CN1168187C - 二次电池的充放电控制方法 - Google Patents

二次电池的充放电控制方法 Download PDF

Info

Publication number
CN1168187C
CN1168187C CNB998136352A CN99813635A CN1168187C CN 1168187 C CN1168187 C CN 1168187C CN B998136352 A CNB998136352 A CN B998136352A CN 99813635 A CN99813635 A CN 99813635A CN 1168187 C CN1168187 C CN 1168187C
Authority
CN
China
Prior art keywords
cell
charged state
state
charge
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB998136352A
Other languages
English (en)
Other versions
CN1328708A (zh
Inventor
木村忠雄
村上雄才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Publication of CN1328708A publication Critical patent/CN1328708A/zh
Application granted granted Critical
Publication of CN1168187C publication Critical patent/CN1168187C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种二次电池的充放电控制方法,对于将作为二次电池构成的多个单体电池串联联接而形成的电池组,进行控制,使相对充电电流的放电电流为在充电电流上乘上与作为均等在目标的充电状态相对应的充电效率后的值,反复进行充电和放电。

Description

二次电池的充放电控制方法
技术领域
本发明为涉及使作为二次电池构成的多个单体电池串联接形成电池组的各单体电池的充电状态(State of Charge,SOC),均等化成其中间状态的充放控制方法。
背景技术
充电状态可定义为二次电池所充电量和实际电容量之间的比例。前述充电状态因为按电池温度、或各个单体电池的特性差异而变动,故即使在将多个单体电池串联联接构成单体电池时,各个单体电池的充电状态也会产生差别。单体电池的充电状态各个各异的状态招致以电池组形式使用的能量效率降低,所以,必须使构成电池组的各单体电池的充电状态变均等。
为了谋求构成电池组的各个单体电池的充电状态均等化,以往的技术对于使用铝二次电池或者镍系二次电池等水溶液系电解液的二次电池,采用的方法是,通过将电池组全体充电成过充电状态,度充电状态低的单体电池和高的单体电池之差变得均等。而对于不能过充电的锂系二次电池,采用的方法为,利用控制每一个单体电池的充电的充电电路,使充电状态均等。
但是,采用过充电使各单体电池的充电状态均等的方法会由于过充电引起二次电池劣化,所以,过充电的次数受到限制,无法随时使充电状态均等化。另外,控制构成电池组的每个单体电池充电的方法会使充电电路及其控制电路的构成变得复杂,成本会大幅度提高,所以不能说是现实的方法。再者,对于如以电动机和内燃机作为驱动源的混合式汽车,或由电动机驱动辅助人力脚踏动作的混合式自行车那样,回收内燃机驱动或制动时惯性行驶时的能量来对二次电池充电的用途,就必须设法维持二次电池的充电状态在其中间状态,充电状态的均等化就变得必要。但,不能采用前述的过充电方法,另外,对各个单体电池逐个控制的充电方法因为装置居本增加、充电控制难度加大,所以不能说是个适宜的方法。
本发明之目的在于:提供一种不采用会招致电池劣化的充电方法且不会增加装置成本、使构成电池组的各单体电池的充电状态均等化成中间状态的二次电池的充放电控制方法。
发明的公开
为了达到上述目的,本发明的使电池组的各单体电池的充电状态均等化的二次电池充放电控制方法,所述电池组由作为二次电池构成的多个单体电池串联联接构成,其特征在于,求出与作为均等化目标的充电状态相对应的二次电池充电效率,并对前述电池组反复进行放电量对充电量的比率与所述充电效率为相同值的充放电。
充电效率是表征被用于充电的充电电量的二次电池中蓄电到了哪种程度的揭标。前述充电效率显示出这样的特性倾向,即在二次电池的充电状态低的状态大、充电状态高的状态小。因此,若对串联接着的各个单体电池的充电状态状态各异的电池组实行充电和放电,并使放电量对充电量的比率与作为均等化目标的充电状态所对应的充电效率为相同值,则在充电时,与目标的充电状态相比充电状态处于低状态的单体电池就会多蓄与充电效率之差相当的电量,相反,与目标的充电状态相比,充电状态处于高状态的单体电池就会少蓄与充电效率之差相当的电量。另一方面,在放电时,因为各单体电池一律以在充电量上乘以充电效率的放电量进行放电,所以,充电状态处于比目标的充电状态低状态的单体电池就会留下与充电效率之差相当的多蓄电的电量,蓄电量增加,而充电状态处于目标充电状态高的状态的单体电池则会减少蓄电量,减少的电量与充电效率之差相当。如果这样反复的充电和放电,充电状态处于此目标充电状态低状态的单体电池之充电状态就会渐渐增大而接近目标充电状态,而充电状态处于此目标充电状态高状态的单体电池的充电状态则会渐渐减少而接近目标充电状态。因此,通过继续反复进行该充放电,就可以使各单体电池的充电状态均等化。
附图的简单说明
图1所示为第一实施形态的充放电控制波形图。
图2为表示用于第1、第2实施形态的二次电池充电效率的曲线图。
图3为表示充放电每次反复的充电状态变化倾向的示意图。
图4所示为第2实施形态的充放电控制波形图。
实施本发明的最佳形态
以下,参照附图说明本发明的一种实施形态,以帮助对本发明的理解。又,下面所示实施形态为将本发明具体化之一个示例,并不是限定本发明的技术范围。
本实施形态的充放电控制方法,以应用于将电动机和自燃机一半用作驱动源的混合或汽车电动机驱动用电池电源装置为目的,在将形成为镍氢二次电池的多个单体电池串联联接构成能获得所需输出电功率的电池组时,为了使构成该电池组的各单体电池的充电状态以其中间状态均等化而进行充放电控制。在前棕混合式汽车中,作为前述电池电源装置的电池组的充电状态在规定值以下时,利用由内燃机驱动的发电机的输出电力进行充电,同时将制动时或惯性行驶时的再生能量作为对电池电源装置充电的电力加以回收,从而实现能量的有效利用。因此,为了能将再生能量。随时有效地利用于充电,构成电池电源装置的电池组的各单体电池之充电状态有必要均等化成其中间状态。
关于将构成该电池组的各单体电池的充电状态均等化成其中间状态的充放电控制方法说明如下。这里,将做成10Ah电池容量的镍氢二次电池的5个单体电池串联接形成电池组,并将各单体电池的充电状态分别设定在40%、45%、50%、55%、60%的不均等的状态,根据第1、第2各实施形态的充放电控制方法,以充电状态=50%的状态为目标值,使各单体电池充电状态均等。
首先,在第1实施形态,对所述电池组如图1所示,以50A的充电电流充电约6秒钟,其后,将作为目标的充电状态-50%时的充电效率97.5%乘上所述充电电流,以所得之值即48.75A的放电电流的放电6秒钟,对此反复实施2小时。因为所述充电效率表示充电电池被使用于蓄电时的效率。例如如图2所示,在充电状态=0的状态为100%,其特性有充电状态越高充电效率越低的倾向。
因此,在如前所述以充电状态=50%为均等化的目标值的情况下,充电时,因为处于充电状态低于50%状态的单体电池的充电效率要比充电状态=50%的单体电池的充电状态高,就会多蓄电。反之,处于充电状态高于50%状态的单体电池之充电效率要比充电状态=50%的单体电池的充电效率低,所以蓄电的电量会减少。
另一方面在放电时,各单体电池一律在同一时间幅度内以在充电电流上乘以充电效率后的充电电流放电,因而,充电状态=50%的单体电池充电量和放电量是相同值,充电时时的蓄电量由放电而取出,故充电状态回复到原先的50%状态。另外,处于充电状态低于50%状态的单体电池因为在充电时,比充电状态=50%的单体电池要多蓄电,所以,若各单体电池以一律的放电量放电,则被多蓄电的充电量部分就会剩下来,呈充电状态增大的状态。而处于充电状态高于50%状态的单体电池,因为充电时,电池量比充电状态=50%的单体电池要少,所以,若各单体电池以一律的放电量放电,则放电量变多,呈现充电状态减少的状态。
若示意性示出反复进行上述充放电时各单体电池充电状态的变化,则就如图3所示,充电状态=50%的单体电池维持50%的状态,充电状态低于充电状态=50%状态的单体电池在每反复充放电一次后蓄电量增加,充电状态升高。另一方面,充电状态高于充电状态=50%状态的单体电池在每反复充放电一次后蓄电量减少,充电状态降低。若继续这种反复的充放电,则各单体电池的充电状态就会接近作为目标约充电状态=50%的状态,实现均等化。
将本实施形态设定的充放电反复进行了两个小时时,其结果是各单体电池的充电状态值分别变为47%、49%、50%、51%、53%。即,最大差曾为20%的各单体电池充电状态之差收敛在最大6%以内,呈被均等成在电池使用的允许范围之内的状态。
接着,在第2实施形态,对前述电池组使用如图4所示的充放电波形进行充放电控制。如图4所示,在以25A、50A、25A的电流值作3次放电后,同样用25A、50A25A的电流值作3次充电。使这时各次放电时的电流累计值成为对各次充电时的电流累计值乘上充电状态=50%时的充电效率之值即97.5%后的电流累计值。这一反复充放电要反复实施两个小时。
这里因为是以在充电电量上乘以充电状态=50%时的充电效率97.5%后的放电电量值实施放电,所以充电状态低于充电状态=50%状态的单体电池比充电状态=50%的单体电池充电效率高,每反复充放电一次充电状态的值增加。另一方面,充电状态高于充电状态=50%状态的单体电池比充电状态=50%的单体电池充电效率低,每反复充放电一次充电状态的值减少。经过两个小时反复已进行这一充放电的结果,各单体电池充电状态的值分别变为46%、48%、50%、52%、54%。即,最大差曾为20%的各单体电池的充电状态之差收敛在最大8%以内。呈被均等在电池使用的许可范围之内的状态。
图4所示的充放电电波形不一定要设成图示那样的波形,另外也汉有必要将放电时和充电时的波形做成对称的波形。关键是放电波形A的放电电流累计值与充电波形B的充电电流累计值要具有A<B的关系,将放电电流累计值设定为在充电电流累计值上乘以与作为目标的充电状态对应的充电效率后的数值即可。
产业上应用的可能性
如以上的说明所述,根据本发明,将多个单体电池串联联接构成为电池组的二次电池,因为在中间性充电状态,能使各单体电池的充电状态均等化,所以,尤其在混合式汽车等随着能量的回收进行充电的用途上,在谋求提高二次电池的能量效率方面是相当有用的。

Claims (1)

1.一种二次电池的充放电控制方法,
该方法使作为二次电池构成的多个单个电池串联联接而形成的电池组的各单体电池的充电状态均等化,其特征在于
录出与作为均等化目标的充电状态相对应的二次电池的充电效率,并使放电量对充电量的比率与前述充电效率为相同值,如此对所述电池组反复进行充放电。
CNB998136352A 1998-11-24 1999-11-24 二次电池的充放电控制方法 Expired - Lifetime CN1168187C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33299098A JP4567109B2 (ja) 1998-11-24 1998-11-24 二次電池の充放電制御方法
JP332990/1998 1998-11-24

Publications (2)

Publication Number Publication Date
CN1328708A CN1328708A (zh) 2001-12-26
CN1168187C true CN1168187C (zh) 2004-09-22

Family

ID=18261076

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998136352A Expired - Lifetime CN1168187C (zh) 1998-11-24 1999-11-24 二次电池的充放电控制方法

Country Status (5)

Country Link
US (1) US6573687B2 (zh)
EP (1) EP1139481B1 (zh)
JP (1) JP4567109B2 (zh)
CN (1) CN1168187C (zh)
WO (1) WO2000031818A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567109B2 (ja) * 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法
US6841974B2 (en) * 2001-03-13 2005-01-11 Hdm Systems Corporation Battery charging method
JP3934365B2 (ja) * 2001-06-20 2007-06-20 松下電器産業株式会社 バッテリの充放電制御方法
JP4615771B2 (ja) * 2001-07-05 2011-01-19 パナソニック株式会社 組電池
JP4194399B2 (ja) 2003-03-25 2008-12-10 キヤノン株式会社 組電池、並びに、その充電装置およびその方法
JP4305111B2 (ja) * 2003-09-29 2009-07-29 新神戸電機株式会社 組電池及び電気自動車
JP4573510B2 (ja) * 2003-09-30 2010-11-04 三洋電機株式会社 アルカリ蓄電池および組電池
FR2862813B1 (fr) * 2003-11-20 2006-06-02 Pellenc Sa Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
US7301304B2 (en) * 2004-02-14 2007-11-27 General Motors Corporation Energy storage system state of charge diagnostic
DE102004020646A1 (de) * 2004-04-22 2005-11-24 Coty B.V. Schweißabsorbierender Komplex für kosmetische Produkte
DE102004020647A1 (de) * 2004-04-22 2005-11-24 Coty B.V. Schweißabsorbierender Komplex für kosmetische Produkte
EP2076929B1 (en) 2006-10-16 2012-03-14 LG Chem, Ltd. High power secondary battery system comprising asymmetric charged cells
US7567061B2 (en) 2007-01-12 2009-07-28 Ford Global Technologies, Llc Battery equalization using a plug-in charger in a hybrid electric vehicle
CN101026252B (zh) * 2007-02-09 2010-05-26 邹红钢 一种充电电池的充电方法及充电电路
CN101952995B (zh) * 2008-02-15 2014-07-30 美商源捷有限公司 电池组内的电池芯端子电性连接的方法
US8823324B2 (en) * 2008-06-26 2014-09-02 Eveready Battery Company, Inc. Staggered multi-battery battery charging
US9590444B2 (en) * 2009-11-30 2017-03-07 Broadcom Corporation Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency
US8957636B2 (en) * 2010-06-09 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US8872518B2 (en) 2010-06-25 2014-10-28 Atieva, Inc. Determining the state of-charge of batteries via selective sampling of extrapolated open circuit voltage
JP5146855B2 (ja) * 2010-08-09 2013-02-20 村田機械株式会社 天井走行車システム
JP5174111B2 (ja) * 2010-09-27 2013-04-03 三菱重工業株式会社 電池システム
US8549838B2 (en) 2010-10-19 2013-10-08 Cummins Inc. System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system
US20120143410A1 (en) * 2010-12-01 2012-06-07 Aptera Motors, Inc. Interactive driver system for an electric vehicle
US8833496B2 (en) 2010-12-20 2014-09-16 Cummins Inc. System, method, and apparatus for battery pack thermal management
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
US9043060B2 (en) 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
US8473177B2 (en) 2010-12-31 2013-06-25 Cummins, Inc. Apparatuses, methods, and systems for thermal management of hybrid vehicle SCR aftertreatment
US8790215B2 (en) 2011-01-13 2014-07-29 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train
CN102684262B (zh) * 2012-05-10 2015-01-14 杨湘武 电池组充放电自动管理装置及其工作方法
RU2527937C2 (ru) * 2012-08-16 2014-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Способ восстановления никель-кадмиевых аккумуляторов переменным асимметричным током
CN105189235B (zh) * 2013-03-14 2018-01-19 艾里逊变速箱公司 用于混合动力车的在再生过程中断开发动机动力传动系的系统及方法
US9236749B2 (en) * 2013-04-08 2016-01-12 GM Global Technology Operations LLC Vehicle battery system balancing systems and methods
KR101555660B1 (ko) * 2013-10-14 2015-09-25 주식회사 엘지화학 이차전지의 충전량 유지 장치 및 방법
US11509153B2 (en) * 2019-07-18 2022-11-22 Save The Planet Co., Ltd. Charge/discharge control method for storage system and charge/discharge control device
CN110780209B (zh) * 2019-11-27 2021-12-17 深圳市科陆电子科技股份有限公司 Bms电池容量标定方法
JP7382007B2 (ja) * 2020-01-15 2023-11-16 住友電気工業株式会社 蓄電システム
KR20240060273A (ko) * 2022-10-28 2024-05-08 주식회사 엘지에너지솔루션 이차전지의 분할 충방전 방법, 배터리 관리 시스템 및 이를 포함하는 배터리 팩

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176902B (en) * 1985-06-19 1989-10-11 Bl Tech Ltd Method and apparatus for determining the state of charge of a battery
US5049803A (en) * 1989-05-10 1991-09-17 Allied-Signal Inc. Method and apparatus for charging and testing batteries
US5187424A (en) * 1989-10-14 1993-02-16 Mercedes-Benz Ag Process for determining the state of a battery
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
US5578915A (en) * 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
JPH08289407A (ja) 1995-02-13 1996-11-01 Nippon Soken Inc ハイブリッド車の発電制御装置
JP3922655B2 (ja) * 1996-07-12 2007-05-30 株式会社東京アールアンドデー 電源装置の制御システムおよび電源装置の制御方法
JP3304777B2 (ja) * 1996-08-22 2002-07-22 トヨタ自動車株式会社 電動車両
FR2758666B1 (fr) * 1997-01-23 1999-02-12 Alsthom Cge Alcatel Procede de regie pour ensemble accumulateur d'energie electrique et agencement de commande pour l'application de ce procede
JPH10304588A (ja) * 1997-02-25 1998-11-13 Matsushita Electric Ind Co Ltd 電源装置
JP3415740B2 (ja) * 1997-04-14 2003-06-09 本田技研工業株式会社 バッテリ充電装置
JP3503414B2 (ja) * 1997-05-12 2004-03-08 日産自動車株式会社 組電池の単電池間充電率調整装置
JP3304835B2 (ja) * 1997-08-06 2002-07-22 トヨタ自動車株式会社 ニッケルバッテリの充電方法およびその装置
US6094033A (en) * 1998-10-02 2000-07-25 Georgia Tech Research Corporation Battery state of charge detector with rapid charging capability and method
JP4567109B2 (ja) * 1998-11-24 2010-10-20 パナソニック株式会社 二次電池の充放電制御方法

Also Published As

Publication number Publication date
EP1139481A4 (en) 2008-06-25
JP4567109B2 (ja) 2010-10-20
CN1328708A (zh) 2001-12-26
EP1139481A1 (en) 2001-10-04
US6573687B2 (en) 2003-06-03
WO2000031818A1 (en) 2000-06-02
JP2000164260A (ja) 2000-06-16
US20010033150A1 (en) 2001-10-25
EP1139481B1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
CN1168187C (zh) 二次电池的充放电控制方法
CA2252231A1 (en) Method for maintaining the charge capacity of traction battery modules of a hybrid electric vehicle
Saib et al. Energy management in a fuel cell hybrid electric vehicle using a fuzzy logic approach
CN100999191A (zh) 混合动力汽车的燃料电池动力系统
MXPA98009104A (es) Metodo para igualar el voltaje de modulos de bateria de traccion de un vehiculo electrico hibrido.
WO2011032500A1 (zh) 对多组蓄电池充电方法和其控制系统
CN101771290A (zh) 一种电动汽车电源及充放电方法
CN201100922Y (zh) 电池组
Azad et al. Active cell balancing of Li-Ion batteries using single capacitor and single LC series resonant circuit
Zhang et al. Research on regenerative braking energy recovery system of electric vehicles
KR20190080187A (ko) 외부 에너지원을 이용한 충전량 가변 제어 장치 및 방법
CN206202005U (zh) 一种用于纯电动车的动力系统
CN207466400U (zh) 一种电动汽车的混合电源控制系统
CN109823235A (zh) 电池、超级电容与燃料电池混合储能装置能量管理系统
Indragandhi et al. An efficient regenerative braking system based on battery-ultracapacitor for electric vehicles
Barresi et al. Sizing and energy management strategy of a hybrid energy storage system for evs
Lian et al. Dynamic programming based optimal control strategy of the hybrid vehicular power system
Juda Advanced batteries and supercapacitors for electric vehicle propulsion systems with kinetic energy recovery
CN208216514U (zh) 一种纯电动动力系统
Ranjan et al. Modified energy management strategy for hess in electric vehicle
CN1353472A (zh) 蓄电器串联组电压平衡装置及其方法
Azahan et al. Analysis of relationship between acceleration and battery state-of-charging in electric vehicle
D’Arco et al. Energy management of electric road vehicles equipped with supercaps
Cai et al. A fuzzy control based energy management strategy for LFP/UC hybrid electric vehicular energy system
JP3421398B2 (ja) 車両用二次電池の充電制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040922

CX01 Expiry of patent term