CN1319137C - 提高表面降场型ldmos器件耐压的工艺 - Google Patents

提高表面降场型ldmos器件耐压的工艺 Download PDF

Info

Publication number
CN1319137C
CN1319137C CNB200410093453XA CN200410093453A CN1319137C CN 1319137 C CN1319137 C CN 1319137C CN B200410093453X A CNB200410093453X A CN B200410093453XA CN 200410093453 A CN200410093453 A CN 200410093453A CN 1319137 C CN1319137 C CN 1319137C
Authority
CN
China
Prior art keywords
beak
transistor
ldmos
state
reduced surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200410093453XA
Other languages
English (en)
Other versions
CN1632931A (zh
Inventor
王炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Shanghai Huahong Group Co Ltd
Original Assignee
Shanghai Huahong Group Co Ltd
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Group Co Ltd, Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical Shanghai Huahong Group Co Ltd
Priority to CNB200410093453XA priority Critical patent/CN1319137C/zh
Publication of CN1632931A publication Critical patent/CN1632931A/zh
Application granted granted Critical
Publication of CN1319137C publication Critical patent/CN1319137C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明属半导体集成电路制造工艺技术领域,具体为一种提高表面降场(RESURF=REduced SURface Field)型LDMOS器件关态击穿电压并同时保证开态导通电阻的工艺集成技术。具体是使场多晶区域覆盖有源区,N+扩散层在所有工艺完成以后其边缘与鸟嘴21边缘分离,分离距离为2~5微米,从而减小鸟嘴应力对漏端电场强度的影响,继而进一步提高晶体管关态击穿电压,这一方法对晶体管的开态导通电阻的影响非常有限,确保了晶体管的开态工作特性。

Description

提高表面降场型LDMOS器件耐压的工艺
技术领域
本发明属半导体集成电路制造工艺技术领域,具体为一种提高表面降场(RESURF=REduced SURface Field)型LDMOS器件耐压的工艺。
背景技术
横向双扩散金属氧化物半导体(LDMOS=Lateral Double-Diffused Metal OxideSemiconductor)器件因其耐高压特性而被广泛应用于智能功率集成电路(SPIC)中。关态耐压及导通电阻是表证LDMOS器件特性的重要指标,同时也是器件的工艺制造过程中所面临的一对矛盾。为进一步提高器件特性及解决所面临的矛盾,人们引入了表面降场(RESURF=REduced SURface Field)型LDMOS器件的概念,得到了广泛的应用。图1为传统的双RESURF结构的LDMOS器件25的剖面示意图。其关态时的耐压工作原理如下:
当晶体管25栅电极1所加电压为0V,源电极2接地(从而源8与P体衬底9的外接出扩散层7均通过电极2接地),即晶体管处于关断状态时,而漏端电极3上所加电压较小时,电压主要降落在P体衬底9与N-阱10所形成的PN结、P+顶层15与N-阱10所形成的PN结以及P-衬底11与N-阱10所形成的PN结上。当电压继续升高,外加电压在P体衬底9与N-阱10构成的PN结上所形成的耗尽层因为P体衬底9的掺杂浓度高于N-阱10而主要在N-阱10一方扩展。由于N-阱为较淡掺杂浓度,故电场较小,这也是通常LDMOS器件能耐高电压的原因。但当漏端电极电压3所加电压继续增大(如>100V)时,由于P体衬底9与N-阱10所形成的PN结在P体衬底9转角点12处的电场强度将高于其他各处的电场,并随电压的增大而增大,使普通LDMOS晶体管极有可能首先在此处发生击穿。而对图1所显示的RESURF结构的LDMOS晶体管25,因为P+顶层15与N-阱10所形成的PN结16以及P-衬底11与N-阱10所形成的PN结13的存在,使两个PN结所形成的耗尽区同时在N-阱10内相向扩展,并在点12处的电场达到最大击穿电场前将整个N-阱全部耗尽。这使P体衬底9与N-阱10所形成的PN结电场峰值下拉,从而降低点12处的电场。使晶体管的关态耐压得到进一步的提高。这也就是RESURF结构的LDMOS器件耐压较之普通LDMOS器件耐压更高的原因。其中,栅多晶4在场氧化层6上的覆盖可以有助于减缓P体衬底9与N-阱10所形成的PN结在点12处的电场,而场多晶5则有助于减缓P+顶层15与N-阱10所形成的PN结在点17处的电场。然而,当电压继续增加(如>500V),漏端N+扩散区边缘点14处的电场则会随漏端电极3外加电压的增大而增大,其电场峰值在外加电压增加到一定程度时将高于点12处的电场峰值。此时,漏端电极边缘(即点14处)的电场将成为阻止高耐压晶体管关态击穿电压继续提高的重要因素。通常,特高耐压的LDMOS器件均采用LOCOS(LOCal Oxidation of Silicon)的隔离形式,即,在场区6与有源区20的边缘形成所谓的鸟嘴21。研究表明,由于漏端N+区域22位于鸟嘴21的边缘,而鸟嘴区域的应力(因氮化硅经热氧化而引入)则使电场强度增加。故如何减小鸟嘴应力对漏端电场强度的影响将成为进一步提高LDMOS晶体管耐压的重要因素。
发明内容
本发明的目的在于提出一种提高表面降场(RESURF=REduced SURface Field)型LDMOS(LDMOS=Lateral Double-Diffused Metal Oxide Semiconductor)器件耐压的工艺,以减小鸟嘴应力对漏端电场强度的影响,继而进一步提高晶体管关态击穿电压。这一方法对晶体管的开态导通电阻的影响非常有限,从而并不影响晶体管的开态特性。
本发明提出的提高表面降场型LDMOS器件关态击穿电压并同时保证开态导通电阻的工艺如图2所示,在表面降场型LDMOS器件中的场多晶区域18覆盖有源区20,N+扩散层22在所有工艺完成以后其边缘与鸟嘴21边缘分离。
上述N+扩散层22在所有工艺完成以后其边缘与鸟嘴21边缘分离距离Y一般为2~5微米,且Y=X1-X2,其中X1为场多晶区域18覆盖有源区20的距离,X2为N+扩散层22因所有热工艺过程所致的横向扩散距离,X1、X2的数值可根据不同生产线和不同相关器件的工艺要求来确定。
本发明的原理是,通常在表面降场型LDMOS器件中漏端N+扩散层的形成是通过多晶图形自对准离子注入来完成,如果场多晶区域18对有源区20进行距离X1的覆盖,并使漏端N+扩散层22在所有工艺完成以后,即横向扩散(横向扩散距离X2)以后距鸟嘴21边缘的距离Y大于2微米,可以使N+区域在晶体管为关态且漏端电极3外加高电压情况下于漏端扩散区22所形成的电场峰值避开鸟嘴21形成过程中所引入的应力密集区,从而减缓电场强度,使关态耐压得以提高。强调N+扩散层22必须在所有工艺完成以后距鸟嘴21边缘的距离Y大于2微米是因为N+注入元素会因为工艺热过程而引入横向扩散X2,必须在场多晶板18对有源区20的覆盖X1中将这一横向扩散的长度X2考虑进去。保证漏端N+扩散层22在所有工艺完成以后,即注入元素横向扩散(横向扩散距离X2)以后距离鸟嘴21边缘的距离Y小于5微米是为使晶体管开态时的导通电阻的增加量非常有限,从而保证晶体管的开态工作特性。
本发明提供了一种在表面降场型LDMOS器件基础上进一步提高器件的关态耐压的工艺集成方法:通过表面降场型LDMOS器件中的场多晶区域1 8覆盖有源区20,N+扩散层22在所有工艺完成以后其边缘与鸟嘴21边缘分离,从而使漏端在高压下所形成的电场峰值避开鸟嘴边缘的应力密集区,继而进一步提高晶体管关态击穿电压;当这一覆盖距离保持在有限的范围时,晶体管的开态导通电阻的增加量也非常有限,从而开态工作特性得以保证。
附图说明
图1是传统表面降场型LDMOS器件25的剖面示意图。
图2是本发明实施方案的表面降场型LDMOS器件26的剖面示意图。
图3是本发明实施方案中器件26在N-阱10工艺完成以后的剖面示意图。
图4是本发明实施方案中器件26在P体衬底9及P+顶层15工艺完成以后的剖面示意图。
图5是本发明实施方案中器件26在场氧化区域6工艺完成以后的剖面示意图。
图6是本发明实施方案中器件26在多晶图形定义工艺完成后的剖面示意图。
图7是本发明实施方案中器件26在进行源漏N+区域离子注入工艺时的剖面示意图。
图8是本发明实施方案中器件26在进行源P+区域离子注入工艺时的剖面示意图。
图中标号:1为器件多晶栅电极,2为器件源与衬底(包括P体衬9底与P-衬底11)共接电极,3为器件漏端电极,4为栅多晶,5为传统表面降场型LDMOS器件25的场多晶,6为场区氧化层,7为衬底(包括P体衬底9与P-衬底11)的外接出端扩散层,8为器件源端N+扩散层,9为P体衬底,10为N-阱,11为P-衬底,12为P体衬底9与N-阱10所形成的PN结在P体衬底9转角处的部分,13为P-衬底11与N-阱10所形成的PN结,14为器件漏端扩散层靠鸟嘴一侧边缘,15为P+顶层,16为P+顶层15与N-阱10所形成的PN结,17为P+顶层15与N-阱10所形成的PN结靠器件漏端一侧边缘,18为本发明实施方案中的表面降场型LDMOS器件26的场多晶区域,19为栅氧化层,20为器件有源区域,21为器件漏端靠近器件栅4一侧的鸟嘴区域,22为器件漏端N+扩散层区域,23为一薄热氧化层,24为光刻胶,25为是传统表面降场型LDMOS器件,26为是本发明实施方案的表面降场型LDMOS器件,27为离子注入的元素As,28为离子注入的元素B,Y为为本发明实施方案中的表面降场型LDMOS器件26中N+扩散层22在所有工艺完成以后其边缘与鸟嘴21边缘分离的距离,X1为本发明实施方案中的表面降场型LDMOS器件26的场多晶区域18覆盖有源区20的距离,X2为为本发明实施方案中的表面降场型LDMOS器件26中N+扩散层22因所有热工艺过程所致的横向扩散距离。
具体实施方式
本发明的具体实施步骤如下:
1、在P-衬底11上热生长一二氧化硅薄膜。
2、对晶片进行光刻,用光刻胶掩蔽N-阱区域10以外的区域,并对整个晶片进行一定条件的N型杂质的离子注入。
3、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
4、用热氧化及扩散的方法对注入的N型杂质进行热推进,使形成一定结深的N-阱10。
5、用腐蚀液方法(湿法)将晶片表面上的氧化层全部去除。去除氧化层后的晶体管剖面图如图3所示。
6、用热氧化的方法在晶片上生长一二氧化硅薄膜。
7、对晶片进行光刻,用光刻胶掩蔽P体衬底区域9以外的区域,并对整个晶片进行一定条件的P型杂质的离子注入。
8、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
9、对晶片进行光刻,用光刻胶掩蔽P+顶层区域15以外的区域,并对整个晶片进行一定条件的P型杂质的离子注入。
10、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
11、用纯氮气热扩散的方法对晶片进行热推进,使P体衬底区域9及P+顶层区域15的P型杂质经热过程后形成一定的结深分布。热扩散以后的晶体管剖面示意图如图4所示。
12、用低压化学汽象淀积(LPCVD)的方法在晶片表面淀积一层氮化硅薄膜。
13、对晶片进行光刻,用光刻胶掩蔽有源区20。并用等离子刻蚀的方法将光刻胶未掩蔽区域的氮化硅层去除。
14、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
15、用热扩散及氧化的方法生长一氧化层。没有氮化硅层覆盖的区域内生长的氧化层较厚,即形成用于器件隔离的场氧化层6。
16、氮化硅薄膜上生长的氧化层较薄,用腐蚀液方法(湿法)予以去除。随后,用腐蚀液方法(湿法)去除氮化硅薄膜,并用腐蚀液方法(湿法)去除有源区域上的氧化层薄膜。至此,晶体管的剖面示意图如图5所示。
17、用热氧化的方法生长一二氧化硅薄膜,为牺牲氧化层。
18、用腐蚀液方法(湿法)去除步骤17中生长的二氧化硅薄膜。
19、用热氧化的方法生长一二氧化硅薄膜,为栅氧化层19。
20、用LPCVD方法淀积一多晶薄膜。
21、用三氯氧磷掺杂的方法对步骤20中淀积的多晶薄膜进行高浓度的磷掺杂。随后用腐蚀液方法(湿法)去除掺杂后表面的磷硅玻璃。
22、对晶片进行光刻,用光刻胶掩蔽多晶图形(包括栅多晶4及场多晶18区域以及多晶连线)。其中,光刻胶必须对有源区20进行一定距离的覆盖,例如6微米,在漏端N+扩散层22在所有工艺完成以后,即除去包括所有工艺步骤在内的所有热过程所致的横向扩散,使漏端N+扩散层22边缘距鸟嘴21边缘的距离在2微米或3.5微米或5微米。
23、用等离子刻蚀的方法将光刻胶未掩蔽区域的多晶去除。
24、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶.至此,晶体管剖面示意图如图6所示。
25、对晶片进行光刻,用光刻胶掩蔽晶体管源端P+区域7,并对整个晶片进行一定条件的N型杂质的离子注入。注入时的晶体管剖面示意图如图7所示。
26、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
27、对晶片进行光刻,用光刻胶掩蔽晶体管源漏N+区域8及22,并对整个晶片进行一定条件的P型杂质的离子注入。注入时的晶体管剖面示意图如图8所示。
28、用等离子去胶方法(干法)及腐蚀液方法(湿法)去除光刻胶。
29、用纯氮气热扩散的方法对晶片进行热退火。
30、完成以后所有后道工艺步骤,包括引线孔工艺模块、金属布线模块及钝化与压点工艺模块。这些工艺模块中的所有热过程都会对晶体管漏端N+形成横向扩散,即包括在步骤22中所述的横向扩散中。当所有工艺步骤完成之后,晶体管的剖面示意图如图2所示,其中引线孔、金属连线及钝化压点均做简化示意。至此,漏端N+扩散层22距鸟嘴21边缘的距离为分别2微米、3.5微米或5微米。均有良好的效果。

Claims (2)

1、一种提高表面降场型LDMOS器件耐压的工艺,其特征在于:表面降场型LDMOS器件中的场多晶区域(18)覆盖有源区(20),N+扩散层(22)在注入元素横向扩散工艺完成以后其边缘与鸟嘴(21)边缘分离。
2、根据权利要求书1中所述的工艺,其特征是所述N+扩散层(22)在注入元素横向扩散工艺完成以后其边缘与鸟嘴(21)边缘分离的距离Y为2~5微米,且Y=X1-X2,其中X1为场多晶区域(18)覆盖有源区(20)的长度,X2为N+扩散层22因所有热工艺过程所致的横向扩散距离。
CNB200410093453XA 2004-12-23 2004-12-23 提高表面降场型ldmos器件耐压的工艺 Expired - Fee Related CN1319137C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200410093453XA CN1319137C (zh) 2004-12-23 2004-12-23 提高表面降场型ldmos器件耐压的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200410093453XA CN1319137C (zh) 2004-12-23 2004-12-23 提高表面降场型ldmos器件耐压的工艺

Publications (2)

Publication Number Publication Date
CN1632931A CN1632931A (zh) 2005-06-29
CN1319137C true CN1319137C (zh) 2007-05-30

Family

ID=34847732

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410093453XA Expired - Fee Related CN1319137C (zh) 2004-12-23 2004-12-23 提高表面降场型ldmos器件耐压的工艺

Country Status (1)

Country Link
CN (1) CN1319137C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359664B (zh) * 2007-07-31 2011-10-05 上海贝岭股份有限公司 Bcd工艺中的n型ldmos器件及其版图制作方法和制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370625C (zh) * 2005-10-14 2008-02-20 西安电子科技大学 可集成的高压p型ldmos晶体管结构及其制备方法
JP5217064B2 (ja) * 2007-07-23 2013-06-19 ミツミ電機株式会社 Dmos型半導体装置及びその製造方法
KR101049876B1 (ko) * 2008-11-19 2011-07-19 주식회사 동부하이텍 횡형 디모스 소자 및 그의 제조 방법
JP5391447B2 (ja) * 2009-04-06 2014-01-15 三菱電機株式会社 半導体装置およびその製造方法
JP5409247B2 (ja) 2009-10-13 2014-02-05 三菱電機株式会社 半導体装置および半導体装置の製造方法
CN102543738B (zh) * 2010-12-20 2013-12-18 上海华虹Nec电子有限公司 高压ldmos器件及其制造方法
CN102931234B (zh) * 2011-08-10 2016-01-20 无锡华润上华半导体有限公司 Ldmos器件及其制造方法
CN103187443B (zh) * 2011-12-30 2016-06-01 无锡华润上华半导体有限公司 横向双扩散金属氧化物半导体场效应晶体管
CN104659093A (zh) * 2013-11-21 2015-05-27 上海华虹宏力半导体制造有限公司 Nldmos器件结构
US9543149B2 (en) * 2013-12-17 2017-01-10 Texas Instruments Incorporated High voltage lateral extended drain MOS transistor with improved drift layer contact
CN104518034B (zh) * 2014-06-17 2020-11-24 上海华虹宏力半导体制造有限公司 Jfet器件及其制造方法
CN104979171B (zh) * 2015-05-20 2018-01-16 中国航天科技集团公司第九研究院第七七一研究所 一种能够防止离子注入区边界硅棱剥落的离子注入方法
CN106571388B (zh) 2015-10-08 2018-10-12 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087232A (en) * 1997-10-28 2000-07-11 Electronics And Telecommunications Research Institute Fabrication method of lateral double diffused MOS transistors
US6160289A (en) * 1995-10-13 2000-12-12 Hyundai Electronics Industries Co., Ltd. RESURF EDMOS transistor and high-voltage analog multiplexer circuit using the same
US6211552B1 (en) * 1999-05-27 2001-04-03 Texas Instruments Incorporated Resurf LDMOS device with deep drain region
US6531355B2 (en) * 1999-01-25 2003-03-11 Texas Instruments Incorporated LDMOS device with self-aligned RESURF region and method of fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160289A (en) * 1995-10-13 2000-12-12 Hyundai Electronics Industries Co., Ltd. RESURF EDMOS transistor and high-voltage analog multiplexer circuit using the same
US6087232A (en) * 1997-10-28 2000-07-11 Electronics And Telecommunications Research Institute Fabrication method of lateral double diffused MOS transistors
US6531355B2 (en) * 1999-01-25 2003-03-11 Texas Instruments Incorporated LDMOS device with self-aligned RESURF region and method of fabrication
US6211552B1 (en) * 1999-05-27 2001-04-03 Texas Instruments Incorporated Resurf LDMOS device with deep drain region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359664B (zh) * 2007-07-31 2011-10-05 上海贝岭股份有限公司 Bcd工艺中的n型ldmos器件及其版图制作方法和制造方法

Also Published As

Publication number Publication date
CN1632931A (zh) 2005-06-29

Similar Documents

Publication Publication Date Title
CN1319137C (zh) 提高表面降场型ldmos器件耐压的工艺
CN100533767C (zh) 包括掩埋源电极的沟槽金属氧化物硅场效应晶体管及其制造方法
US20020098656A1 (en) Method of fabricating semiconductor device
CN104051540B (zh) 超级结器件及其制造方法
CN101359664B (zh) Bcd工艺中的n型ldmos器件及其版图制作方法和制造方法
CN103151268B (zh) 一种垂直双扩散场效应管及其制造工艺
CN102054785B (zh) 一种高压bcd半导体器件的制造方法
CN102543738B (zh) 高压ldmos器件及其制造方法
CN109980011A (zh) 一种半导体器件及其制作方法
CN104992977A (zh) Nldmos器件及其制造方法
CN105321824A (zh) 半导体装置的制造方法
CN104167360A (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN103779414B (zh) 半导体装置及半导体装置的制造方法
CN108400166A (zh) 在端子降低表面电场区域中具有端子沟槽的功率晶体管
CN112382656A (zh) 一种横向扩散mos场效应晶体管及其制备方法
CN100394616C (zh) 可集成的高压vdmos晶体管结构及其制备方法
CN103745996B (zh) 带有部分绝缘埋层的横向功率器件及制作方法
CN103745988A (zh) 一种高压驱动电路的隔离结构
CN104576732B (zh) 一种寄生FinFET的横向双扩散半导体器件
CN103531592B (zh) 高迁移率低源漏电阻的三栅控制型无结晶体管
CN105810583A (zh) 横向绝缘栅双极型晶体管的制造方法
CN108550623A (zh) 集成有增强型和耗尽型vdmos的器件及其制造方法
KR20110078861A (ko) 수평형 디모스 트랜지스터
KR100840662B1 (ko) 반도체 소자의 제조 방법
CN106876337A (zh) Nldmos集成器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070530

Termination date: 20161223

CF01 Termination of patent right due to non-payment of annual fee