CN1329755C - 光子晶体光纤和光子晶体光纤的生产方法 - Google Patents

光子晶体光纤和光子晶体光纤的生产方法 Download PDF

Info

Publication number
CN1329755C
CN1329755C CNB2004100881551A CN200410088155A CN1329755C CN 1329755 C CN1329755 C CN 1329755C CN B2004100881551 A CNB2004100881551 A CN B2004100881551A CN 200410088155 A CN200410088155 A CN 200410088155A CN 1329755 C CN1329755 C CN 1329755C
Authority
CN
China
Prior art keywords
filament
optical fiber
fiber
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100881551A
Other languages
English (en)
Other versions
CN1645174A (zh
Inventor
菲利普·圣约翰·鲁赛尔
蒂莫西·亚当·比尔克斯
乔纳森·卡夫·奈特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Fibre AS
Blazephotonics Ltd
Original Assignee
Crystal Fibre AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26315163&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1329755(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GBGB9903918.2A external-priority patent/GB9903918D0/en
Priority claimed from GBGB9903923.2A external-priority patent/GB9903923D0/en
Application filed by Crystal Fibre AS filed Critical Crystal Fibre AS
Publication of CN1645174A publication Critical patent/CN1645174A/zh
Application granted granted Critical
Publication of CN1329755C publication Critical patent/CN1329755C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02709Polarisation maintaining fibres, e.g. PM, PANDA, bi-refringent optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • C03B37/0756Hollow fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • G02B6/02352Complex periodic lattices or multiple interpenetrating periodic lattices, e.g. unit cell having more than two materials, partially internally coated holes, for multiple bandgaps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/0238Longitudinal structures having higher refractive index than background material, e.g. high index solid rods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/08Sub-atmospheric pressure applied, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/10Fibre drawing or extruding details pressurised

Abstract

一种光子晶体光纤包含具有纵向孔(130,140)和导向纤芯(135)的块体材料,其中纤维关于纵轴具有至少两重转动对称,并且作为缺少对称的结果,该光纤是双折射的。

Description

光子晶体光纤和光子晶体光纤的生产方法
本申请是申请日为2000年2月18日的中国专利申请00803964.X的分案申请。
技术领域
本发明涉及光子晶体光纤和光子晶体光纤的生产方法。
背景技术
光子晶体光纤是光纤的一种特殊形式。光纤被用于很多领域,包括通讯,激光加工和焊接,激光束和功率发送,光纤激光,传感器和医学诊断及外科手术。光纤完全由诸如玻璃的固态透明材料典型做成,并且每个光纤沿着其长度典型具有相同的横截面结构。在横截面一部分(通常在中间)中的透明材料比其它部分具有较高的折射率,并形成纤芯,在其中光以全内反射的方式传输。我们把所述光纤称作标准光纤。
由于它们优越的波导特性,单模光纤对许多应用来说是优选的。然而,即使所谓的单模光纤通常不能对传输光的偏振提供足够的控制。称其为单模光纤是因为它只支持在重要频率的横向空间模,但该空间模以两种偏振状态存在;即存在正交方向上偏振的两种简并模。在实际的光纤中,缺陷将打破这两种模的简并,并且将发生模态双折射;也就是说,对于每个正交模,模传播常数β将轻微不同。由于模态双折射由无规则的缺陷产生,传播常数将沿着光纤无规则变化。通常,导入到光纤中的光将以这两种模传输,并且通过光纤中的小弯曲或扭曲被从一种耦合到另一种上。线性偏振光在沿着光纤传输时,将被扰频为任意的偏振状态。
为了在标准光纤中维持模的偏振,可故意将双折射引入到光纤中(使得这两种模的有效指数(折射率)是不同的),以使小缺陷效应无关紧要。如果光在光纤一个光轴平行的方向上被线性偏振,那么光将维持其偏振。如果在沿着光纤传输时,光在其它角度被线性偏振,偏振将发生变化,从线性到椭圆到线性再到椭圆并再次返回到线性,具有通常所说的差拍长度的周期LB,其中 L B = 2 π | β X - β Y | , βX和βY是正交模的传播常数。这种变化是模的正交分量间的相位差的结果,相差由它们的传播常数间的差别产生。差拍长度越短,光纤对偏振不规则性效应越具有弹性。常规的偏振保留(保偏)光纤典型具有毫米级的差拍长度,双折射的强度也可以参数 B = | β X - β Y | K 0 = | n X - n Y | 表示,其中 K 0 = 2 π λ (其中λ是波长),nX和nY是正交模所观测到的折射率。
最近几年,已论证了一种光纤的非标准类型,称为光子晶体光纤(PCF)。该光纤由单一固态和基本透明材料典型做成,在材料中植入空气孔的周期排列,空气孔平行于光纤轴并延伸至光纤的全长。以规则排列中缺少单一空气孔的形式的缺陷形成折射率增加的区域,在其中光以类似于标准光纤中全内反射的方式传输。引导光的另一机理是基于光子带隙效应而不是全内反射。通过空气孔排列的合适设计可得到光子带隙引导。具有特定传播常数的光可被束缚在纤芯中并在其中传输。
通过将玻璃丝(其中一些在宏观尺寸上为毛细状)堆积成所需的形状,然后使其熔化在一起将其固定在适当的位置,并且将其拉成光纤可制作光子晶体光纤。PCF具有非凡的性能,例如能够在单模中传输波长范围非常大的光,并且能够传输具有相当大的保持单模的模式区域的光。
通过几种机理可产生双折射。它可由材料极化率的各向异性本质;即分子水平的各向异性产生。它可由大于原子尺度上的材料结构的元素排列产生;这种现象被称为形状双折射。它也可有机械应力产生;这种现象被称为应力双折射或光弹性效应。在标准光纤中,通过改变光纤横截面的形状得到形状双折射;例如,通过形成纤芯或包层为椭圆。在弱波导光纤中的双折射通常相当弱(B~10-6)。在光纤预型中通过将硼硅玻璃棒插入到光纤纤芯的对侧可引起应力双折射。硼硅玻璃棒的位置和形状的变化可引起双折射的不同程度。应力导致的双折射允许B~10-4
在标准光纤中用于产生双折射,并且因此产生标准保偏光纤的方法通常不能直接适用于光子晶体光纤。
发明内容
本发明的目的在于提供一种双折射的光子晶体光纤,使得该光纤可被用作偏振保留光纤。本发明的另一目的在于提供所述光纤的生产方法。
根据本发明,提供一种光子晶体光纤,包含具有纵向孔排列和波导纤芯排列的块体材料,其特征在于该光纤关于光纤的纵轴具有一重或两重旋转对称,使得该光纤是双折射的,并且在光纤中传输的具有波长1.5微米的光具有小于1cm的差拍长度,或者如果光纤不能引导波长为1.5微米的光,则在引导波长处具有对1.5微米处的小于1cm的差拍长度按比例增加或减小的差拍长度。
除了纤芯的出现,孔的排列基本上是周期性的。
较为有利地,双折射是在光纤中传输的具有波长1.5微米的光具有小于1cm的差拍长度的双折射。更加有利地,双折射是在光纤中传输的具有波长1.5微米的光具有小于5mm的差拍长度的双折射。更加有利地,双折射是在光纤中传输的具有1.5微米的光具有小于1mm并优选小于0.5mm的差拍长度的双折射;在标准光纤中通常得不到所述短差拍长度。当然,特殊光纤不能引导波长为1.5微米的光;在这种情况下,可容易地增加或减小引导波长的差拍长度,使其与在1.5微米处的差拍长度相等。例如,在波长1.55微米的1mm的差拍长度等于在波长633nm的0.41mm的差拍长度,在波长1.55微米的0.5mm的差拍长度等于在波长633nm的0.21nm的差拍长度。
应当明白,在实际的光纤中,在结构中不可避免地存在着较少的不规则,这就意味着没有光纤能具有任何种类的绝对对称;然而,在常规光子晶体光纤中,很明显,实际光纤确实具有相当数量的旋转对称(最通常具有六重旋转对称),并且该对称对形成光纤性能是足够强的,该性能类似于具有绝对对称的理想光纤的性能。类似地,其中在提到具有最多两重旋转对称的光纤时,应当明白,光纤不但不严格具有任何较高的对称性,而且并不相当于具有相当数量较高对称性的光纤。
在其最广的方面中,本发明与在光纤任何方面中缺少较高旋转对称有关。更加典型地,在光纤内部微结构的特征中,并且通常在孔的排列特征中,发生对称性的缺少,同时光纤的全部横截面形状可为圆形的,并因此具有圆形对称;具有多于两重旋转对称的孔的排列是在本发明范围内的,在某种意义上缺少多于两重旋转对称的光纤及其排列下面将给出所述排列的实例。
光纤优选具有两重旋转对称。
旋转对称优选是关于通过纤芯的轴的对称。
如果光纤具有多于两重的旋转对称,那么在偏振平行于两个或多个(不是必需正交)轴时,线性偏振光应具有相同的传播常数β。在具有圆形对称的实际光纤中情况通常是这样的,光纤中的缺陷会导致偏振模之间的功率传输平行于每个轴。因此,起初是线性偏振的光会激发另外的模,并快速变成随机偏振。
纤芯可包括一个孔。可用不是空气的材料来填充该孔。或者,纤芯可不包括孔。
孔的排列可具有平行于光纤纵轴的最多两重的旋转对称。或者,孔的排列关于平行于光纤纵轴的轴可具有多于两重的旋转对称。旋转对称可为关于通过纤芯的轴的对称。
较高旋转对称的缺少至少部分由光纤横截面上的下述中的一种或多种变化产生:纤芯的微结构,孔的直径,块体材料,包含在孔中的材料或孔的形状。形状的变化是由于在拉制光纤时由光纤中的应力产生的变形所造成的。较高旋转对称的缺少可由光纤横截面上的变化产生,该变化是下述中的一种变化或下述中的一种或多种协同变化或与其它参数的协同变化:纤芯的微结构,孔的直径,块体材料,包含在孔中的材料,孔的形状。
双折射光纤可具有形状双折射和/或应力双折射。尽管在标准光纤中的形状双折射不足以给出所需的短差拍长度,但是在光子晶体光纤中潜在的较大折射率对比可导致强的形状双折射。当在拉制过程中,光纤中的应力分布形式扭曲某些沿着轴围绕光纤纤芯的空气孔,给出另外的双折射时,发现了标准光纤不可能有的新效应。
并且根据本发明,提供一种双折射光子晶体光纤的生产方法,该方法包括下列步骤:
(a)形成细丝堆,至少一些细丝是毛细管,该细丝堆包括排列以形成光纤纤芯区域的细丝和排列以形成光纤包层区域的细丝;以及
(b)将细丝堆拉成包含具有纵向孔排列和波导纤芯排列的块体材料的光子晶体光纤,其特征在于该光纤关于光纤的纵轴具有一重或两重旋转对称,并且作为该对称的结果该光纤是双折射的,使得在光纤中传输的具有波长1.5微米的光具有小于1cm的差拍长度,或者如果光纤不能引导波长为1.5微米的光,则在引导波长处具有根据如下关系对1.5微米处的差拍长度的同等物按比例增加或减小的差拍长度: L B = 2 π | β x - β y | , | β x - β y | k 0 = | n x - n y | 并且 k 0 = 2 π λ .
通过修改用于制作光子晶体光纤预型的方法,从而引入了双折射。制作工序的修改可由在包括预型的细丝周期堆积中的材料对称性的减小组成,材料对称性减小到最多两重对称特性。所述结构通常改变波导模的形状和光子晶体结构中的应力分布形式。
引入双折射的一种方法可为在预型中包含在格点双重对称线对上的不同毛细管。这些内含物可放置在纤芯的附近,以便改变导模(“形状双折射”)的形状或它们可放置在离开纤芯处,但是它们由不同特性的材料做成,因此改变光纤纤芯(“应力双折射”)中的应力分布形式。预型可被构造得通过用不同类型的毛细管形成光纤预型的相当一部分而引入双折射,同样引入应力和形状双折射。形成波导包层的基本周期点阵可为具有正常同一外径的毛细管的简单密堆积排列,或它可为通常具有不同形态特性并且形成不同周期结构的毛细管的排列。由毛细管和具有不同直径的棒可形成方点阵。对于包层,对于简化光子晶体光纤偏振保留的设计来说,可用方形和矩形点阵自然建造双折射晶体结构。
较高旋转对称的缺少至少部分由堆积横截面上的毛细管内径的变化,形成细丝的材料的变化,填充毛细管的材料的变化和/或细丝的外径的变化产生。
可将细丝提供在关于排列形成纤芯的细丝中心具有最多两重旋转对称的包层点阵的顶点处。选择的内径的毛细管可被提供在关于排列形成纤芯的细丝中心具有最多两重旋转对称的包层点阵的顶点处,在包层点阵顶点处的毛细管的选择的直径和在其它点处的毛细管的直径不同。
排列以形成纤芯的细丝附近的包层细丝的基本数量可以是不同的。
双折射可至少由在拉制光纤时在光纤中形成的应力产生。该应力可通过在具有最多两重旋转对称的点处由一种材料做成的细丝的内含物而引入,该材料不同于做成点阵中至少一些其它细丝的材料。该应力可通过在具有最多两重旋转对称的点处由具有不同毛细管壁厚度的毛细管的内含物而引入,毛细管的厚度不同于至少其它的一些毛细管的厚度。
该应力可导致拉制的光纤纤芯周围的孔出现变形并且该缺陷可导致双折射。
该应力可导致拉制的光纤纤芯中出现应力,并且这些应力可导致双折射。
较高旋转对称的缺少至少部分地由细丝堆拉制过程中至少一个毛细管的增压和/或抽空产生。
在上述的任一方法中,细丝堆的旋转对称优选为两重旋转对称。
并且根据本发明,提供光子晶体光纤的生产方法,包括:
(a)提供多个拉长的细丝,每个细丝具有纵轴,第一端和第二端,至少一些细丝是毛细管,每个毛细管都具有一个平行于纵轴并从细丝的第一端延长到细丝的第二端的孔;
(b)将细丝形成细丝堆,排列细丝,使它们的纵轴基本相互平行并且平行于细丝堆的纵轴;
(c)将堆积拉成光纤,同时维持至少一个毛细管的孔与在第一压力的流体源相联系,同时维持毛细管周围的压力在第二压力上,该压力不同于第一压力,其中在第一压力中的孔在拉制过程中变成不同于在没有压差时它将变成的尺寸。
在新方法中,在拉制光纤时,在光纤结构中可发生相当的和可控制的变化;例如,在拉制过程中也可存在空气孔的可控制的膨胀。在现有技术光子晶体光纤中,在宏观尺度上形成所需的微结构,然后通过将其拉入光纤中减小其尺度。
优选为管围绕在细丝堆周围至少一部分长度上,并且管的内部维持在第二压力。
应当明白,术语“空气孔的膨胀”指的是尺寸(在垂直于毛细管纵轴的横截面内)大于在没有压差时它应当具有的尺寸的空气孔的产物。实际上,通过拉制产生出的光纤具有比做成光纤的预型(这里是细丝堆积)小得多的总横截面积,因此本发明中的空气孔通常不是在绝对术语中的“膨胀”。
可以以两种主要的方式控制拉制过程中的变化:通过使用施加到特定孔的压差,和优选通过在管中密封全部预型,该管优选为厚壁和包含二氧化硅并且拉进和形成部分最终光纤。该管优选不经历显著不同于在没有压差时它应当经历的变形。
该管优选限制了至少一个在第一内压的孔的膨胀。
细丝堆关于任一纵轴优选具有最多两重旋转对称。所述细丝堆可被用于拉制双折射光纤。
在拉制过程中优选为:
该管被密封到抽空结构的第一端并且该管的第二端位于抽空结构中;
至少一些毛细管通过抽空结构并且被密封到其第二端;
抽空结构基本上被抽空,以产生第二内压。
抽空结构优选为金属管。
附图说明
仅以实施例的方法,根据附图描述本发明的实施方案,其中:
图1是标准光纤实施例的示意图。
图2是具有高指数纤芯缺陷的常规光子晶体光纤的示意图。
图3是具有低指数纤芯缺陷的常规光子晶体光纤(光子带隙光纤)的示意图。
图4是局部被拉成光纤的光子晶体光纤预型的示意图。
图5是根据本发明第一偏振保留光子晶体光纤的横截面示意图,其中包层孔形成矩形点阵。
图6是根据本发明第二偏振保留光子晶体光纤的横截面示意图,其中靠近纤芯的包层孔的图案具有两重对称。
图7是根据本发明第三偏振保留光子晶体光纤的横截面示意图,其中远离纤芯的包层孔的图案式具有两重对称。
图8是根据本发明第四偏振保留光子晶体光纤的横截面示意图,其中在点阵纤芯中的电介质包含物的图案具有两重对称。
图9是用于形成具有方点阵的光子晶体光纤的细丝排列的横截面示意图。
图10是具有孔的方点阵的部分光子晶体光纤的横截面示意图,每一个孔都具有两个不同直径中的一个直径。
图11示出了具有方点阵的光子晶体光纤。
图12示出了形成部分细丝堆的细丝,该细丝堆用于形成光子晶体光纤。
图13示出了由诸如图12中的所述细丝堆形成的光子晶体光纤。
图14示出了适合在根据本发明另一方法中应用的毛细管堆。
图15示出了图14的毛细管堆使用的装置。
图16a示出了由类似于图14的预型和图15中的装置做成的光子晶体光纤的裂开的端面。
图16b示出了图16a的光纤纤芯附近的结构详图。
图17a示出了由图15的装置做成的高双折射光纤。
图17b示出了在图17a的光纤中在波长为1550nm处观测到的偏振差拍。
具体实施方式
诸如图1中实例的标准光纤,它们的简单形式基本包括圆柱纤芯10和同心圆柱包层20。纤芯和包层典型以相同的材料做成,通常为二氧化硅,但是纤芯和包层掺杂其它材料,以提高纤芯10的折射率并降低包层20的折射率。合适波长的光被束缚到纤芯19并且在那里通过纤芯-包层边界15处的全内反射而被传输。
图2示出的典型光子晶体光纤,包含透明块体材料30(例如二氧化硅)的圆柱,其具有沿着其长度的圆柱孔40的点阵。孔被排列在规则六边形的顶点和中心,该六边形具有六重旋转对称。这些孔具有规则周期,通过在光纤中心附近缺省一个孔而打破该周期。围绕在缺少孔的格点周围的光纤区域50具有块体材料30的折射率。光纤其它部分的折射率归因于块体材料30和孔40中的空气的折射率。空气的折射率低于例如二氧化硅的折射率,因此,具有孔的材料的“有效折射率”低于围绕在缺少孔周围的区域50的折射率。因此该光纤以标准光纤中全内反射波导的相似方式,可将光近似地束缚到区域50。因此区域50被称作光子晶体光纤的“纤芯”。
在光子晶体光纤的另一形式中,光子带隙引导担当将光束缚到光纤“纤芯”的作用。在图3示出的所述光纤的实施例中,在块体材料30中具有孔70的矩阵。这些孔被排列在规则六边形的顶点(与图2相比不在中心),该六边形具有六重旋转对称。矩阵的规则性被缺陷再次打破,但是在实例中,它为在点阵六边形中心的附加的孔60,该六边形位于光纤中心附近。围绕在附加孔60周围的区域被再次称作光纤的纤芯。不管孔60(暂时),光纤中的孔的周期性导致在光纤中传输的光的传播常数中可存在带隙。附加的孔60有效地产生了具有不同周期性的区域,并且该区域可支持不同于在光纤其它部分中所支持的一些传播常数。如果在孔60的区域中支持的传播常数进入到光纤其它部分禁止的传播常数的带隙中,那么具有这些传播常数的光被限定在该纤芯中并在其中传输。注意到由于孔60是低指数缺陷(其导致空气代替块体材料),全内反射效应不是该实例中的波导的原因。
光子晶体光纤可通过一种方法生产,在图4中示出了该方法的一个阶段。在该方法的第一阶段(未示出),研磨块体材料(例如,二氧化硅)的圆柱,使其具有六边形横截面,并且沿着它的中心钻一孔。然后使用光纤拉制塔将棒拉成细丝。对细丝进行切割成段,堆积短的结果细丝80以形成细丝堆,如图4所示。在示出的排列中心的细丝100不是毛细管,即它没有孔;示出的排列将形成光纤的有效折射率引导类型。细丝80的排列被熔化在一起,然后将其拉成最终的光子晶体光纤110。
图5的光纤具有孔的点阵120,这些孔排列在矩形顶点,该矩形不是正方形。通过在光纤横截面中心附近的区域125中的孔的缺少,打破点阵的周期性。在平行于X轴(X)方向上,这些孔的中心到中心的间隔(间距)不同于平行于Y轴方向上的间距(Y)。通过使用被磨成具有矩形横截面的细丝可生产出图5示出的光纤。图5的点阵具有双重旋转对称性,因此是双折射的。
图6和7示出了其为有效折射率波导光纤的光子晶体光纤,其具有类似于图2光纤的六边形。所述点阵在本质上不是双折射的。然而,在图6和7的点阵中,孔140的直径大于130的直径。在点阵中的这种各向异性形成了关于区域135的孔的两重旋转对称图案,在区域135中一个孔从点阵中消失。
图6中大孔140的图形具有与标准光纤中形状双折射类似的效果。在“纤芯”135附近的孔的直径变化直接形成被波导模所观察到的有效折射率的变化。
图7中大孔的图案在纤芯中产生应力,该应力以标准光纤形成双折射相同的方式形成双折射。标准光纤不可能有的新效应是在拉制过程中,光纤中的应力分布形式(模式)可扭曲某些沿着轴围绕光纤纤芯135的空气孔,给出另外的双折射。
在图8中示出的另一方法为一些孔150中填充材料而不是空气(使得它们具有不同的介电常数)。再次,点阵的六重旋转对称被减约到两重旋转对称。
图9示出的细丝堆有三种类型:其为毛细管的大直径细丝160,小直径实体(实心)细丝170和大直径实体细丝180。排列这些细丝使得大直径细丝160形成方点阵,其被中心格点处的缺陷打破,该缺陷为大直径实体细丝180。由细丝160的圆形横截面的非镶嵌本质所造成的空隙间隙被小直径细丝170填充。
图10示出了具有两重对称性的光子晶体光纤。该光纤具有点阵结构,该结构可以类似于图9的堆积方式排列的细丝堆构建成。实体细丝180导致与缺陷210相似的缺陷。然而,在这种情况下,孔的交替行(190,200)分别具有大和小的直径。通过提供具有大和小内径(但是具有恒定的外径)细丝160的交替行可得到具有图9的点阵的所述效果。
图11的光纤可被看作近似具有诸如可从图9的细丝堆产生的方点阵。
图12示出了其为毛细管的细丝220的堆积。细丝排列在六边形点阵上,该结构的周期性被实体细丝240打破。应当注意到在相片上大约一半处的一行细丝是具有比其他毛细管的壁230厚的壁250的毛细管。当从细丝的堆积中拉制光纤时,所述的排列会导致诸如在图13中示出的光纤,其具有一行孔260,孔260的直径比光纤中其它的孔小。
在本发明的范围中,可设计各种参数变化的毛细管和细丝的许多其它图案。
在图14和15中示出了制作光纤的另一方法。毛细管300规则排列的堆积被放置在厚壁石英玻璃管310中(图14)。石英玻璃管310在拉制后形成部分光纤,用作外壳以提供机械强度。在拉制过程中(图15),通过在密封结构中将其密封,管310的内部被抽空,而例如,一些或所有毛细管300的内部被保持在不同的和较高的压力中,因为它们被留下开放于空气中。
抽空结构是铜柱320。最初它在两端被打开。然后在其一端将其密封到管310上。该管终止在铜柱320中。一些或所有毛细管300正好通过铜柱320,然后围绕在上端正好通过该柱的毛细管密封该柱。在拉制过程中抽空铜柱320。
在拉制过程中,其中管310和毛细管300被从铜管中向下拉出,外管310尽管被抽空,但由于具有厚壁而没有坍缩。相反,已经很小并且具有被毛细管壁限定的相对薄的边界的毛细管300间的空隙孔快速坍缩,并且在最终的光纤中不存在(这是所需的)。如果在毛细管周围存在较高压力,被抽空的毛细管也完全坍缩。另一方面,被大气压空气填充的毛细管膨胀。
通过采用刚才描述的方法,形成非常规则和薄壁结构和制作具有非常小的波导纤芯的光纤是可能的。图16示出了所述的光纤,其具有拉制后的包含管310的外包层330和包含毛细管的内包层340。内包层半径近似10μm,并且包含膨胀孔的蜂窝状结构。这些孔围绕波导纤芯350,该纤芯直径近似1μm,并且已经从不是毛细管的拉长细丝中形成。应当明白,图16中的光纤是通过使所有的毛细管300正好通过圆柱320而形成的,并且该光纤基本上具有多重旋转对称;因此该光纤主要地不是双折射的。
相对比,图17a示出了通过在特定位置上堆积厚壁毛细管形成具有较高双折射的光纤;小的空气孔360形成在那些位置上。生产光纤的另一种方法可为使四个选择的毛细管终止在圆柱320中;在那些选择的毛细管300中的孔在拉制过程中不会膨胀因此会提供四个小的孔360。图17a的光纤由于只有两重对称因而是高双折射的,该对称由沿着内包层的直径,纤芯任一端的四个小孔360造成。
图17b示出了图17a的光纤的偏振差拍数据。从该数据中,在波长1550nm处的光纤的差拍长度可示出为0.92mm;所述的差拍长度对充当偏振保留单模光子晶体光纤的光纤来说是足够短的。

Claims (9)

1.一种制作光子晶体光纤的方法,包括:
(i)提供多个拉长的细丝,每一细丝具有纵向轴、第一端与第二端,至少一些细丝是毛细管,每一毛细管具有平行于细丝的纵向轴的孔,从细丝的第一端延伸到细丝的第二端;
(ii)通过将该细丝形成一个细丝堆并将它们熔合在一起而形成预成形品,各细丝被设置成它们的纵向轴基本上互相平行并且与细丝堆的纵向轴平行;
(iii)将预成形品拉制成光纤,同时保持至少一个毛细管的孔与一个处于第一压力的流体源相通,同时保持毛细管的周围的压力处于第二压力,该第二压力不同于第一压力,其中处于第一压力的孔在拉制处理期间其尺寸变得不同于在没有压力差的情况下将变成的尺寸。
2.根据权利要求1的方法,其中一种管至少在一部分长度上围绕细丝堆,并且管的内部被保持在第二压力。
3.根据权利要求2的方法,其中该管限制了至少一个处于第一压力的孔的膨胀。
4.根据权利要求2的方法,其中该管不经历显著不同于在没有压差时它将经历的变形。
5.根据权利要求2的方法,其中在拉制过程中:
(A)管的第一端附近被密封到可抽空结构的第一端,并且该管的第二端位于可抽空结构中;
(B)至少一些毛细管通过可抽空结构并且被密封到它的第二端;并且
(C)该可抽空结构基本上被抽空,以产生第二内压。
6.根据权利要求5的方法,其中该可抽空结构是一金属管。
7.根据权利要求1的方法,其中预成形品关于任一纵轴具有最多两重旋转对称。
8.根据权利要求1的方法,其中预成形品被装入管中,该管被拉制并构成拉制光纤的一部分。
9.根据权利要求1的方法,其中在拉制期间,至少一些孔受控地膨胀。
CNB2004100881551A 1999-02-19 2000-02-18 光子晶体光纤和光子晶体光纤的生产方法 Expired - Lifetime CN1329755C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9903918.2 1999-02-19
GBGB9903918.2A GB9903918D0 (en) 1999-02-19 1999-02-19 Improvements in and relating to photonic crystal fibres
GB9903923.2 1999-02-19
GBGB9903923.2A GB9903923D0 (en) 1999-02-19 1999-02-19 Improvements in or relating to photonic crystal fibres

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB00803964XA Division CN1178079C (zh) 1999-02-19 2000-02-18 光子晶体光纤和光子晶体光纤的生产方法

Publications (2)

Publication Number Publication Date
CN1645174A CN1645174A (zh) 2005-07-27
CN1329755C true CN1329755C (zh) 2007-08-01

Family

ID=26315163

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB00803964XA Expired - Lifetime CN1178079C (zh) 1999-02-19 2000-02-18 光子晶体光纤和光子晶体光纤的生产方法
CNB2004100881551A Expired - Lifetime CN1329755C (zh) 1999-02-19 2000-02-18 光子晶体光纤和光子晶体光纤的生产方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB00803964XA Expired - Lifetime CN1178079C (zh) 1999-02-19 2000-02-18 光子晶体光纤和光子晶体光纤的生产方法

Country Status (11)

Country Link
US (2) US6954574B1 (zh)
EP (3) EP1340725B1 (zh)
JP (1) JP4761624B2 (zh)
KR (1) KR100637542B1 (zh)
CN (2) CN1178079C (zh)
AT (2) ATE250772T1 (zh)
AU (1) AU771646B2 (zh)
CA (1) CA2362997C (zh)
DE (2) DE60005486T3 (zh)
DK (2) DK1153325T4 (zh)
WO (1) WO2000049436A1 (zh)

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086393B1 (en) 1998-06-09 2004-06-02 Crystal Fibre A/S A photonic band gap fibre
US6778747B1 (en) 1998-09-09 2004-08-17 Corning Incorporated Radially varying and azimuthally asymmetric optical waveguide fiber
EP1340725B1 (en) 1999-02-19 2006-01-25 Crystal Fibre A/S Method of producing a photonic crystal fibre
WO2000060390A1 (en) 1999-03-30 2000-10-12 Crystal Fibre A/S Polarisation preserving optical fibre
US6822978B2 (en) * 1999-05-27 2004-11-23 Spectra Physics, Inc. Remote UV laser system and methods of use
US6334017B1 (en) * 1999-10-26 2001-12-25 Corning Inc Ring photonic crystal fibers
GB9929345D0 (en) 1999-12-10 2000-02-02 Univ Bath Improvements in and related to photonic-crystal fibres and photonic-crystal fibe devices
GB9929344D0 (en) 1999-12-10 2000-02-02 Univ Bath Improvements in or relating to photonic crystal fibres
KR100758519B1 (ko) * 2000-02-28 2007-09-14 스미토모덴키고교가부시키가이샤 광섬유
US6636677B2 (en) 2000-02-28 2003-10-21 Sumitomo Electric Industries, Ltd. Optical fiber
US6788865B2 (en) 2000-03-03 2004-09-07 Nippon Telegraph And Telephone Corporation Polarization maintaining optical fiber with improved polarization maintaining property
DE50108370D1 (de) * 2000-06-17 2006-01-19 Leica Microsystems Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
US6792188B2 (en) 2000-07-21 2004-09-14 Crystal Fibre A/S Dispersion manipulating fiber
GB2365992B (en) 2000-08-14 2002-09-11 Univ Southampton Compound glass optical fibres
AUPQ968800A0 (en) 2000-08-25 2000-09-21 University Of Sydney, The Polymer optical waveguide
US6598428B1 (en) * 2000-09-11 2003-07-29 Schott Fiber Optics, Inc. Multi-component all glass photonic band-gap fiber
US20030056550A1 (en) * 2000-09-21 2003-03-27 Masatoshi Tanaka Method of manufacturing photonic crystal fiber
US6594429B1 (en) 2000-10-20 2003-07-15 Lucent Technologies Inc. Microstructured multimode fiber
JP4759816B2 (ja) * 2001-02-21 2011-08-31 住友電気工業株式会社 光ファイバの製造方法
US6522433B2 (en) * 2001-02-28 2003-02-18 Optical Switch Corporation Interference lithography using holey fibers
GB2394712B (en) 2001-03-09 2005-10-26 Crystal Fibre As Fabrication of microstructured fibres
AU2002237219A1 (en) * 2001-03-12 2002-11-11 Crystal Fibre A/S Higher-order-mode dispersion compensating photonic crystal fibres
US6954575B2 (en) * 2001-03-16 2005-10-11 Imra America, Inc. Single-polarization high power fiber lasers and amplifiers
US20020150364A1 (en) * 2001-04-04 2002-10-17 Ian Bassett Single mode fibre
US20020197042A1 (en) * 2001-04-06 2002-12-26 Shigeo Kittaka Optical device, and wavelength multiplexing optical recording head
CA2443037A1 (en) 2001-04-11 2002-10-24 Crystal Fibre A/S Dual core photonic crystal fibers (pcf) with special dispersion properties
US20020181911A1 (en) 2001-04-30 2002-12-05 Wadsworth William John Optical material and a method for its production
AUPR566201A0 (en) 2001-06-13 2001-07-12 Ryder, Carol A device for use in construction
US7359603B2 (en) 2001-07-20 2008-04-15 The University Of Syndey Constructing preforms from capillaries and canes
JP3743637B2 (ja) * 2001-08-23 2006-02-08 独立行政法人理化学研究所 フォトニック結晶および光導波素子
EP1696251A3 (en) * 2001-08-30 2013-10-30 Crystal Fibre A/S Opticial fibre with high numerical aperture, method of its production and use thereof
JP3734733B2 (ja) 2001-09-27 2006-01-11 日本電信電話株式会社 偏波保持光ファイバおよび絶対単一偏波光ファイバ
GB0129404D0 (en) * 2001-12-07 2002-01-30 Blazephotonics Ltd An arrayed-waveguide grating
AU2003201650A1 (en) * 2002-01-11 2003-07-24 Blazephotonics Limited A method and apparatus relating to microstructured optical fibres
GB0201492D0 (en) * 2002-01-23 2002-03-13 Blazephotonics Ltd A method and apparatus relating to optical fibres
JP3630664B2 (ja) * 2002-01-29 2005-03-16 三菱電線工業株式会社 偏波保持フォトニッククリスタルファイバ
JP4466813B2 (ja) * 2002-03-14 2010-05-26 日本電気硝子株式会社 ガラスプリフォームおよびその製造方法
US7266275B2 (en) 2002-03-15 2007-09-04 Crystal Fibre A/S Nonlinear optical fibre method of its production and use thereof
WO2003080524A1 (en) * 2002-03-20 2003-10-02 Crystal Fibre A/S Method of drawing microstructured glass optical fibres from a preform
JP4158391B2 (ja) * 2002-03-25 2008-10-01 住友電気工業株式会社 光ファイバおよびその製造方法
KR100439479B1 (ko) * 2002-04-10 2004-07-09 학교법인 성균관대학 광자결정 광소자 및 이의 응용
JP4137515B2 (ja) 2002-05-17 2008-08-20 日本電信電話株式会社 分散シフト光ファイバ
AU2003229545A1 (en) * 2002-05-23 2003-12-12 Crystal Fibre A/S Optical waveguide, method of its production, and its use
US20030230118A1 (en) * 2002-06-12 2003-12-18 Dawes Steven B. Methods and preforms for drawing microstructured optical fibers
FI114860B (fi) * 2002-06-13 2005-01-14 Photonium Oy Kuituaihio, aihion kärkiosa ja menetelmä kuidun valmistamiseksi
GB2389915A (en) * 2002-06-20 2003-12-24 Blazephotonics Ltd Optic fibre with cladding region having rotational symmetry
KR100433703B1 (ko) * 2002-07-19 2004-05-31 학교법인단국대학 고분자 광자결정 광섬유 모재 제조장치
KR100428410B1 (ko) * 2002-07-29 2004-04-28 학교법인 성균관대학 광자결정 광결합기 및 이의 응용
DE10252764B3 (de) * 2002-11-13 2004-02-12 Schott Glas Verfahren zur Herstellung einer faseroptischen, hohlstrukturieren Vorform und Verfahren zur Herstellung von durchgehende Hohlstrukturen enthaltenden optischen Fasern aus der Vorform
EP1420276A1 (en) * 2002-11-15 2004-05-19 Alcatel Polarization-preserving photonic crystal fibers
JP3909014B2 (ja) * 2002-12-11 2007-04-25 日本電信電話株式会社 単一モードフォトニック結晶光ファイバ
AU2003290349A1 (en) * 2002-12-20 2004-07-14 Blazephotonics Limited Photonic bandgap optical waveguide
US7321712B2 (en) 2002-12-20 2008-01-22 Crystal Fibre A/S Optical waveguide
GB0314485D0 (en) * 2003-06-20 2003-07-23 Blazephotonics Ltd Enhanced optical waveguide
JP3871053B2 (ja) * 2003-05-21 2007-01-24 日本電信電話株式会社 分散フラットファイバ
GB0317352D0 (en) * 2003-07-24 2003-08-27 Blazephotonics Ltd Optical fibres
US20050074215A1 (en) 2003-08-01 2005-04-07 United States Of America As Represented By The Secretary Of The Navy Fabrication of high air fraction photonic band gap fibers
US7873251B2 (en) * 2003-08-01 2011-01-18 Bayya Shyam S Photonic band gap germanate glass fibers
KR101018376B1 (ko) * 2003-08-22 2011-03-02 삼성전자주식회사 포토닉 밴드갭 광섬유
EP1700146B1 (en) 2003-12-19 2013-04-10 NKT Photonics A/S Photonic crystal fibres comprising stress elements
US7280730B2 (en) 2004-01-16 2007-10-09 Imra America, Inc. Large core holey fibers
US7724422B2 (en) * 2004-01-30 2010-05-25 Nufern Method and apparatus for providing light having a selected polarization with an optical fiber
JP3982515B2 (ja) * 2004-04-21 2007-09-26 住友電気工業株式会社 光結合構造
DE102004059868B3 (de) * 2004-12-08 2006-05-18 Institut für Physikalische Hochtechnologie e.V. Anordnung und Verfahren zur Herstellung von strukturhomogenen mikrooptischen Fasern
US20060130528A1 (en) * 2004-12-22 2006-06-22 Nelson Brian K Method of making a hole assisted fiber device and fiber preform
US20060133753A1 (en) * 2004-12-22 2006-06-22 Nelson Brian K Hole assisted fiber device and fiber preform
EP1846784B1 (en) 2004-12-30 2016-07-20 Imra America, Inc. Photonic bandgap fibers
CN1322344C (zh) * 2005-01-26 2007-06-20 浙江工业大学 双折射光子晶体光纤
GB0506032D0 (en) 2005-03-24 2005-04-27 Qinetiq Ltd Multicore optical fibre
US7787729B2 (en) * 2005-05-20 2010-08-31 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
EP1902341A2 (en) 2005-07-08 2008-03-26 Koheras A/S Blue extended super continuum light source
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
EP1798581A1 (en) * 2005-12-16 2007-06-20 Danmarks Tekniske Universitet Optical bandgap fibre with different cladding elements
US7793521B2 (en) * 2006-03-01 2010-09-14 Corning Incorporated Method enabling dual pressure control within fiber preform during fiber fabrication
US7430345B2 (en) 2006-03-02 2008-09-30 The Board Of Trustees Of The Leland Stanford Junior University Polarization controller using a hollow-core photonic-bandgap fiber
CN100395573C (zh) * 2006-03-07 2008-06-18 北京交通大学 一种太赫兹波纤维波导
JP2007264331A (ja) * 2006-03-29 2007-10-11 Fujikura Ltd 拡張三角格子型フォトニックバンドギャップファイバ
JP4929833B2 (ja) * 2006-05-17 2012-05-09 旭硝子株式会社 光ファイバ製造方法
US8064128B2 (en) * 2006-12-08 2011-11-22 Nkt Photonics A/S Deep blue extended super continuum light source
CN100439951C (zh) * 2006-12-19 2008-12-03 浙江工业大学 一种光子晶体光纤
US20080170830A1 (en) * 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
CN100449341C (zh) * 2007-02-07 2009-01-07 南开大学 微结构光纤选择填充方法及判断对准系统
US8755658B2 (en) * 2007-02-15 2014-06-17 Institut National D'optique Archimedean-lattice microstructured optical fiber
WO2008098338A1 (en) * 2007-02-15 2008-08-21 Institut National D'optique Archimedean-lattice microstructured optical fiber
CN100592114C (zh) * 2007-05-11 2010-02-24 江苏大学 一种微结构保偏光纤
CN103246014B (zh) * 2007-09-26 2015-12-23 Imra美国公司 玻璃大芯径光纤
WO2010052815A1 (ja) * 2008-11-05 2010-05-14 株式会社フジクラ フォトニックバンドギャップファイバ
KR101055312B1 (ko) * 2009-01-05 2011-08-09 한국과학기술연구원 포토닉 밴드갭 광섬유 및 그 제조 방법
US8285098B2 (en) * 2009-03-31 2012-10-09 Imra America, Inc. Wide bandwidth, low loss photonic bandgap fibers
US20100303429A1 (en) * 2009-05-26 2010-12-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation
JP5155987B2 (ja) * 2009-11-09 2013-03-06 日立電線株式会社 光ファイバの端部加工方法および光ファイバの端部加工装置
WO2011060817A1 (en) * 2009-11-19 2011-05-26 Vrije Universiteit Brussel Optical fiber structure for sensors
US20110162527A1 (en) * 2010-01-07 2011-07-07 Graham Gibson Microstructured Fibre Frit
RU2437129C1 (ru) * 2010-03-24 2011-12-20 Закрытое акционерное общество "Профотек" Способ изготовления двулучепреломляющего микроструктурного оптического волокна
CN101825742B (zh) * 2010-05-11 2011-08-17 中国计量学院 一种使光子晶体光纤实现起偏的方法
EP2585863B1 (en) * 2010-06-25 2018-10-03 NKT Photonics A/S Large core area single mode optical fiber
US20120007584A1 (en) * 2010-07-12 2012-01-12 Honeywell International Inc. Fiber current sensor with reduced temperature sensitivity
US9416042B2 (en) * 2010-12-06 2016-08-16 The United States Of America, As Represented By The Secretary Of The Navy Hexagonal tube stacking method for the fabrication of hollow core photonic band gap fibers and preforms
WO2014031176A1 (en) * 2012-08-18 2014-02-27 Ofs Fitel, Llc High-birefringence hollow-core fibers and techniques for making same
CN102815864B (zh) * 2012-09-21 2015-01-07 中国电子科技集团公司第四十六研究所 一种光子晶体光纤的制备方法
US9841557B2 (en) 2013-07-10 2017-12-12 Nkt Photonics A/S Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source
GB2562687B (en) * 2013-09-20 2019-05-22 Univ Southampton Methods of manufacturing hollow-core photonic bandgap fibers.
GB2518419B (en) 2013-09-20 2019-05-29 Univ Southampton Hollow-core photonic bandgap fibers
DK3047319T3 (da) 2013-09-20 2021-07-05 Univ Southampton Fotoniske båndgabfibre med hul kerne og fremgangsmåder til fremstilling deraf
PL227732B1 (pl) * 2013-12-04 2018-01-31 Polskie Centrum Fotoniki I Swiatlowodów Mikrostrukturalny światłowód z selektywnie powiększonymi przestrzeniami o zmniejszonym współczynniku załamania światła zwłaszcza do generacji efektów nieliniowych i pomiaru naprężeń
US9366872B2 (en) 2014-02-18 2016-06-14 Lockheed Martin Corporation Apparatus and method for fiber-laser output-beam shaping for spectral beam combination
WO2016206700A1 (en) * 2015-06-25 2016-12-29 Nkt Photonics A/S A delivery fiber assembly and a broad band source
US11072554B2 (en) 2015-11-10 2021-07-27 Nkt Photonics A/S Element for a preform, a fiber production method and an optical fiber drawn from the preform
SG11201804738SA (en) 2015-12-23 2018-07-30 Nkt Photonics As Hollow core optical fiber and a laser system
WO2017108060A1 (en) 2015-12-23 2017-06-29 Nkt Photonics A/S Photonic crystal fiber assembly
US20190135679A1 (en) 2016-04-27 2019-05-09 Nkt Photonics A/S A method of fiber production
US10698154B2 (en) * 2017-10-11 2020-06-30 Ofs Fitel, Llc Suppressing surface modes in fibers
US11787727B2 (en) 2018-04-18 2023-10-17 Lawrence Livermore National Security, Llc Method for fabrication of sleeveless photonic crystal canes with an arbitrary shape
CN108490534B (zh) * 2018-05-24 2020-03-17 重庆邮电大学 一种基于圆孔混合型微结构光纤的温度不敏感偏振滤波器
GB201810095D0 (en) 2018-06-20 2018-08-08 Univ Edinburgh Coherent imaging fibre and method
CN109254348B (zh) * 2018-12-07 2023-12-15 陕西格物旭光科技有限公司 一种填充液体和钛线的双芯光子晶体光纤偏振分束器
KR102186972B1 (ko) * 2019-08-26 2020-12-04 한국전력공사 편광 유지 광자 결정 광섬유에 새겨진 장주기 광섬유 격자를 포함하는 온도 및 스트레인 동시 측정용 센서 및 이를 이용한 온도 및 스트레인 동시 측정 방법
CN111977959B (zh) * 2020-08-25 2021-10-22 东北大学 用气压控制气孔尺寸的v型高双折射微结构光纤及其制法
GB202102221D0 (en) 2021-02-17 2021-03-31 Lumenisity Ltd Method for dividing optical fibre
WO2023019261A1 (en) * 2021-08-12 2023-02-16 President And Fellows Of Harvard College Ultraviolet filtering photonic materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127398A (en) * 1963-09-18 1978-11-28 Ni-Tec, Inc. Multiple-channel tubular devices
US4551162A (en) * 1984-10-01 1985-11-05 Polaroid Corporation Hollow tube method for forming an optical fiber
US5155792A (en) * 1991-06-27 1992-10-13 Hughes Aircraft Company Low index of refraction optical fiber with tubular core and/or cladding
US5309540A (en) * 1991-10-29 1994-05-03 Thomson-Csf Optical fiber sensor and a manufacturing process for making same
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990874A (en) 1965-09-24 1976-11-09 Ni-Tec, Inc. Process of manufacturing a fiber bundle
US3516239A (en) * 1966-03-15 1970-06-23 Teijin Ltd Artificial fiber having voids and method of manufacture thereof
SU753797A1 (ru) 1978-03-01 1980-08-07 Предприятие П/Я Р-6681 Способ изготовлени многоканальных блоков и устройство дл его осуществлени
JPS5992940A (ja) * 1982-11-17 1984-05-29 Furukawa Electric Co Ltd:The 空孔を有する光フアイバの製造方法
US5056888A (en) * 1989-07-17 1991-10-15 Minnesota Mining And Manufacturing Company Single-mode, single-polarization optical fiber
DE69707201T2 (de) * 1996-05-31 2002-06-06 Lucent Technologies Inc Artikel mit einer mikrostrukturierten optischen Faser und Verfahren zur Herstellung einer solchen Faser
US5841131A (en) 1997-07-07 1998-11-24 Schlumberger Technology Corporation Fiber optic pressure transducers and pressure sensing system incorporating same
GB9713422D0 (en) * 1997-06-26 1997-08-27 Secr Defence Single mode optical fibre
US6228787B1 (en) * 1998-07-27 2001-05-08 Eugen Pavel Fluorescent photosensitive glasses and process for the production thereof
EP1119523B1 (en) 1998-07-30 2010-11-10 Corning Incorporated Method of fabricating photonic structures
BR9913724A (pt) 1998-09-15 2001-05-29 Corning Inc Guias de onda tendo estrutura que varia axialmente
US6243522B1 (en) 1998-12-21 2001-06-05 Corning Incorporated Photonic crystal fiber
GB9903918D0 (en) * 1999-02-19 1999-04-14 Univ Bath Improvements in and relating to photonic crystal fibres
EP1340725B1 (en) 1999-02-19 2006-01-25 Crystal Fibre A/S Method of producing a photonic crystal fibre
AU2003201650A1 (en) 2002-01-11 2003-07-24 Blazephotonics Limited A method and apparatus relating to microstructured optical fibres

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127398A (en) * 1963-09-18 1978-11-28 Ni-Tec, Inc. Multiple-channel tubular devices
US4551162A (en) * 1984-10-01 1985-11-05 Polaroid Corporation Hollow tube method for forming an optical fiber
US5155792A (en) * 1991-06-27 1992-10-13 Hughes Aircraft Company Low index of refraction optical fiber with tubular core and/or cladding
US5309540A (en) * 1991-10-29 1994-05-03 Thomson-Csf Optical fiber sensor and a manufacturing process for making same
US5802236A (en) * 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber

Also Published As

Publication number Publication date
JP2002537575A (ja) 2002-11-05
DK1153325T4 (da) 2007-06-18
JP4761624B2 (ja) 2011-08-31
EP1153325B2 (en) 2007-03-07
CA2362997C (en) 2008-04-29
CN1645174A (zh) 2005-07-27
DE60005486T3 (de) 2007-07-12
EP1385028A1 (en) 2004-01-28
AU771646B2 (en) 2004-04-01
CN1178079C (zh) 2004-12-01
DE60005486D1 (de) 2003-10-30
EP1153325A1 (en) 2001-11-14
ATE316516T1 (de) 2006-02-15
DK1153325T3 (da) 2004-01-26
EP1153325B1 (en) 2003-09-24
KR100637542B1 (ko) 2006-10-20
KR20010113696A (ko) 2001-12-28
AU2565000A (en) 2000-09-04
EP1340725B1 (en) 2006-01-25
CN1341221A (zh) 2002-03-20
DK1340725T3 (da) 2006-04-18
US20040105641A1 (en) 2004-06-03
EP1340725A2 (en) 2003-09-03
EP1340725A3 (en) 2004-04-28
ATE250772T1 (de) 2003-10-15
WO2000049436A1 (en) 2000-08-24
DE60005486T2 (de) 2004-07-22
DE60025766D1 (de) 2006-04-13
US6954574B1 (en) 2005-10-11
DE60025766T2 (de) 2006-10-12
CA2362997A1 (en) 2000-08-24
US6888992B2 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
CN1329755C (zh) 光子晶体光纤和光子晶体光纤的生产方法
US8215129B2 (en) Method of drawing microstructured glass optical fibers from a preform, and a preform combined with a connector
US6892018B2 (en) Micro-structured optical fiber
US6301420B1 (en) Multicore optical fibre
US7266275B2 (en) Nonlinear optical fibre method of its production and use thereof
EP1166160B1 (en) A photonic crystal fibre and a method for its production
US6990282B2 (en) Photonic crystal fibers
KR100816275B1 (ko) 광파이버
KR20010083044A (ko) 미세구조의 광섬유
EP1962120A1 (en) Tapered microstructured optical fibre with selective transmission for optical fibre sensors and production method thereof
GB2350904A (en) A photonic crystal fibre and its production
CN101788698B (zh) 类矩形多芯保偏光纤及其制作方法
CN100456061C (zh) 空气传导双芯光子带隙光纤
AU2004202828B2 (en) Improvements in or relating to photonic crystal fibres
Kim et al. Novel fabrication process of controlling aspect ratio of the hollow core in photonic bandgap fibers
Pickrell et al. Hybrid Ordered Hole-Random Hole Optical Fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant