CN1328708A - 二次电池的充放电控制方法 - Google Patents

二次电池的充放电控制方法 Download PDF

Info

Publication number
CN1328708A
CN1328708A CN99813635A CN99813635A CN1328708A CN 1328708 A CN1328708 A CN 1328708A CN 99813635 A CN99813635 A CN 99813635A CN 99813635 A CN99813635 A CN 99813635A CN 1328708 A CN1328708 A CN 1328708A
Authority
CN
China
Prior art keywords
soc
cell
charge
state
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99813635A
Other languages
English (en)
Other versions
CN1168187C (zh
Inventor
木村忠雄
村上雄才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Publication of CN1328708A publication Critical patent/CN1328708A/zh
Application granted granted Critical
Publication of CN1168187C publication Critical patent/CN1168187C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种二次电池的充放电控制方法,对于将作为二次电池构成的多个单体电池串联联接而形成的电池组,进行充放电控制,使相对充电电流的放电电流为在充电电流上乘上与作为均等化目标的SOC相对应的充电效率后的值,并反复进行充电和放电。

Description

二次电池的充放电控制方法
技术领域
本发明涉及使作为二次电池构成的多个单体电池串联连接形成的电池组的各单体电池的SOC(State of Charge,充电状态),均等化成其中间状态的充放电控制方法。
背景技术
SOC可定义为所蓄电的电量对二次电池电容量之比率。前述SOC因为按电池温度、或各个单体电池的特性差异而变动,故即使在将多个单体电池串联联接构成单体电池时,各个单体电池的SOC也会产生差异。单体电池的SOC各个各异的状态导致以电池组形式使用时的能量效率降低,所以,必须使构成电池组的各单体电池的SOC变均等。
为了谋求构成电池组的各个单体电池的SOC均等化,以往的技术对于使用铅二次电池或者镍系二次电池等水溶液系电解液的二次电池,采用的方法是,通过将电池组全体充电成过充电状态,使SOC低的单体电池和高的单体电池之差变得均等。而对于不能过充电的锂系二次电池,采用的方法为,利用控制每一个单体电池的充电的充电电路,使SOC均等。
但是,采用过充电使各单体电池的SOC均等的方法会由于过充电引起二次电池劣化,所以,过充电的次数受到限制,无法随时使SOC均等化。另外,控制构成电池组的每个单体电池充电的方法会使充电电路及其控制电路的构成变得复杂,成本会大幅度提高,所以不能说是现实的方法。再者,对于如以电动机和内燃机作为驱动源的混合式汽车,或由电动机驱动辅助人力脚踏动作的混合式自行车那样,用于回收内燃机驱动或制动时及惯性行驶时的能量来对二次电池充电,就必须设法维持二次电池的SOC在其中间状态,SOC的均等化就变得必要。但,不能采用前述的过充电方法,另外,对各个单体电池逐个控制的充电方法因为装置成本增加、充电控制难度加大,所以不能说是个适宜的方法。
本发明之目的在于:提供一种不采用会导致电池劣化的充电方法且不会增加装置成本、使构成电池组的各单体电池的SOC均等化成中间状态的二次电池的充放电控制方法。
发明的公开
为了达到上述目的,本发明的使电池组的各单体电池的SOC均等化的二次电池充放电控制方法,所述电池组由作为二次电池构成的多个单体电池串联联接构成,其特征在于,求出与作为均等化目标的SOC相对应的二次电池充电效率,并对前述电池组反复进行放电量对充电量的比率与所述充电效率为相同值的充放电。
充电效率是表征被用于充电的充电电量的二次电池中蓄电到了哪种程度的指标。前述充电效率显示出这样的特性倾向,即在二次电池的SOC低的状态充电效率大、SOC高的状态充电效率小。因此,若对串联接着的各个单体电池的SOC状态各异的电池组实行充电和放电,并使放电量对充电量的比率与作为均等化目标的SOC所对应的充电效率为相同值,则在充电时,与目标的SOC相比SOC处于低状态的单体电池就会多蓄与充电效率之差相当的电量,相反,与目标的SOC相比,SOC处于高状态的单体电池就会少蓄与充电效率之差相当的电量。另一方面,在放电时,因为各单体电池一律以在充电量上乘以充电效率的放电量进行放电,所以,SOC低于目标SOC状态的单体电池就会留下与充电效率之差相当的多蓄电的电量,蓄电量增加,而SOC高于目标SOC状态的单体电池则会减少蓄电量,减少的电量与充电效率之差相当。如果这样反复的充电和放电,SOC低于此目标SOC状态的单体电池之SOC就会渐渐增大而接近目标SOC,而SOC高于此目标SOC状态的单体电池的SOC则会渐渐减少而接近目标SOC。因此,通过继续反复进行该充放电,就可以使各单体电池的SOC均等化。
附图的简单说明
图1所示为第一实施形态的充放电控制波形图。
图2为表示用于第1、第2实施形态的二次电池充电效率的曲线图。
图3为表示充放电每次反复的SOC变化倾向的示意图。
图4所示为第2实施形态的充放电控制波形图。
实施本发明的最佳形态
以下,参照附图说明本发明的一种实施形态,以帮助对本发明的理解。又,下面所示实施形态为将本发明具体化之一个示例,并用于限定本发明的技术范围。
本实施形态的充放电控制方法,以应用于将电动机和自燃机一并用作驱动源的混合式汽车电动机驱动用电池电源装置为目的,在将形成为镍氢二次电池的多个单体电池串联联接构成能获得所需输出电功率的电池组时,为了使构成该电池组的各单体电池的SOC以其中间状态均等化而进行充放电控制。在前述混合式汽车中,作为前述电池电源装置的电池组的SOC在规定值以下时,利用由内燃机驱动的发电机的输出电力进行充电,同时将制动时或惯性行驶时的再生能量作为对电池电源装置充电的电力加以回收,从而实现能量的有效利用。因此,为了能将再生能量随时有效地利用于充电,构成电池电源装置的电池组的各单体电池之SOC有必要均等化成其中间状态。
关于将构成该电池组的各单体电池的SOC均等化成其中间状态的充放电控制方法说明如下。这里,将做成10Ah电池容量的镍氢二次电池的5个单体电池串联连接形成电池组,并将各单体电池的SOC分别设定在40%、45%、50%、55%、60%的不均等的状态,根据第1、第2各实施形态的充放电控制方法,以SOC=50%的状态为目标值,使各单体电池的SOC均等。
首先,在第1实施形态,对所述电池组如图1所示,以50A的充电电流充电约6秒钟,其后,将作为目标的SOC=50%时的充电效率97.5%乘上所述充电电流,以所得之值即48.75A的放电电流放电约6秒钟,对此反复实施2小时。因为所述充电效率表示充电电量被使用于蓄电时的效率,故例如如图2所示,在SOC=0的状态为100%,其特性有SOC越高充电效率越低的倾向。
因此,在如前所述以SOC=50%为均等化的目标值的情况下,充电时,因为处于SOC低于50%状态的单体电池的充电效率要比SOC=50%的单体电池的充电效率高,就会多蓄电。反之,处于SOC高于50%状态的单体电池之充电效率要比SOC=50%的单体电池的充电效率低,所以蓄电的电量会减少。
另一方面在放电时,各单体电池一律在同一时间幅度内以在充电电流上乘以充电效率后的充电电流放电,因而,SOC=50%的单体电池充电量和放电量是相同值,充电时的蓄电量由放电而取出,故SOC回复到原先的50%状态。另外,处于SOC低于50%状态的单体电池因为在充电时,比SOC=50%的单体电池要多蓄电,所以,若各单体电池以一律的放电量放电,则被多蓄电的充电量部分就会剩下来,呈SOC增大的状态。而处于SOC高于50%状态的单体电池,因为充电时,蓄电量比SOC=50%的单体电池要少,所以,若各单体电池以一律的放电量放电,则放电量变多,呈现SOC减少的状态。
若示意性示出反复进行上述充放电时各单体电池SOC的变化,则就如图3所示,SOC=50%的单体电池维持50%的状态,SOC低于SOC=50%状态的单体电池在每反复充放电一次后蓄电量增加,SOC升高。另一方面,SOC高于SOC=50%状态的单体电池在每反复充放电一次后蓄电量减少,SOC降低。若继续这种反复的充放电,则各单体电池的SOC就会接近作为目标的SOC=50%的状态,实现均等化。
将本实施形态设定的充放电反复进行了两个小时时,其结果是各单体电池的SOC值分别变为47%、49%、50%、51%、53%。即,最大差曾为20%的各单体电池SOC之差收敛在最大6%以内,呈被均等成在电池使用的允许范围之内的状态。
接着,在第2实施形态,对前述电池组使用如图4所示的充放电波形进行充放电控制。如图4所示,在以25A、50A、25A的电流值作3次放电后,同样用25A、50A、25A的电流值作3次充电。使这时各次放电时的电流累计值为对各次充电时的电流累计值乘上SOC=50%时的充电效率之值即97.5%后的电流累计值。这一反复充放电要反复实施两个小时。
这里因为是以在充电电量上乘以SOC=50%时的充电效率97.5%后的放电电量值实施放电,所以,SOC低于SOC=50%状态的单体电池比SOC=50%的单体电池充电效率高,每反复充放电一次SOC的值增加。另一方面,SOC高于SOC=50%状态的单体电池比SOC=50%的单体电池充电效率低,每反复充放电一次SOC的值减少。经过两个小时反复进行这一充放电的结果,各单体电池SOC的值分别变为46%、48%、50%、52%、54%。即,最大差曾为20%的各单体电池的SOC之差收敛在最大8%以内。呈被均等在电池使用的许可范围之内的状态。
图4所示的充放电波形不一定要设成图示那样的波形,另外也没有必要将放电时和充电时的波形做成对称的波形。关键是放电波形A的放电电流累计值与充电波形B的充电电流累计值要具有A<B的关系,将放电电流累计值设定为在充电电流累计值上乘以与作为目标的SOC对应的充电效率后的数值即可。
产业上应用的可能性
如以上的说明所述,根据本发明,将多个单体电池串联联接构成为电池组的二次电池,因为在中间性SOC,能使各单体电池的SOC均等化,所以,尤其在混合式汽车等随着能量的回收进行充电的用途上,在谋求提高二次电池的能量效率方面是相当有用的。

Claims (1)

1.一种二次电池的充放电控制方法,该方法使作为二次电池构成的多个单体电池串联联接而形成的电池组的各单体电池的SOC均等化,其特征在于,
求出与作为均等化目标的SOC相对应的二次电池的充电效率,并使放电量对充电量的比率与前述充电效率为相同值,如此对所述电池组反复进行充放电。
CNB998136352A 1998-11-24 1999-11-24 二次电池的充放电控制方法 Expired - Lifetime CN1168187C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33299098A JP4567109B2 (ja) 1998-11-24 1998-11-24 二次電池の充放電制御方法
JP332990/1998 1998-11-24

Publications (2)

Publication Number Publication Date
CN1328708A true CN1328708A (zh) 2001-12-26
CN1168187C CN1168187C (zh) 2004-09-22

Family

ID=18261076

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998136352A Expired - Lifetime CN1168187C (zh) 1998-11-24 1999-11-24 二次电池的充放电控制方法

Country Status (5)

Country Link
US (1) US6573687B2 (zh)
EP (1) EP1139481B1 (zh)
JP (1) JP4567109B2 (zh)
CN (1) CN1168187C (zh)
WO (1) WO2000031818A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416289C (zh) * 2004-02-14 2008-09-03 通用汽车公司 能量存储系统充电状态诊断
CN101026252B (zh) * 2007-02-09 2010-05-26 邹红钢 一种充电电池的充电方法及充电电路
CN1998110B (zh) * 2003-11-20 2011-04-13 佩勒克股份有限公司 平衡锂离子或锂聚合物电池的充电的方法
CN102372006A (zh) * 2010-08-09 2012-03-14 村田机械株式会社 输送车系统及其充电方法
CN102684262A (zh) * 2012-05-10 2012-09-19 杨湘武 电池组充放电自动管理装置及其工作方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567109B2 (ja) * 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法
US6841974B2 (en) * 2001-03-13 2005-01-11 Hdm Systems Corporation Battery charging method
JP3934365B2 (ja) * 2001-06-20 2007-06-20 松下電器産業株式会社 バッテリの充放電制御方法
JP4615771B2 (ja) * 2001-07-05 2011-01-19 パナソニック株式会社 組電池
JP4194399B2 (ja) 2003-03-25 2008-12-10 キヤノン株式会社 組電池、並びに、その充電装置およびその方法
JP4305111B2 (ja) * 2003-09-29 2009-07-29 新神戸電機株式会社 組電池及び電気自動車
JP4573510B2 (ja) * 2003-09-30 2010-11-04 三洋電機株式会社 アルカリ蓄電池および組電池
DE102004020646A1 (de) * 2004-04-22 2005-11-24 Coty B.V. Schweißabsorbierender Komplex für kosmetische Produkte
DE102004020647A1 (de) * 2004-04-22 2005-11-24 Coty B.V. Schweißabsorbierender Komplex für kosmetische Produkte
JP5053382B2 (ja) 2006-10-16 2012-10-17 エルジー・ケム・リミテッド 非対称に充電される単電池を備えた高出力二次電池システム
US7567061B2 (en) 2007-01-12 2009-07-28 Ford Global Technologies, Llc Battery equalization using a plug-in charger in a hybrid electric vehicle
CN101952995B (zh) * 2008-02-15 2014-07-30 美商源捷有限公司 电池组内的电池芯端子电性连接的方法
US8823324B2 (en) * 2008-06-26 2014-09-02 Eveready Battery Company, Inc. Staggered multi-battery battery charging
US9590444B2 (en) * 2009-11-30 2017-03-07 Broadcom Corporation Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency
CN102918738B (zh) * 2010-06-09 2015-01-28 丰田自动车株式会社 车辆用电池组均衡化系统以及车辆用电池组均衡化方法
US8872518B2 (en) 2010-06-25 2014-10-28 Atieva, Inc. Determining the state of-charge of batteries via selective sampling of extrapolated open circuit voltage
JP5174111B2 (ja) * 2010-09-27 2013-04-03 三菱重工業株式会社 電池システム
US8549838B2 (en) 2010-10-19 2013-10-08 Cummins Inc. System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system
US20120143410A1 (en) * 2010-12-01 2012-06-07 Aptera Motors, Inc. Interactive driver system for an electric vehicle
US8833496B2 (en) 2010-12-20 2014-09-16 Cummins Inc. System, method, and apparatus for battery pack thermal management
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
US9043060B2 (en) 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
US8473177B2 (en) 2010-12-31 2013-06-25 Cummins, Inc. Apparatuses, methods, and systems for thermal management of hybrid vehicle SCR aftertreatment
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
WO2012097349A2 (en) 2011-01-13 2012-07-19 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train
RU2527937C2 (ru) * 2012-08-16 2014-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Способ восстановления никель-кадмиевых аккумуляторов переменным асимметричным током
EP2969688B1 (en) * 2013-03-14 2022-12-21 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
US9236749B2 (en) * 2013-04-08 2016-01-12 GM Global Technology Operations LLC Vehicle battery system balancing systems and methods
KR101555660B1 (ko) * 2013-10-14 2015-09-25 주식회사 엘지화학 이차전지의 충전량 유지 장치 및 방법
US11509153B2 (en) * 2019-07-18 2022-11-22 Save The Planet Co., Ltd. Charge/discharge control method for storage system and charge/discharge control device
CN110780209B (zh) * 2019-11-27 2021-12-17 深圳市科陆电子科技股份有限公司 Bms电池容量标定方法
JP7382007B2 (ja) 2020-01-15 2023-11-16 住友電気工業株式会社 蓄電システム
WO2024091048A1 (ko) * 2022-10-28 2024-05-02 주식회사 엘지에너지솔루션 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176902B (en) * 1985-06-19 1989-10-11 Bl Tech Ltd Method and apparatus for determining the state of charge of a battery
US5049803A (en) * 1989-05-10 1991-09-17 Allied-Signal Inc. Method and apparatus for charging and testing batteries
US5187424A (en) * 1989-10-14 1993-02-16 Mercedes-Benz Ag Process for determining the state of a battery
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
US5578915A (en) * 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
JPH08289407A (ja) * 1995-02-13 1996-11-01 Nippon Soken Inc ハイブリッド車の発電制御装置
JP3922655B2 (ja) * 1996-07-12 2007-05-30 株式会社東京アールアンドデー 電源装置の制御システムおよび電源装置の制御方法
JP3304777B2 (ja) * 1996-08-22 2002-07-22 トヨタ自動車株式会社 電動車両
FR2758666B1 (fr) * 1997-01-23 1999-02-12 Alsthom Cge Alcatel Procede de regie pour ensemble accumulateur d'energie electrique et agencement de commande pour l'application de ce procede
JPH10304588A (ja) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd 電源装置
JP3415740B2 (ja) * 1997-04-14 2003-06-09 本田技研工業株式会社 バッテリ充電装置
JP3503414B2 (ja) 1997-05-12 2004-03-08 日産自動車株式会社 組電池の単電池間充電率調整装置
JP3304835B2 (ja) * 1997-08-06 2002-07-22 トヨタ自動車株式会社 ニッケルバッテリの充電方法およびその装置
US6094033A (en) * 1998-10-02 2000-07-25 Georgia Tech Research Corporation Battery state of charge detector with rapid charging capability and method
JP4567109B2 (ja) * 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1998110B (zh) * 2003-11-20 2011-04-13 佩勒克股份有限公司 平衡锂离子或锂聚合物电池的充电的方法
CN100416289C (zh) * 2004-02-14 2008-09-03 通用汽车公司 能量存储系统充电状态诊断
CN101026252B (zh) * 2007-02-09 2010-05-26 邹红钢 一种充电电池的充电方法及充电电路
CN102372006A (zh) * 2010-08-09 2012-03-14 村田机械株式会社 输送车系统及其充电方法
CN102372006B (zh) * 2010-08-09 2015-11-25 村田机械株式会社 输送车系统及其充电方法
CN102684262A (zh) * 2012-05-10 2012-09-19 杨湘武 电池组充放电自动管理装置及其工作方法

Also Published As

Publication number Publication date
JP2000164260A (ja) 2000-06-16
EP1139481A4 (en) 2008-06-25
US6573687B2 (en) 2003-06-03
EP1139481B1 (en) 2016-02-17
EP1139481A1 (en) 2001-10-04
CN1168187C (zh) 2004-09-22
JP4567109B2 (ja) 2010-10-20
US20010033150A1 (en) 2001-10-25
WO2000031818A1 (en) 2000-06-02

Similar Documents

Publication Publication Date Title
CN1168187C (zh) 二次电池的充放电控制方法
CA2252231A1 (en) Method for maintaining the charge capacity of traction battery modules of a hybrid electric vehicle
Stockar et al. Optimal control for plug-in hybrid electric vehicle applications
CN106564398A (zh) 一种电动汽车的车载复合电源系统及控制方法
CN102267456B (zh) 一种串联混合动力汽车的能量控制方法
CN108110344B (zh) 一种串联锂离子电池组p-c-c-p均衡器及其控制方法
CN201100922Y (zh) 电池组
CN108437827A (zh) 一种纯电动动力系统
CN111159916B (zh) 一种车载双电池复合储能系统及其参数优化设计方法
Azad et al. Active cell balancing of Li-Ion batteries using single capacitor and single LC series resonant circuit
CN102684259A (zh) 一种高时效的电池组非能耗恒流均衡系统及其方法
Barresi et al. Sizing and energy management strategy of a hybrid energy storage system for evs
Lian et al. Dynamic programming based optimal control strategy of the hybrid vehicular power system
CN208216514U (zh) 一种纯电动动力系统
CN1353472A (zh) 蓄电器串联组电压平衡装置及其方法
JPH08126119A (ja) 電気自動車
HABIB et al. A single LC tank based active voltage balancing circuit for battery management system
JP3975801B2 (ja) 蓄電池システム
Cai et al. A fuzzy control based energy management strategy for LFP/UC hybrid electric vehicular energy system
JP3421398B2 (ja) 車両用二次電池の充電制御方法
D’Arco et al. Energy management of electric road vehicles equipped with supercaps
Li et al. Rule and Q-learning based Hybrid Energy Management for Electric Vehicle
CN204567338U (zh) 一种采用铅酸蓄电池加速器的电动汽车
Srivastava et al. Managing Power Flow in Hybrid Electric Vehicle with Auxiliary Hybrid Energy Source coupled with Bidirectional Converter Using PI Control
Suryoatmojo et al. Design of Two-Stage Charge Equalizer with Modularized Cell Selection Switches for Series-Connected Lithium-Ion Battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040922

CX01 Expiry of patent term