (zh) * 2011-11-29 2014-07-30 英弗勒科技有限公司 用于产生长碳纳米管的方法和设备
CN104995134A (zh) * 2013-01-22 2015-10-21 Mcd技术有限公司 生产碳纳米结构的方法及装置
CN107601458A (zh) * 2017-09-12 2018-01-19 刘云芳 一种单壁碳纳米管的制备方法
CN113316558A (zh) * 2018-12-27 2021-08-27 住友电气工业株式会社 碳纳米管的制造方法、碳纳米管集合线的制造方法、碳纳米管集合线集束的制造方法、碳纳米管制造装置、碳纳米管集合线制造装置以及碳纳米管集合线集束制造装置
CN113562724A (zh) * 2021-07-06 2021-10-29 上海大学 一种单壁碳纳米管封装超长线性碳链及其制备方法
CN114477141A (zh) * 2020-10-24 2022-05-13 江苏天奈科技股份有限公司 一种寡壁碳纳米管纤维束及其制备工艺

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978833A (en) * 1996-12-31 1999-11-02 Intel Corporation Method and apparatus for accessing and downloading information from the internet
WO2004065294A2 (en) * 2003-01-17 2004-08-05 Duke University Systems and methods for producing single-walled carbon nanotubes (swnts) on a substrate
WO2005053828A2 (en) * 2003-11-07 2005-06-16 Ahwahnee Technology, Inc. Systems and methods for manufacture of carbon nanotubes
WO2006073455A2 (en) * 2004-05-07 2006-07-13 The Regents Of The University Of California Los Alamos National Laboratory Preparation of single-walled carbon nanotubes
DE102004059814A1 (de) * 2004-12-06 2006-06-08 C. & E. Fein Gmbh Kupplung, insbesondere für ein Elektrowerkzeug
CN100500555C (zh) * 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
US7754183B2 (en) 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
CA2616151C (en) 2005-07-28 2015-11-03 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
CN100418876C (zh) 2005-08-19 2008-09-17 清华大学 碳纳米管阵列制备装置及方法
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
EP2962986B1 (en) * 2007-02-27 2017-04-05 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
EP2125212A2 (en) 2007-03-23 2009-12-02 Lydall, Inc. Substrate for carrying catalytic particles
TW200840888A (en) 2007-04-04 2008-10-16 Univ Nat Cheng Kung Carbon fiber of high thermal conduction and continuous gaseous growth and its manufacturing method and application
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
US9236669B2 (en) 2007-08-07 2016-01-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
US8308930B2 (en) * 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
WO2009137725A1 (en) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
CA2723486A1 (en) 2008-05-07 2010-04-01 Nanocomp Technologies, Inc. Nanostructure composite sheets and methods of use
US8673258B2 (en) * 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
US8357346B2 (en) * 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US8021640B2 (en) 2008-08-26 2011-09-20 Snu R&Db Foundation Manufacturing carbon nanotube paper
BRPI0806065B1 (pt) * 2008-10-16 2021-05-18 Petroleo Brasileiro S. A. - Petrobras método para a produção de nanoesferas de carbono
WO2010144161A2 (en) 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
WO2010141130A1 (en) 2009-02-27 2010-12-09 Lockheed Martin Corporation Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
NZ595714A (en) 2009-04-17 2014-08-29 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
EP2421702A4 (en) 2009-04-24 2013-01-02 Applied Nanostructured Sols NED SIGNATURE CONTROL MATERIAL
JP5744008B2 (ja) 2009-04-27 2015-07-01 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 複合材料構造体を除氷するためのcntベース抵抗加熱
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
EP2461953A4 (en) 2009-08-03 2014-05-07 Applied Nanostructured Sols USE OF NANOPARTICLES IN COMPOSITE FIBERS
CN101996706B (zh) * 2009-08-25 2015-08-26 清华大学 一种耳机线及具有该耳机线的耳机
CN101998200A (zh) * 2009-08-25 2011-03-30 鸿富锦精密工业(深圳)有限公司 一种耳机线及具有该耳机线的耳机
WO2011035157A2 (en) * 2009-09-18 2011-03-24 Applied Materials, Inc. Apparatus and methods for forming energy storage and photovoltaic devices in a linear system
US8601965B2 (en) 2009-11-23 2013-12-10 Applied Nanostructured Solutions, Llc CNT-tailored composite sea-based structures
AU2010321534B2 (en) 2009-11-23 2015-03-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
WO2011142785A2 (en) 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CN102741465A (zh) 2010-02-02 2012-10-17 应用纳米结构方案公司 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料
BR112012021968A2 (pt) 2010-03-02 2016-06-07 Applied Nanostructured Sols dispositivos elétricos enrolados em espiral que contêm materiais de eletrodo infundidos por nanotubo de carbono e métodos e aparelhos para a produção dos mesmos
CA2789664A1 (en) 2010-03-02 2011-09-09 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
JP2013540683A (ja) 2010-09-14 2013-11-07 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー 成長したカーボン・ナノチューブを有するガラス基材及びその製造方法
EP2619133A1 (en) 2010-09-22 2013-07-31 Applied NanoStructured Solutions, LLC Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
EP2619767A2 (en) 2010-09-23 2013-07-31 Applied NanoStructured Solutions, LLC Cnt-infused fiber as a self shielding wire for enhanced power transmission line
JP6014603B2 (ja) 2011-01-04 2016-10-25 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブベースの絶縁体
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
NO2749379T3 (zh) 2012-04-16 2018-07-28
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
EP2838837A4 (en) 2012-04-16 2015-12-23 Seerstone Llc METHODS AND STRUCTURES FOR REDUCING CARBON OXIDES WITH NON-FERROUS CATALYSTS
MX354377B (es) 2012-04-16 2018-02-28 Seerstone Llc Metodos para tratar un gas de escape que contiene oxidos de carbono.
US9090472B2 (en) 2012-04-16 2015-07-28 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN104619640B (zh) 2012-07-13 2017-05-31 赛尔斯通股份有限公司 用于形成氨和固体碳产物的方法和系统
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
JP6404916B2 (ja) 2013-06-17 2018-10-17 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブ、束および繊維のための剥離剤および分散剤
SG11201601113SA (en) * 2013-09-04 2016-03-30 Ngee Ann Polytechnic A method for producing carbon nanotubes
EP3253709A4 (en) 2015-02-03 2018-10-31 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
US10870089B2 (en) * 2017-03-14 2020-12-22 4th Phase Water Technologies, Inc. Hydrophilic graphitic material
US11866330B2 (en) 2019-02-22 2024-01-09 Sumitomo Electric Industries, Ltd. Method for manufacturing carbon nanotube, method for manufacturing carbon nanotube assembled wire, method for manufacturing carbon nanotube assembled wire bundle, carbon nanotube manufacturing apparatus, carbon nanotube assembled wire manufacturing apparatus, and carbon nanotube assembled wire bundle manufacturing apparatus
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof
WO2023239500A1 (en) * 2022-06-07 2023-12-14 ExxonMobil Technology and Engineering Company Integrated production of thiophene and carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458784A (en) * 1990-10-23 1995-10-17 Catalytic Materials Limited Removal of contaminants from aqueous and gaseous streams using graphic filaments
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
CN101230145B (zh) * 2003-02-13 2012-05-30 斯蒂茨丁荷兰聚合物学会 增强聚合物
CN100387516C (zh) * 2005-11-10 2008-05-14 上海交通大学 直接连续制备超短碳纳米管的方法
CN100391834C (zh) * 2006-09-22 2008-06-04 北京交通大学 高纯度多壁碳纳米管的制备方法
CN100443403C (zh) * 2006-11-09 2008-12-17 上海交通大学 连续合成大直径单壁碳纳米管的方法
CN100450922C (zh) * 2006-11-10 2009-01-14 清华大学 一种超长定向的碳纳米管丝/薄膜及其制备方法
CN101927995A (zh) * 2009-04-30 2010-12-29 中国科学院成都有机化学有限公司 一种制备大内径长度可控碳纳米管的方法
CN101696491B (zh) * 2009-10-22 2011-05-04 清华大学 石墨烯/碳纳米管复合薄膜的原位制备方法
CN103415465A (zh) * 2011-03-08 2013-11-27 国立大学法人名古屋大学 碳纳米管的制备方法
CN103958403A (zh) * 2011-11-29 2014-07-30 英弗勒科技有限公司 用于产生长碳纳米管的方法和设备
CN103958403B (zh) * 2011-11-29 2016-01-20 英弗勒碳素有限公司 用于产生长碳纳米管的方法和设备
CN102994980B (zh) * 2012-12-13 2015-01-14 苏州汉纳材料科技有限公司 高导电碳纳米管薄膜的制备方法及装置
CN102994980A (zh) * 2012-12-13 2013-03-27 苏州汉纳材料科技有限公司 高导电碳纳米管薄膜的制备方法及装置
CN104995134A (zh) * 2013-01-22 2015-10-21 Mcd技术有限公司 生产碳纳米结构的方法及装置
CN104995134B (zh) * 2013-01-22 2018-06-05 Mcd技术有限公司 生产碳纳米结构的方法及装置
CN103204492A (zh) * 2013-05-03 2013-07-17 苏州汉纳材料科技有限公司 一种提高单壁碳纳米管产率的新方法
CN107601458A (zh) * 2017-09-12 2018-01-19 刘云芳 一种单壁碳纳米管的制备方法
CN107601458B (zh) * 2017-09-12 2020-07-28 刘云芳 一种单壁碳纳米管的制备方法
CN113316558A (zh) * 2018-12-27 2021-08-27 住友电气工业株式会社 碳纳米管的制造方法、碳纳米管集合线的制造方法、碳纳米管集合线集束的制造方法、碳纳米管制造装置、碳纳米管集合线制造装置以及碳纳米管集合线集束制造装置
CN113316558B (zh) * 2018-12-27 2024-01-02 住友电气工业株式会社 碳纳米管、碳纳米管集合线、碳纳米管集合线集束的制造方法及制造装置
CN114477141A (zh) * 2020-10-24 2022-05-13 江苏天奈科技股份有限公司 一种寡壁碳纳米管纤维束及其制备工艺
CN114477141B (zh) * 2020-10-24 2023-11-24 江苏天奈科技股份有限公司 一种寡壁碳纳米管纤维束及其制备工艺
CN113562724A (zh) * 2021-07-06 2021-10-29 上海大学 一种单壁碳纳米管封装超长线性碳链及其制备方法
CN113562724B (zh) * 2021-07-06 2024-03-19 上海大学 一种单壁碳纳米管封装超长线性碳链及其制备方法

Also Published As

Publication number Publication date
US7615204B2 (en) 2009-11-10
CN1176014C (zh) 2004-11-17
US20030161950A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
CN1176014C (zh) 一种直接合成超长连续单壁碳纳米管的工艺方法
Keller et al. Synthesis and characterisation of medium surface area silicon carbide nanotubes
Merchan-Merchan et al. Combustion synthesis of carbon nanotubes and related nanostructures
CN100368287C (zh) 单壁碳质毫微管有助于其溶剂化的化学衍生化以及经衍生化毫微管的用途
CN1751989A (zh) 制备碳纳米笼的方法
CN1302986C (zh) 一种制备碳纳米管的方法
CN101830455A (zh) 一种合成连续碳纳米管薄膜的方法
CN101032756A (zh) 原位合成碳纳米管/镍/铝增强增韧氧化铝基复合材料制备方法
Luo et al. Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene
CN1294076C (zh) 碳原子线以及固态碳源热解制备碳纳米管和碳原子线的方法
CN101891184A (zh) 一种高温化学气相沉积法连续合成单壁碳纳米管的方法
CN101857460A (zh) 纺丝用碳纳米管阵列的制备方法
CN115403029B (zh) 一种单壁碳纳米管的制备方法
Baghel et al. Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications
CN114572965B (zh) 一种碳纳米管的制备方法
Janowska et al. Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction
CN107601460A (zh) 一种碳纳米管产品及其制备方法
Zhai et al. One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns
CN1886333A (zh) 使用水制备高纯度碳纳米管的方法
CN1193931C (zh) 双壁碳纳米管的合成方法
CN1261222C (zh) Al2O3气凝胶负载型催化剂的制备及其催化甲烷裂解制备纳米碳管的方法
Khan et al. Carbon nanotube and its possible applications
CN1944244A (zh) 利用大功率等离子体发生器制备碳纳米管的方法
CN1530321A (zh) 一种制备小管径碳纳米管的催化剂
CN113088324B (zh) 一种从废润滑油、重质油或沥青中提取碳纳米材料的方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041117

Termination date: 20180222

CF01 Termination of patent right due to non-payment of annual fee