CN1310861A - 半导体薄膜以及薄膜器件 - Google Patents

半导体薄膜以及薄膜器件 Download PDF

Info

Publication number
CN1310861A
CN1310861A CN99809005A CN99809005A CN1310861A CN 1310861 A CN1310861 A CN 1310861A CN 99809005 A CN99809005 A CN 99809005A CN 99809005 A CN99809005 A CN 99809005A CN 1310861 A CN1310861 A CN 1310861A
Authority
CN
China
Prior art keywords
thin film
film
atom
hydrogen
semiconductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99809005A
Other languages
English (en)
Other versions
CN1149640C (zh
Inventor
吉见雅士
藤原敬史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Publication of CN1310861A publication Critical patent/CN1310861A/zh
Application granted granted Critical
Publication of CN1149640C publication Critical patent/CN1149640C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12528Semiconductor component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明是利用化学气相沉积法在衬底温度400℃以下沉积的以Ⅳ族原子与氢原子为主要构成元素的半导体薄膜。根据它从室温开始加热时的薄膜中氢原子的放出量与升温温度的关系曲线可知,在370℃以上410℃以下具有放出氢气量的峰值,并且所述峰值的半幅值为30℃以下。本发明揭示了一种薄膜器件,它具备包含半导体薄膜的半导体单元部分以及包含导电性薄膜的电极部分,并且它们形成在同一基板上。

Description

半导体薄膜以及薄膜器件
技术领域
本发明涉及提高半导体薄膜质量以及提高半导体薄膜器件性能的半导体薄膜以及薄膜器件,广泛用于例如薄膜晶体管以及光电转换器件等功能性薄膜电子器件。
背景技术
众所周知,通过以氢原子来作为非单晶Ⅳ族半导体例如非晶态半导体以及多晶半导体等的未结合键(悬挂键)的终端使其钝化,由此可以大幅度提高半导体的电特性以及光电特性。对于注入氢原子的方法,主要使用对不含氢原子状态或由于氢原子使得终端为不完全状态的半导体材料注入活性化氢气的方法。具体来说,有离子注入法以及等离子氢掺杂等方法。然而,这些方法的问题是,由于注入了高能量氢原子微粒,会损坏作为母体的半导体材料,或者为了高效取入氢原子,需要采用某规定温度以上的高温步骤。又,由于需要形成半导体材料的工序以及氢化步工序这两道工序,所以工序数量较多。
另一方面,对于利用以等离子CVD法等化学气相沉积法分解硅烷系气体等包含氢原子的原料气体并形成半导体薄膜的方法,由于在刚沉积后的半导体膜中已经有了氢原子,此后则不需要注入氢原子的步骤,能够简便地形成氢化半导体薄膜。但是,希望能够在廉价的基板上利用低温步骤形成优质的薄膜,即希望兼顾装置的低成本和高性能。现在非晶态硅等可以通过该方法来获得用于光电转换器件及薄膜晶体管等功能性器件的半导体薄膜。
然而,在利用这种等离子CVD法沉积氢化半导体薄膜的情况下,要控制得仅仅取入使未结合键处于终端所必需的足够量的氢,是很不容易的,实际上由于在膜中存在过量的氢原子,会产生膜的不稳定以及膜的微观构造不均匀这一类的新问题。又,作为量来说,即使能高效取入氢原子的量,但由于氢原子与Ⅳ族半导体原子的结合强度、即结合能量绝不是恒定的,分别存在弱结合及强结合,因此会使膜的构造产生差异以及影响稳定性,厉害的话会影响半导体材料的电性能。实际上对于氢化非晶态半导体等,在将膜加热并且分析膜中氢的升温脱离过程中,若看它的放出氢气量的温度曲线图,则可观测到从数10℃起大的可到100度以上的范围这很宽范围的放出氢气的过程。放出氢气与温度的关系是与膜中Ⅳ族半导体与氢原子的结合能量相对应的,它表示该分散性较大。这对于包含晶体的氢化半导体膜可以说也是相同的。
本发明的目的是鉴于上述的现有技术,通过控制由低温等离子CVD法形成的氢化半导体薄膜中的氢原子状态,来提高该半导体薄膜的质量,并且也改善半导体薄膜器件的性能。
发明内容
本发明提供了一种半导体薄膜,它是利用化学气相沉积法在衬底温度400℃以下沉积的以Ⅳ族原子与氢原子为主要构成元素的半导体薄膜,根据它从室温开始加热时的薄膜中氢原子放出量与升温温度的关系曲线可知,在370℃以上410℃以下具有放出氢气量的峰值,并且所述峰值的半幅值为30℃以下,最好在20℃以下。
又,本发明提供了一种薄膜器件,它具备包含本发明的半导体薄膜的半导体单元部分以及包含导电性薄膜的电极部分,并且它们形成在同一基板上。
附图简述
图1是本发明一实施形态中所采用的氢化硅系薄膜光电转换器件的构造剖视图。
图2是本发明实施例1的氢化硅系薄膜与比较例1的氢化硅系薄膜的升温脱离氢原子放出量与温度关系的曲线图。
最佳实施形态
本发明形态采用的半导体薄膜可以按下述方法形成。
作为半导体薄膜成膜方法的化学气相沉积法,可以采用通常广泛使用的平行平板型RF等离子CVD法,也可以采用频率为150MHz以下的RF~VHF频带的高频电源。为了使得薄膜中所含有的氢原子不会从形成的薄膜中再次脱离而绝大部分留在薄膜中,还为了能使用价廉的基板,因此成膜温度设定为400℃以下。注入反应室内的原料气体的主要成分为Ⅳ原子的氢化物气体。例如,对于硅的情况下,可以使用单硅烷及乙硅烷、二氯硅烷等,对于碳元素的原料可以使用甲烷,对于锗的原料可以使用氢化锗等。又,除了这些原料气体,还可向反应室注入稀释气体。稀释气体主要使用氢气,也可以再加入稀有气体等的惰性气体,最好是氦、氖、氩等。稀释气体相对于上述原料气体的流量比最好为20倍以上,还可以根据衬底温度、放电功率、反应室内压力等其他成膜条件综合考虑,决定最佳的稀释量。
将Ⅳ族元素作为主要成分的半导体薄膜,由于低温形成,因此含有比较多的使晶界及晶粒内部的缺陷处于终端并钝化的氢原子,此膜中氢含量为1原子%以上20原子%以下的Ⅳ族原子与氢原子的结合状态分布,可以根据将形成的膜从室温开始逐渐加热时氢原子放出量与升温温度的关系来判断。放出氢气与温度的关系与膜中的Ⅳ族原子与氢原子的结合能相对应。将横轴表示温度,纵轴表示放出氢气量,这样画出测定结果的曲线,在该曲线图中,其特点在于,本发明的半导体薄膜在370℃以上410℃以下的范围内具有一个峰值,该峰值的半幅值为30℃以下,最好为20℃以下。
本发明形态中所使用的薄膜器件具有半导体单元部分,它包含主要成分为Ⅳ族原子与氢原子的半导体薄膜。该半导体薄膜的膜厚最好为0.1μm以上20μm以下的范围。当膜厚比此范围小时,虽然能实现器件的功能,但容量不足,反之,当膜厚过厚,则半导体薄膜的制造成本将会上升,丧失了薄膜器件的优异性。又,薄膜器件具有上述半导体单元部分与包含导电性薄膜的电极部分,并且它们叠层在同一基板上。此导电性薄膜最好是能用作电极的低电阻金属薄膜以及透明导电性氧化物薄膜。又,也可以是在同一基板上再叠层例如硅氧化膜以及硅氮化膜这样的绝缘性薄膜的薄膜器件。
对于薄膜器件的种类,可以举出有薄膜晶体管(TFT)等MOS或者MIS型结型元件、或者传感器、摄像元件、太阳电池所代表的光电转换器件等pp-n或者p-i-n结型元件等等。这里,作为更加具体的本发明实施形态的一个示例,说明作为薄膜器件的氢化薄膜硅系光电转换器件,它是将氢化薄膜硅作为半导体薄膜。
基板使用不锈钢等金属、有机薄膜、或者低融点及价格便宜的玻璃等。
首先,在上述基板上配置背面电极部分,它利用例如蒸镀法或溅射法形成,是由下述(A)、(B)中一种以上的组合构成的薄膜层。
(A)Ti、Cr、Al、Ag、Au、Cu、Pt中至少一种以上材料或者它们的合金层组合形成的金属薄膜。
(B)ITO、SnO2、ZnO中至少一种以上的膜层形成的透明导电性氧化膜。
然后,形成n-i-p或者p-i-n结构成的光电转换单元。这里,构成光电转换单元的各层都利用CVD法在衬底温度400℃以下的条件下进行沉积。这里,除了可以使用通常的平行平板型RF等离子CVD法,也可以使用频率为150MHz以下的RF~VHF频带的高频电源。
首先,沉积光电转换单元中的一导电型层,这使用例如掺杂了决定导电型杂质原子的磷原子的n型硅系薄膜、或者掺杂了硼原子的p型硅系薄膜等。对这些条件并没有限定,作为杂质原子,例如对于n型层也可以是氮等。又,作为具体的导电型层的构成材料以及形态,除了使用非晶态硅,还可以使用非晶态碳化硅或非晶态锗化硅等合金,也可以使用多晶或包含部分结晶的微晶硅,或者可以使用该合金系金属材料。另外还有的情况,在此导电型层沉积后,通过照射脉冲激光,控制晶化比率及决定导电型杂质原子的载流子浓度。
接着,沉积本发明的半导体薄膜即氢化硅系薄膜作为底部电池的光电转换层。这最好使用无掺杂的本征薄膜硅或者包含微量杂质的弱p型或者弱n型并具备光电转换功能的硅系薄膜材料。又,对此并没有限定,也可以使用碳化硅及锗化硅等合金材料。光电转换层的膜厚为0.1~20pm,作为硅系薄膜光电转换层具有必要且足够的膜厚。
在沉积光电转换层之后,再继续沉积光电转换单元中构成与所述导电型层相反类型的导电型层的硅系薄膜,对于反导电型层,例如可以使用掺杂了决定导电型杂质原子的硼原子的p型硅系薄膜、或者掺杂了磷原子的n型硅系薄膜等。对此并没有进行限定,例如在p型层中也可以使用铝等作为杂质。又,作为具体的一导电型层的构成材料以及形态,除了使用非晶态硅,还可以使用非晶态碳化硅及非晶态锗化硅等的合金材料,也可以使用多晶或包含部分结晶的微晶硅,或者可以使用该合金系金属材料。
在将光电转换单元部分沉积之后,利用例如蒸镀法及溅射法形成至少由ITO、SnO2、ZnO其中一种以上的膜层所形成的透明导电型氧化物膜。也有的情况,此后形成至少由Al、Ag、Au、Cu、Pt其中至少一种以上的材料或者它们的合金层组合成的梳形金属电极作为栅极电极。
以下,参照图1对于作为本发明几个实施形态的光电转换器件的的薄膜硅光电转换器件以及比较例的薄膜硅光电转换器件进行说明。
实施例1
在玻璃基板1上,首先通过溅射法分别形成50nm的Ti膜101、300nm的Ag膜102、及100nm的AnO膜103,作为背面衬底电极10。然后,利用RF等离子CVD法分别形成20nm的掺磷的n型硅层111、2.5微米的无掺杂薄膜硅光电转换层112、及10nm的p型硅层113,从而形成n-i-p结的硅光电转换单元11。再形成作为上部电极的厚度为80nm的透明电极膜(ITO)2以及用于取出电流的梳形Ag电极3。
这里,作为薄膜硅光电转换层112的氢化硅膜是采用13.56MHz高频电源的RF等离子CVD法进行沉积的。反应气体是硅烷与氢的流量比为1∶90的混合气体,并且使反应室内压力为5.0Torr。又,放电功率密度为100mW/cm2,成膜温度为30℃。根据该成膜条件所制成的氢化硅膜,按照二次离子质量分析法所求得的膜中氢原子含量为2.5原子%。
当向此薄膜硅光电转换器件照射AM1.5、100mW/cm2光量的入射光4时,其输出特性如下,即开路电压为0.520V,短路电流密度为27.4mA/cm2,曲线因子为75.1%,光电转换效率为10.7%。
比较例1
同样在玻璃基板上形成薄膜硅光电转换器件。除了形成光电转换层112层的成膜条件,其他层的成膜条件及器件构造与上述实施例1完全相同。
这里,作为薄膜硅光电转换层112的氢化硅膜是采用13.56MHz高频电源的RF等离子CVD法来进行沉积的。反应气体是硅烷与氢的流量比为1∶150的混合气体,此外的成膜条件与上述实施形态1相同。制成的氢化硅膜其二次离子质量分析法求得的膜中氢原子含量为2.8原子%。
当向此薄膜硅光电转换器件照射AM1.5、100mW/cm2光量的入射光4时,其输出特性如下,即开路电压为0.402V,短路电流密度为27.7mA/cm2,曲线因子为73.1%,光电转换效率为8.1%。
(实施例1与比较例1的比较)
对于氢化硅膜其膜中氢的升温脱离过程进行了分析。在升温脱离气体质量分析装置中设置样品,令升温开始时的温度为室温(约20℃),升温结束温度为600℃,以每分钟上升10℃的速度使得样品升温,监测从膜层放出气体中质量数为2的H2分子其放出量的相对值。
在上述实施例1以及比较例1所示的光电转换器件中,对于形成了光电转换单元11时的样品,分析放出氢气量与温度上升的关系,其结果如图2所示。由于光电转换单元所含硅膜中,n型以及p型导电型层的膜厚比光电转换层要薄许多,因此可以判断被监测的大部分放出的氢是由作为光电转换层的无掺杂的氢化硅膜形成。两者的曲线都在388℃附近具有一个峰值,观察到在此温度附近其中放出氢气。然而,观察到实施例1的样品在更小的温度范围内放出大量的氢,若将放出氢气量为峰值一半时温度间隔估计为半幅值,则实施例1中为11℃,而比较例1的情况下为70℃。如上所述,虽不能发现两者膜中氢气总含量的绝对值等物理参数有显著差别,但作为光电转换器件的性能,很明显实施例1的样品性能较好。放出氢气与温度的关系对应于膜中的硅与氢原子的结合(认为是大部分是钝化结晶粒界的结合)能,它表示在能够获得高性能条件的膜中分散性较小。在比较例1中,对于氢化硅膜的成膜条件,其氢气对于硅烷气体的稀释倍率较高。若在等离子CVD法中按这样的条件来形成,则氢基及离子等的能量增大,对于沉积的膜会引起更大的损坏。为此,氢原子进入晶粒内部而造成在膜中过剩的概率增大。因此可以认为,膜内很容易造成微妙的构造变化,使氢化硅膜的电性能及光电性能比实施例的情况要差。
实施例2~6以及比较例2~4
在表1的条件下形成氢化硅膜,用与实施例1以及比较例1相同的方法在玻璃基板上形成薄膜硅光电转换器件。表1中同时给出此时膜中氢的含量以及利用升温脱离分析方法所得的氢放出量与温度的曲线中390℃附近出现的峰值的半幅值。除了薄膜硅光电转换层112的氢化硅膜的成膜条件以外,其他层的成膜条件以及器件构造与上述实施例1相同。光电转换器件的输出特性得到如表2所示的结果。
                          表1
气体流量比硅烷/氢 温度(℃) 压力(Torr) 放电功率(mW/cm2) 膜中氢原子量(原子%) 放出氢气量与温度曲线的半幅值(℃)
实施例2  1/100  300   5.0     100     2.5     20
实施例3  1/28  300   1.0     18     2.2     14
实施例4  1/190  300  10.0     400     3.0     13
实施例5  1/200  220  10.0     400     4.6     14
实施例6  1/210  180  10.0     400     5.7     12
比较例2  1/210  300   5.0     100     2.5     32
比较例3  1/80  300   5.0     100     7.7     54
比较例4  1/80  200   5.0     100     10.7     64
                          表2
电压(V) 功率密度(mA/cm2) 曲线因子(%) 效率(%)
实施例2  0.471     27.2     74.9   9.6
实施例3  0.488     27.0     75.9  10.0
实施例4  0.529     27.0     75.2  10.7
实施例5  0.534     26.8     76.2  10.9
实施例6  0.540     26.5     76.1  10.6
比较例2  0.455     27.1     73.9   9.1
比较例3  0.624     19.3     19.3   7.8
比较例4  0.712     16.8     16.8   6.6
如表1的实施例2~6所示,成膜条件参数各不一样,但可以知道通过选择适当的组合,能够获得半幅值较小的放出氢气量的温度曲线,此时光电转换器件的转换效率较大。另一方面,在比较例2~4中该半幅值较大,此时的光电转换器件的转换效率较低。其中比较例2的原因是,它与比较例1相同,选择的流量比的值过高,因此以等离子CVD法成膜时使氢基·离子的能量过剩。而比较例3及比较例4可以认为则相反,是由于氢基·离子的能量不足,不能充分使得沉积的膜的构造得到松弛,而会增大变形以及缺陷。又,与实施例的情况相比较,由于膜内氢原子含有量较多,因此硅一氢结合存在局部为高密度的情况,构造中存在较多的空隙部分,这也是原因之一。如此,可以说本发明的氢化硅薄膜是通过设定能够加入最佳的氢基·离子能量的成膜条件而实现的。
如上所述,根据本发明,能够提高低温下形成的含有Ⅳ族原子与氢原子作为主要构成元素的半导体薄膜的质量,对于提高以薄膜硅系光电转换器件等为代表的低成本薄膜器件的性能有很大的作用。

Claims (3)

1.一种半导体薄膜,其特征在于,
是利用化学气相沉积法在衬底温度400℃以下沉积的以Ⅳ族原子与氢原子为主要构成元素的半导体薄膜,
根据它从室温开始加热时的薄膜中氢原子放出量与升温温度的关系曲线可知,在370℃以上410℃以下具有放出氢气量的峰值,并且所述峰值的半幅值为30℃以下。
2.如权利要求1所述的半导体薄膜,其特征在于,
在常温气氛中,所述半导体薄膜中氢含量为1原子%以上20原子%以下。
3.一种薄膜器件,其特征在于,
具有膜厚为0.1μm以上20μm以下范围内的如权利要求1或2所述的半导体薄膜,具备包含所述半导体薄膜的半导体单元部分以及包含导电性薄膜的电极部分并且所述半导体单元部分与所述电极部分形成在同一基板上。
CNB998090050A 1998-07-22 1999-07-22 半导体薄膜以及薄膜器件 Expired - Lifetime CN1149640C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP206605/1998 1998-07-22
JP20660598A JP3792903B2 (ja) 1998-07-22 1998-07-22 半導体薄膜および薄膜デバイス

Publications (2)

Publication Number Publication Date
CN1310861A true CN1310861A (zh) 2001-08-29
CN1149640C CN1149640C (zh) 2004-05-12

Family

ID=16526165

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998090050A Expired - Lifetime CN1149640C (zh) 1998-07-22 1999-07-22 半导体薄膜以及薄膜器件

Country Status (8)

Country Link
US (1) US6617010B2 (zh)
EP (1) EP1134794A4 (zh)
JP (1) JP3792903B2 (zh)
KR (1) KR100411897B1 (zh)
CN (1) CN1149640C (zh)
AU (1) AU750452B2 (zh)
CA (1) CA2338314C (zh)
WO (1) WO2000005754A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171428B2 (ja) * 2003-03-20 2008-10-22 三洋電機株式会社 光起電力装置
NO20061668L (no) * 2006-04-12 2007-10-15 Renewable Energy Corp Solcelle og fremgangsmate for fremstilling av samme
CA2661047A1 (en) * 2006-05-15 2007-11-22 Arise Technologies Corporation Low-temperature doping processes for silicon wafer devices
CN101345270B (zh) * 2007-07-13 2011-05-04 鸿富锦精密工业(深圳)有限公司 太阳能电池
WO2010126699A2 (en) 2009-04-29 2010-11-04 Hunter Douglas Industries B.V. Architectural panels with organic photovoltaic interlayers and methods of forming the same
CN103247718B (zh) * 2013-04-09 2015-06-17 许昌学院 常温下原位控制合成硫铜银三元化合物半导体光电薄膜材料的化学方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793448B2 (ja) * 1986-04-08 1995-10-09 ティーディーケイ株式会社 光電変換素子
JPH0212812A (ja) * 1988-06-30 1990-01-17 Tonen Corp アモルファスシリコンカーバイド膜の光劣抑制方法
JP2663580B2 (ja) * 1988-11-22 1997-10-15 日本電気株式会社 シリコン表面のパッシベーション方法及び装置
JP2846651B2 (ja) * 1989-03-31 1999-01-13 三洋電機株式会社 光起電力装置
JPH0435021A (ja) * 1990-05-31 1992-02-05 Tonen Corp 多結晶シリコン薄膜の成長方法
JP2695585B2 (ja) * 1992-12-28 1997-12-24 キヤノン株式会社 光起電力素子及びその製造方法、並びにそれを用いた発電装置
JPH0770580B2 (ja) * 1993-03-30 1995-07-31 日本電気株式会社 基板表面の温度測定方法およびそれを利用した半導体成膜方法とその装置
CN1135635C (zh) * 1994-03-25 2004-01-21 阿莫科/恩龙太阳公司 增强光电器件和电子器件的光和电特性的等离子淀积工艺
JPH08227167A (ja) * 1995-02-20 1996-09-03 Canon Inc 光受容部材の製造方法および光受容部材
US5719076A (en) * 1996-04-24 1998-02-17 United Solar Systems Corporation Method for the manufacture of semiconductor devices with optimized hydrogen content
JP3998765B2 (ja) * 1997-09-04 2007-10-31 シャープ株式会社 多結晶半導体層の製造方法及び半導体装置の評価方法

Also Published As

Publication number Publication date
CA2338314C (en) 2005-03-15
WO2000005754A1 (fr) 2000-02-03
US6617010B2 (en) 2003-09-09
US20010011748A1 (en) 2001-08-09
KR100411897B1 (ko) 2003-12-18
JP2000040664A (ja) 2000-02-08
AU750452B2 (en) 2002-07-18
EP1134794A4 (en) 2006-08-09
JP3792903B2 (ja) 2006-07-05
KR20010070986A (ko) 2001-07-28
CN1149640C (zh) 2004-05-12
CA2338314A1 (en) 2000-02-03
AU4799799A (en) 2000-02-14
EP1134794A1 (en) 2001-09-19

Similar Documents

Publication Publication Date Title
CN1314134C (zh) 硅薄膜异质结太阳电池的制备方法
KR100393955B1 (ko) 미정질 반도체 막을 포함하는 반도체 장치
US20080121280A1 (en) Method for the production of photovoltaic cells
EP0559143A2 (en) Process for producing integrated solar cell
US5877077A (en) Method of producing an ohmic contact and a semiconductor device provided with such ohmic contact
WO2009094578A2 (en) Improved hit solar cell structure
US20100078071A1 (en) Photoelectric conversion device and method for manufacturing the same
US20030030052A1 (en) Crystalline silicon thin film semiconductor device, crystalline silicon thin film photovoltaic device, and process for producing crystalline silicon thin film semiconductor device
KR100681162B1 (ko) 반도체 장치 및 그 제조 방법
CN101752433A (zh) 光电转换装置及光电转换装置的制造方法
CN1149640C (zh) 半导体薄膜以及薄膜器件
KR100450595B1 (ko) 결정실리콘 반도체장치 및 그 장치의 제조방법
CN110649165B (zh) 一种以四苯基联苯二胺衍生物为空穴传输材料的钙钛矿电池
US20020132455A1 (en) Method for forming crystalline silicon layer and crystalline silicon semiconductor device
KR20200125067A (ko) 이종 접합 태양 전지 제조 방법
CN116314439A (zh) 太阳电池中的NiOx空穴传输层及其制备方法、应用
US8288196B2 (en) Process for fabricating a silicon-based thin-film photovoltaic cell
Huang et al. Preparation and crystallization characteristics of hydrogenated nanocrystalline silicon thin films by plasma-enhanced chemical vapor deposition
JP2003218030A (ja) 結晶シリコン半導体装置およびその製造方法
Beck et al. High Current Density in m c-Si PECVD Diodes for Low Temperature Applications
Pold P-type a-SiOx: H as a Hole Transport Layer in pin Perovskite Solar Cells
KR20100136303A (ko) 태양전지의 제조방법
CN118073430A (zh) 一种透明叠层钝化膜结构及其制备方法和应用
Lei et al. The Research of Flexible Solar Cells for Application in Solar Roof
Tsai et al. New Packing Structure of Concentration Solar Receiver

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20040512