CN1318642C - 降低颗粒物损失的多孔吸气剂器件及其制备方法 - Google Patents

降低颗粒物损失的多孔吸气剂器件及其制备方法 Download PDF

Info

Publication number
CN1318642C
CN1318642C CNB018164315A CN01816431A CN1318642C CN 1318642 C CN1318642 C CN 1318642C CN B018164315 A CNB018164315 A CN B018164315A CN 01816431 A CN01816431 A CN 01816431A CN 1318642 C CN1318642 C CN 1318642C
Authority
CN
China
Prior art keywords
getter
weight
alloy
getter material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018164315A
Other languages
English (en)
Other versions
CN1596323A (zh
Inventor
A·康特
M·莫拉加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAES Getters SpA
Original Assignee
SAES Getters SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAES Getters SpA filed Critical SAES Getters SpA
Publication of CN1596323A publication Critical patent/CN1596323A/zh
Application granted granted Critical
Publication of CN1318642C publication Critical patent/CN1318642C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/183Composition or manufacture of getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24298Noncircular aperture [e.g., slit, diamond, rectangular, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种降低多孔吸气剂物体表面颗粒物损失的方法,所述的方法用选自蒸发、电弧产生的等离子体沉积、离子束沉积和阴极沉积的技术在所述的表面上生成金属或金属合金的薄层(20)。

Description

降低颗粒物损失的多孔吸气剂器件及其制备方法
本发明涉及一种制备降低颗粒物损失的多孔吸气剂器件以及涉及如此制备的器件。
吸气剂器件可用于许多需要维持真空的工艺和科学应用,例如平面显示器(等离子或场发射型)、某些类型的灯或用于科学研究的粒子加速器。吸气剂器件的另一重要应用领域是在荧光灯内的气体净化,但主要在微电子工业的工艺气体的情况下的气体净化。本发明还特别适用于在沉积室中例如微电子工业的工艺室中处理具有基材形状和尺寸的颗粒型吸气剂器件的制备,其中器件保证较短的抽空时间和工作气氛更好的净化:这类吸气剂器件以申请人的名字在国际专利申请书PCT/IT00/00136中公开。
制备这些器件的活性材料主要是锆和钛以及其与一种或多种过渡元素的元素和铝的合金。这些材料对低分子量气态物质例如氧、水、氢、碳氧化物以及(在某些情况下)氮有强的亲合性,所以用于从需要维持真空的空间或从对这些材料是惰性的(主要为稀有气体)的气体气氛或气体流中除去微量的这些气体。
因为气体吸附通过吸气剂材料的表面进行,通常优选表面尽可能的大。为了得到这一结果以及同时保持小的器件尺寸,通常使用由吸气剂材料的固化粉末制得的多孔器件,它能得到的活性材料暴露表面与吸气剂器件几何表面比高。
在文献中已描述了制备吸气剂器件的各种方法。
专利GB-B-2077487描述了由吸气剂金属特别是钛或锆粉末与吸气剂合金的混合物制成的多孔吸气剂器件的制备;将混合物预压制并在真空炉中在约800至1100℃下烧结。将烧结温度高于金属烧结温度的有抗烧结功能的吸气剂合金加入,以避免粉末过度压缩,造成气体吸附性能下降。
专利申请DE-A-2204714公开了一种类似上述专利GB-B-2077487的方法,不同的是在这种情况下石墨粉末用作抗烧结剂。
孔隙率大于上述两种技术得到的吸气剂器件的吸气剂器件可通过例如专利US5242559中公开的电泳技术来制备。根据这一技术,制备吸气剂材料颗粒的悬浮体,通常为水醇悬浮体。在悬浮体中插入两个电极,其中一个由金属或石墨制成,它也作为最终的吸气剂器件的载体。通过在两电极之间施加电势差使吸气剂材料颗粒转移到载体上并附着其上。然后通过在真空炉中通常在约900至1000℃下烧结热处理使如此制得的沉积物固化。
通过丝网印刷技术可制备活性材料以层的形式在平面载体上的吸气剂器件,例如在专利US5882727中描述的。根据这一技术,在含有低百分比的用作粘合剂的高沸点有机化合物的水溶液中制备吸气剂材料颗粒的浆液;将这一浆液通过适合网目,并沉积在下面的基材上。然后将沉积物干燥,并通过在真空炉中在约800至1000℃下烧结使它固化。
最后,根据专利US5908579中描述的技术,可制得有特别高孔隙率的吸气剂器件。在这种情况下,使用吸气剂材料粉末和有机组分例如氨基甲酸铵的混合物,后者在器件固化的热处理(温度达到900至1200℃之间的处理)过程中蒸发,留下相互连接的孔隙网,它使气体能接近器件中吸气剂材料最内部颗粒的表面。
已知技术的吸气剂器件遇到的一个问题是颗粒损失的可能性,由于表面颗粒比最内部的颗粒粘合更弱。游离颗粒的存在对于大多数吸气剂器件的可预见的应用来说是有害的,因为它们干扰电性能(例如在平面显示器的情况下),它们可处于辐射线或基本粒子束的路径之间(在粒子加速器中应用),或它们可沉积在制备的微电子器件上。
消除这一问题的可能方法是提高烧结温度,从而有利于颗粒的相互粘着;但是这一方法不仅只是使这一问题缓解而未解决,而且还存在使孔隙率和活性材料的暴露表面下降的缺点,因此使吸气剂器件的气体吸附性能下降。
本发明的一个目的是提供一种制备降低颗粒物损失的多孔吸气剂器件的方法,它没有已知技术的缺点,以及提供所得的器件。
用本发明的方法达到这一目的,本发明是在多孔吸气剂物体的表面上制备厚度为至少0.5微米的与吸气剂器件预计的使用条件相适合的材料的沉积物,使用的技术选自蒸发、电弧产生的等离子体沉积、离子束沉积和阴极沉积。
本发明人发现,与现有技术认为的相反,在多孔吸气剂物体表面上沉积低厚度的适合材料不损害其气体吸附性能,同时又显著地降低颗粒物损失观象。
下面参考附图来说明本发明,其中:
-----图1示出用本发明方法涂覆以前多孔吸气剂物体的截面图;
-----图2示出用本发明方法涂覆以后图1的多孔吸气剂物体的相同截面;
-----图3示出本发明方法的优选的实施方案涂覆的吸气剂材料的几个颗粒的截面。
图1示出多孔吸气剂物体10表面部分的截面。吸气剂材料的颗粒11通过“颈状物”12连接在一起,在烧结过程中,材料发生显微尺度熔化。由于这些颈状物的罕见机械阻力(由于烧结过程的低温)或由于其数目的减少特别是在小尺寸颗粒13的情况下,可减少表面颗粒粘着到其余结构上。
图2表示本发明方法涂覆的图1相同的物体。物体10的上表面被上述技术之一制得的层20涂覆。这些技术是有方向性的,沉积物仅涂覆暴露于沉积材料源的物体10的部分。表面吸气剂颗粒的某些区域(21)(就待沉积材料源来说为“阴影区域”)因此仍未沉积。总的效果是,沉积物20作为表面颗粒的胶粘剂,但它不阻塞吸气剂材料颗粒中的大孔道,允许气体接近最内部的颗粒,该颗粒表面未用本发明的方法涂覆,所以保持了气体吸附的活性。结果是多孔吸气剂物体22被沉积物20表面涂覆。
其上将形成沉积物20的多孔吸气剂物体可按上述技术中任一种来制备,也就是粉未压制、电泳和丝网印刷,所述粉末压制中包含或不包含有机组份,该有机组份在随后的热处理电泳和丝网印刷过程中蒸发。
可用来制备多孔物体的吸气剂材料是各种各样的,通常包含钛和锆金属、它们的氢化物或与一种或多种选自过渡元素的元素和铝的钛或锆合金以及一种或多种这样的合金与钛和/或锆或其氢化物的混合物。对于本发明的目的来说,最有用的材料中可提及专利US3203901中公开的合金Zr-Al,特别是本申请人以商品名St101生产和出售的重量百分组成为Zr84%-Al16%的合金;在专利US4312669中公开的合金Zr-V-Fe,特别是本申请人以商品名St707生产和出售的重量百分组成为Zr70%-V24.6%-Fe5.4%的合金;专利US5961750中公开的合金Zr-Co-A(其中A表示选自钇、镧、稀土元素的一种元素或其混合物),特别是本申请人以商品名St787生产和出售的重量百分组成Zr80.8%-Co14.2%-A5%的合金;专利US4457891中公开的合金Ti-V-Mn;含70%(重量)Ti和30%合金St101的混合物;含有70%Ti和30%合金St707的混合物;含有40%Zr和60%合金St707的混合物;含有60%Ti和40%合金St707的混合物;以及在专利US4428856中公开的含有10%(重量)Mo、80%Ti和10%TiH2的混合物,它为本申请人以商品名St175生产和出售。这些吸气剂材料通常以粒度小于约125微米、优选约20至100微末的粉末形式应用。
根据上述技术之一制备吸气剂物体以后,根据所用的材料,可通过在真空或惰性气氛中通常在800至1200℃之间的温度下热烧结处理来固化。
将如此制得的吸气剂物体用选自蒸发、电弧产生的等离子体沉积、离子束沉积和阴极沉积的技术进行层厚至少0.5微米的沉积处理。
蒸发可将待涂覆的吸气剂样品和待沉积的材料源放在相同室中进行,后者用已知的技术蒸发(在惰性气体或真空下进行),例如直接加热(例如在材料支架中通电流)、间接加热(例如感应加热)、电子轰击或类似的方法。
第二种技术(更为熟知的是电弧等离子体沉积的定义)是通过用局部电弧使需沉积材料的固体表面熔融,产生被沉积材料的微细液滴;然后如此形成的液滴移向要涂覆的基材加速。这一技术能迅速得到密实的涂覆层,例如用于涂覆机械工具,以便提高其硬度特性。
源自离子束的沉积技术(更为熟知的是离子束沉积的定义)是产生要沉积的材料的离子等离子体,然后通过电场使这些离子移向要涂覆的基材加速。
对于本发明的目的,优选使用阴极沉积技术。阴极沉积技术在通常由不同材料制成的载体上得到厚度通常为约10至20微米的薄层。这一技术有许多变化,在本领域更好地称为“溅射”(它用于本文的其余部分)或“物理气相沉积”或缩写“PVD”。溅射技术是大家广泛了解的,并广泛用于工业中,特别是对于微电子工业来说它是基础的,因为它能制备活性材料(例如导体材料层)或有钝化功能(例如绝缘体)的薄层,而且在许多其他领域中也有应用,例如制备光盘(compact disk)的铝层。
溅射及其变通方案是大家熟悉的和各种各样的,这里不作详细描述。为了了解本发明,记住这一技术的基础是足够的。正如所熟知的,在本技术中使用了真空室,其中能够产生电场。将要沉积的材料靶(通常具有短圆柱体形状)放入室中,并在靶前面放置将在上形成薄层的载体。首先抽空该室,然后充入稀有气体通常为氩气,压力为10-2-10-5毫巴;在载体背衬和靶之间施加数千伏的电压(使后者处于阴极电势),产生了电子和Ar+的等离子体;这些离子在电场的加速下向靶移动,从而引起冲击侵蚀;由靶侵蚀产生的物质(通常为原子或原子“簇”)沉积在载体上,从而形成薄层。通过改变工艺参数,可控制制备的薄膜的性质和条件;例如提高电极上施加的功率,此时制备的厚度增加,制得的薄层的形态改变;通过改变相对于基材的沉积入射角可按甚至更有效的方式控制形态。
沉积在多孔吸气剂表面的层厚必需至少0.5微米,因为在较低的数值下层的粘合力不足以使吸气剂材料颗粒几乎不粘合到器件的其余部分。沉积物厚度的上限没有严格的规定,但它通常小于5微米,因为较高的厚度数值需要长的工艺时间,而又不能得到特别的好处。优选的是,沉积物的厚度为1至2.5微米。
形成沉积物的材料可为任何与器件最终应用中使用的条件相适合的材料。具体地说,沉积物的材料必需有低的气体释放,必需能经受住在已制定器件制备过程步骤中吸气剂器件经受的温度,而不变化,例如密封平面显示器或灯的烧熔(fritting)操作;在上述国际专利中请PCT/IT00/00136公开的,沉积室中具有要处理的基材的形状和尺寸的器件情况下,沉积在多孔吸气剂物体上的材料必需能经受住在吸气剂材料活化温度下的加热;沉积室至少经受约500℃的温度,以便使其壁脱气。通常,沉积的材料可选自过渡金属、稀土元素和铝。同时沉积一种以上金属也是可能的(例如共蒸发或所谓的“共溅射”技术),从而得到所述金属的混合物或合金。
优选的是,沉积的材料为也具有吸气剂性能的金属,例如钒、铌、铪、钽,或优选钛和锆,或这些金属的合金。在沉积这些材料之一的情况下,与未涂覆的多孔物体相比,除了降低颗粒物损失外,还提高了气体吸附性能。
如果层以颗粒或柱状形态被沉积,那么从这一观点得到了特别好的结果。用具有这一形态的沉积物涂覆的多孔吸气剂物体的表面的例子在图3中示出,它表示被多种微沉积物30涂覆的表面吸气剂颗粒11,无论如何的沉积物在区域31都能对颗粒起到粘接作用,但在内部存在微孔道32,它提高了气体对下面的多孔吸气剂还有相同涂覆的吸气剂颗粒表面的可接近性。颗粒或柱状形态可通过溅射技术通过控制沉积条件特别是通过在稀有气体的高压和基材(多孔吸气剂)的低温下操作来得到;优选的是,将气体压力维持在约1×10-3-5×10-2毫巴,而基材的温度接近室温。

Claims (19)

1.一种制备降低颗粒物损失的多孔吸气剂器件(22)的方法,所述的方法是使用选自蒸发、电弧产生的等离子体沉积、离子束沉积和阴极沉积的技术,在多孔吸气剂物体(10)的表面上生成厚度至少0.5微米、与吸气剂器件使用条件相适合的选自过渡金属,稀土元素和铝的材料的沉积物(20;30,31)。
2.根据权利要求1的方法,其中要涂覆的多孔吸气剂物体通过选自粉末压制、电泳和丝网印刷的方法来制备,在所述粉末压制方法中所述的粉末含有或不含在随后的热处理过程中蒸发的有机组分。
3.根据权利要求1的方法,其中多孔物体的吸气剂材料选自金属钛、金属锆、钛的氢化物、锆的氢化物、钛或锆与一种或多种选自过渡金属和铝的元素的合金,以及一种或多种所述钛和锆的合金与金属钛、金属锆、钛的氢化物和锆的氢化物中的一种或多种的混合物。
4.根据权利要求3的方法,其中吸气剂材料为重量百分组成为Zr84%-Al16%的合金。
5.根据权利要求3的方法,其中吸气剂材料为重量百分组成为Zr70%-V24.6%-Fe5.4%的合金。
6.根据权利要求3的方法,其中吸气剂材料为重量百分组成为Zr80.8%-Co14.2%-A5%的合金,其中A表示选自钇、镧、稀土元素的元素或其混合物。
7.根据权利要求3的方法,其中吸气剂材料为含有70重量%Ti和30重量%的以下合金的混合物,该合金的重量百分组成为Zr84%-Al16%。
8.根据权利要求3的方法,其中吸气剂材料为含有70重量%Ti和30重量%的以下合金的混合物,该合金的重量百分组成为Zr70%-V24.6%-Fe5.4%。
9.根据权利要求3的方法,其中吸气剂材料为含有40重量%Zr和60重量%的以下合金的混合物,该合金的重量百分组成为Zr70%-V24.6%-Fe5.4%。
10.根据权利要求3的方法,其中吸气剂材料为含有60重量%Ti和40重量%的以下合金的混合物,该合金的重量百分组成为Zr70%-V24.6%-Fe5.4%。
11.根据权利要求3的方法,其中吸气剂材料为含有10重量%Mo、80重量%Ti和10重量%TiH2的混合物。
12.根据权利要求1的方法,其中吸气剂材料为粒度小于125微米的粉末形式。
13.根据权利要求12的方法,其中吸气剂材料为粒度20至100微米的粉末形式。
14.根据权利要求1的方法,其中所述的沉积物的厚度小于5微米。
15.根据权利要求14的方法,其中所述的沉积物的厚度为1至2.5微米。
16.根据权利要求15的方法,其中沉积的材料是选自钒、铌、铪、钽、钛或锆的一种金属。
17.根据权利要求16的方法,其中材料通过阴极沉积法沉积,得到颗粒或柱状形态的层。
18.根据权利要求17的方法,其中阴极沉积进行的条件为1×10-3-5×10-2毫巴的稀有气体压力和多孔吸气剂物体的温度接近室温。
19.吸气剂材料的颗粒(11)连接在一起形成的多孔吸气剂物体(22),其中在所述的物体的上表面吸气剂颗粒部分被选自过渡金属、稀土元素和铝的材料的沉积物(20;30,31)涂覆,所述的沉积物的厚度为至少0.5微米。
CNB018164315A 2000-09-27 2001-09-25 降低颗粒物损失的多孔吸气剂器件及其制备方法 Expired - Lifetime CN1318642C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2000A002099 2000-09-22
IT2000MI002099A IT1318937B1 (it) 2000-09-27 2000-09-27 Metodo per la produzione di dispositivi getter porosi con ridottaperdita di particelle e dispositivi cosi' prodotti

Publications (2)

Publication Number Publication Date
CN1596323A CN1596323A (zh) 2005-03-16
CN1318642C true CN1318642C (zh) 2007-05-30

Family

ID=11445869

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018164315A Expired - Lifetime CN1318642C (zh) 2000-09-27 2001-09-25 降低颗粒物损失的多孔吸气剂器件及其制备方法

Country Status (13)

Country Link
US (3) US6620297B2 (zh)
EP (1) EP1322795B1 (zh)
JP (1) JP2004509757A (zh)
KR (1) KR100784584B1 (zh)
CN (1) CN1318642C (zh)
AT (1) ATE370261T1 (zh)
AU (1) AU2001295881A1 (zh)
DE (1) DE60130001T2 (zh)
HK (1) HK1073337A1 (zh)
IT (1) IT1318937B1 (zh)
RU (1) RU2253695C2 (zh)
TW (1) TWI278523B (zh)
WO (1) WO2002027058A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475725B1 (en) * 1997-06-20 2002-11-05 Baxter Aktiengesellschaft Recombinant cell clones having increased stability and methods of making and using the same
IT1312248B1 (it) * 1999-04-12 2002-04-09 Getters Spa Metodo per aumentare la produttivita' di processi di deposizione distrati sottili su un substrato e dispositivi getter per la
EP1355944B1 (en) * 2000-06-08 2010-01-06 Baylor College of Medicine Rtvp based compositions and methods for the treatment of prostate cancer
IT1318937B1 (it) * 2000-09-27 2003-09-19 Getters Spa Metodo per la produzione di dispositivi getter porosi con ridottaperdita di particelle e dispositivi cosi' prodotti
WO2002089174A2 (en) * 2001-05-01 2002-11-07 Koninklijke Philips Electronics N.V. Discharge lamp
US20050187153A1 (en) * 2001-06-08 2005-08-25 Baylor College Of Medicine RTVP based compositions and methods for the treatment of prostate cancer, autoimmunity and infectious disease
JP3740479B2 (ja) * 2002-07-23 2006-02-01 キヤノン株式会社 画像表示装置とその製造方法
US6911065B2 (en) * 2002-12-26 2005-06-28 Matheson Tri-Gas, Inc. Method and system for supplying high purity fluid
JP2004265776A (ja) * 2003-03-03 2004-09-24 Hitachi Ltd 有機elディスプレイ装置
US7135141B2 (en) * 2003-03-31 2006-11-14 Hitachi Metals, Ltd. Method of manufacturing a sintered body
ITMI20031178A1 (it) 2003-06-11 2004-12-12 Getters Spa Depositi multistrato getter non evaporabili ottenuti per
US7871660B2 (en) * 2003-11-14 2011-01-18 Saes Getters, S.P.A. Preparation of getter surfaces using caustic chemicals
US7824685B2 (en) * 2004-01-26 2010-11-02 Baylor College Of Medicine RTVP based compositions and methods for the treatment of prostate cancer
JPWO2005124813A1 (ja) * 2004-06-18 2008-04-17 株式会社東芝 画像表示装置および画像表示装置の製造方法
KR100641301B1 (ko) * 2004-09-15 2006-11-02 주식회사 세종소재 겟터 겸용 수은 보충재
ITMI20042271A1 (it) * 2004-11-23 2005-02-23 Getters Spa Leghe getter non evaporabili per assorbimento di idrogeno
US20060240276A1 (en) * 2005-04-20 2006-10-26 Technic, Inc. Underlayer for reducing surface oxidation of plated deposits
EP1821328A1 (en) 2006-02-10 2007-08-22 Nanoshell Materials Research & Development GmbH Metallic dendritic gas sorbents and method for producing the same
JP2009540932A (ja) * 2006-06-21 2009-11-26 プロテウス バイオメディカル インコーポレイテッド 陰極アーク製作構造物を備えるインプラント型医療デバイス
FR2903678B1 (fr) 2006-07-13 2008-10-24 Commissariat Energie Atomique Microcomposant encapsule equipe d'au moins un getter
US8663789B2 (en) 2006-12-15 2014-03-04 Bae Systems Plc Thin film getter devices
ITMI20090410A1 (it) * 2009-03-18 2010-09-19 Getters Spa Leghe getter non evaporabili adatte particolarmente per l'assorbimento di idrogeno
DE102009029495A1 (de) * 2009-09-16 2011-03-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Messumformer für ein Multisensorsystem, insbesondere als Feldgerät für die Prozessautomatisierungstechnik und Verfahren zum Betreiben des Messumformers
CN102534489A (zh) * 2010-12-30 2012-07-04 鸿富锦精密工业(深圳)有限公司 镀膜件及其制造方法
RU2474912C1 (ru) * 2011-08-23 2013-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Способ получения газопоглощающей структуры
RU2513563C2 (ru) * 2012-08-17 2014-04-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") Спеченный неиспаряющийся геттер
RU2523718C2 (ru) * 2012-11-20 2014-07-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Нанокомпозитная газопоглощающая структура и способ ее получения
WO2014122700A1 (ja) * 2013-02-05 2014-08-14 キヤノンアネルバ株式会社 成膜装置
FR3003647B1 (fr) * 2013-03-25 2015-12-25 IFP Energies Nouvelles Procede et systeme d'analyse d'un fluide gazeux comprenant au moins un gaz rare au moyen d'un substrat de getterisation
RU2532788C1 (ru) * 2013-06-20 2014-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ получения объемно-пористых структур сплавов-накопителей водорода, способных выдерживать многократные циклы гидрирования-дегидрирования без разрушения
US9764946B2 (en) 2013-10-24 2017-09-19 Analog Devices, Inc. MEMs device with outgassing shield
ITMI20131921A1 (it) * 2013-11-20 2015-05-21 Getters Spa Leghe getter non evaporabili particolarmente adatte per l'assorbimento di idrogeno e monossido di carbonio
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10801097B2 (en) * 2015-12-23 2020-10-13 Praxair S.T. Technology, Inc. Thermal spray coatings onto non-smooth surfaces
CN106591790B (zh) * 2016-12-28 2019-12-13 杭州大立微电子有限公司 靶材制备方法和吸气剂薄膜形成方法
US11530537B2 (en) 2017-11-17 2022-12-20 Rockwool International A/S Suspension system
CN110820031A (zh) * 2019-11-19 2020-02-21 有研工程技术研究院有限公司 一种微型吸气剂的制备方法
CN111001545A (zh) * 2019-11-25 2020-04-14 烟台艾睿光电科技有限公司 防止吸气剂掉落颗粒的方法及吸气剂与加固涂层组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132524A (fr) * 1955-06-07 1957-03-12 Procédé de fabrication des améliorateurs chimiques du vide et getters obtenus parce procédé
CN1187684A (zh) * 1997-01-10 1998-07-15 工程吸气公司 具有较短激发时间的可蒸发的吸气装置
WO1998037958A1 (fr) * 1997-02-26 1998-09-03 Organisation Europeenne Pour La Recherche Nucleaire Agencement et procede pour ameliorer le vide dans un systeme a vide tres pousse
WO2000007209A1 (en) * 1998-07-28 2000-02-10 Saes Getters S.P.A. Process for the production of evaporable getter devices with reduced particle loss
WO2000010643A1 (en) * 1998-08-21 2000-03-02 Xrt Corp. Cathode structure with getter material and diamond film, and methods of manufacture thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491284A (en) * 1946-12-13 1949-12-13 Bell Telephone Labor Inc Electrode for electron discharge devices and method of making the same
NL236452A (zh) * 1958-02-24 1900-01-01
IT963874B (it) * 1972-08-10 1974-01-21 Getters Spa Dispositivo getter perfezionato contenente materiale non evapora bile
US4428856A (en) 1982-09-30 1984-01-31 Boyarina Maya F Non-evaporable getter
IT1173866B (it) 1984-03-16 1987-06-24 Getters Spa Metodo perfezionato per fabbricare dispositivi getter non evarobili porosi e dispositivi getter cosi' prodotti
US5456740A (en) * 1994-06-22 1995-10-10 Millipore Corporation High-efficiency metal membrane getter element and process for making
US5908579A (en) 1994-12-02 1999-06-01 Saes Getters, S.P.A. Process for producing high-porosity non-evaporable getter materials and materials thus obtained
IT1283484B1 (it) 1996-07-23 1998-04-21 Getters Spa Metodo per la produzione di strati sottili supportati di materiale getter non-evaporabile e dispositivi getter cosi' prodotti
IT1290451B1 (it) 1997-04-03 1998-12-03 Getters Spa Leghe getter non evaporabili
JP3518855B2 (ja) * 1999-02-26 2004-04-12 キヤノン株式会社 ゲッター、ゲッターを有する気密容器および画像形成装置、ゲッターの製造方法
WO2000075950A1 (en) * 1999-06-02 2000-12-14 Saes Getters S.P.A. Composite materials capable of hydrogen sorption independently from activating treatments and methods for the production thereof
IT1318937B1 (it) 2000-09-27 2003-09-19 Getters Spa Metodo per la produzione di dispositivi getter porosi con ridottaperdita di particelle e dispositivi cosi' prodotti

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1132524A (fr) * 1955-06-07 1957-03-12 Procédé de fabrication des améliorateurs chimiques du vide et getters obtenus parce procédé
CN1187684A (zh) * 1997-01-10 1998-07-15 工程吸气公司 具有较短激发时间的可蒸发的吸气装置
WO1998037958A1 (fr) * 1997-02-26 1998-09-03 Organisation Europeenne Pour La Recherche Nucleaire Agencement et procede pour ameliorer le vide dans un systeme a vide tres pousse
WO2000007209A1 (en) * 1998-07-28 2000-02-10 Saes Getters S.P.A. Process for the production of evaporable getter devices with reduced particle loss
WO2000010643A1 (en) * 1998-08-21 2000-03-02 Xrt Corp. Cathode structure with getter material and diamond film, and methods of manufacture thereof

Also Published As

Publication number Publication date
US6620297B2 (en) 2003-09-16
AU2001295881A1 (en) 2002-04-08
EP1322795B1 (en) 2007-08-15
US20020093003A1 (en) 2002-07-18
CN1596323A (zh) 2005-03-16
JP2004509757A (ja) 2004-04-02
RU2253695C2 (ru) 2005-06-10
KR100784584B1 (ko) 2007-12-10
ATE370261T1 (de) 2007-09-15
US7122100B2 (en) 2006-10-17
DE60130001D1 (de) 2007-09-27
WO2002027058A8 (en) 2003-04-10
WO2002027058A1 (en) 2002-04-04
DE60130001T2 (de) 2008-05-08
EP1322795A1 (en) 2003-07-02
HK1073337A1 (en) 2005-09-30
US6783696B2 (en) 2004-08-31
ITMI20002099A1 (it) 2002-03-27
US20050023134A1 (en) 2005-02-03
ITMI20002099A0 (it) 2000-09-27
IT1318937B1 (it) 2003-09-19
KR20030038765A (ko) 2003-05-16
TWI278523B (en) 2007-04-11
US20030165707A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
CN1318642C (zh) 降低颗粒物损失的多孔吸气剂器件及其制备方法
RU2277609C2 (ru) Многослойные покрытия из неиспаряющегося геттера, получаемые катодным осаждением, и способ их изготовления
RU2003112221A (ru) Пористые газопоглотительные устройства со сниженной потерей частиц, и способ их изготовления
JP3103115B2 (ja) ゲッターを収容するフィールドエミッターフラットディスプレー及びその製造法
US5242559A (en) Method for the manufacture of porous non-evaporable getter devices and getter devices so produced
Musa et al. Pure metal vapor plasma source with controlled energy of ions
CN1057073A (zh) 加弧辉光离子渗金属技术及设备
Vladoiu et al. Magnesium plasma diagnostics by heated probe and characterization of the Mg thin films deposited by thermionic vacuum arc technology
US20210050192A1 (en) Magnetron sputtering device
Nishikawa et al. Atom-probe study of hydrogen physisorption on Al and Cu
CA2201810A1 (en) Gas-controlled arc apparatus and process
US5061357A (en) Method of producing an electron beam emission cathode
RU128394U1 (ru) Газопоглощающая структура
RU2218449C1 (ru) Способ электронно-плазменного нанесения металлических покрытий
JPH0330410A (ja) 電解コンデンサ用アルミニウム電極の製造方法
KR20060120196A (ko) 일체형 게터를 구비하며 냉음극에 대한 낮은 일함수를 갖는캐소드 및 이 캐소드를 제조하는 방법
JP2716715B2 (ja) 薄膜形成装置
JPH0332012A (ja) 電解コンデンサ用アルミニウム電極の製造方法
JPH03131014A (ja) 電解コンデンサ用アルミニウム電極の製造方法
RU2474912C1 (ru) Способ получения газопоглощающей структуры
HU188633B (en) Method and device for atomizer producing of high-rate atomizing high-pure compound layers
JPH03147310A (ja) 電解コンデンサ用アルミニウム電極の製造方法
Sinka SINTERING IN GLOW DISCHARGE(PLASMA SINTERING)
JPH036010A (ja) 電解コンデンサ用アルミニウム電極の製造方法
JPS6261601A (ja) スパツタリングによる粒子の作成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1073337

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070530