CN1280882C - 用于超大规模集成的多层铜互连的方法 - Google Patents

用于超大规模集成的多层铜互连的方法 Download PDF

Info

Publication number
CN1280882C
CN1280882C CNB028045556A CN02804555A CN1280882C CN 1280882 C CN1280882 C CN 1280882C CN B028045556 A CNB028045556 A CN B028045556A CN 02804555 A CN02804555 A CN 02804555A CN 1280882 C CN1280882 C CN 1280882C
Authority
CN
China
Prior art keywords
metal
metal oxide
layer
oxide layer
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028045556A
Other languages
English (en)
Other versions
CN1531749A (zh
Inventor
凯·Y·阿恩
约瑟夫·E·戈伊斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN1531749A publication Critical patent/CN1531749A/zh
Application granted granted Critical
Publication of CN1280882C publication Critical patent/CN1280882C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76823Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. transforming an insulating layer into a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemically Coating (AREA)

Abstract

一种制造集成电路的方法,该方法利用金属氧化物薄膜(220)作为籽晶层以在集成电路中建立多层互连结构。在晶片(210)上淀积金属氧化物薄膜(220),按与金属线图形(215)对应的图形利用标准光刻以暴露金属氧化物膜(220)。该金属氧化物膜(220)转化为金属层(240),然后通过选择性CVD或者化学镀可在转化的氧化膜(260)上淀积金属膜(250)。然后以利用通孔光刻的类似工艺制造通孔(280)。继续该工艺直到制造出期望的多层结构。

Description

用于超大规模集成的多层铜互连的方法
发明领域
本发明涉及集成电路的制造。具体地说,本发明涉及使用氧化铜薄膜作为籽晶层,用于在集成电路中形成多层互连结构。
发明背景
集成电路(IC)微型化的快速发展导致产生了更密集和更精细布置的具有更好性能的芯片。为了提高高级IC的性能,互连系统逐渐从铝薄膜转变为铜薄膜。与传统上使用的材料铝相比,铜具有更多的优点,这些优点对于提高集成电路的性能是至关重要的。首先,铜具有比铝低得多的表面电阻率。这样,对于承载相同量的电流来说,铜线能够做得比铝线更窄更薄。因此,使用铜线可得到更高的集成密度。而且,更窄更薄的导电线降低了内层和内线电容,对于电路来说这就可以实现更高的速度和更少的泄漏(bleed over),最后,铜具有比铝更好的抗电迁移性。因此,当金属线变得更薄并且电路被更密集地组装时,在ICs中使用铜提供了更高的可靠性。
在所提出的制造铜互连的几个方法中,最有前途的方法是镶嵌(Damascene)工艺。在使用该方法中,沟槽和通路形成在覆盖层介质中,然后在一个步骤中将金属淀积到沟槽和孔中,接着通过化学机械平坦化(CMP)工艺来除去不想要的表面金属。这样在沟槽和孔中留下想要的金属,以及用于后续加工的平整表面。
然而,在上述CMP工艺中,尤其对于通路来说,除去了99%以上淀积的铜。单独从铜方面来看,是非常浪费且昂贵的。此外,在CMP工艺过程中过量地消耗了制造消耗品,例如衬垫和浆料。这些制造副产品的处置足以引起对环境的关注,以确保一个更可行的方法。因此,非常希望实现不使用CMP工艺的铜金属化。通过化学镀或者化学气相淀积(CVD)法选择淀积铜提供了一种“非CMP”的金属化技术。例如,在名称为“用于ULSI的选择性非电镀多层铜金属化”MicronDocket No.99-0715的在先未决申请(在此引入作为参考)中描述了一种利用化学选择沉积铜的制造多层互连结构的方法。在该方法中,非常薄的Pd或者Cu膜形成“岛结构”或者仅3-10nm厚的连续薄膜。
发明内容
在本发明的一个方面中,在晶片上制造包括金属线和通孔的多层铜互连。首先,在晶片上淀积氧化铜薄籽晶层。通过标准的光刻术限定金属线图形之后,利用紫外线光致还原法使曝光的氧化铜转化为铜。然后,利用化学镀或者化学气相淀积(CVD)法淀积铜膜,从而提供平整表面。在下一步,利用常规的方法例如通孔光刻术制造通孔,按与第一层类似的方式淀积第二氧化铜层。与第一铜层一样,为后续层提供平整表面。
结果,通过重复这些工序可制成具有所期望多个金属层的多层互连结构,而不需要CMP工艺。使用氧化铜代替铜作为籽晶层的一个最大优点是潜在的高IC生产率。如果使用纯铜籽晶层,根据晶片暴露于空气的时间长短,在晶片的表面上可能形成天然氧化铜。这样会产生可再制性的问题,除非进行去除氧化铜的附加步骤。
附图的简要描述
图1-5的截面图示出用于制造超大规模集成的多层金属互连的例示方法。
图6是本发明的替换实施例的截面图。
本发明的详细描述
根据本发明的例示方法,下面将描述制造用于超大规模(ULSI)集成的多层金属互连的方法。建议使用氧化铜薄膜作为籽晶层来制造所期望的多层互连结构。先前,在名称为“导电材料构图方法”(MicronDocket No.99-0671)和“从集成互连除去氧化铜”(美国专利申请No.09/484,683)的共同转让专利申请(在此引入作为参考)中描述了使用氧化铜作为籽晶层制造化学淀积的铜线。
下面充分详细地示出和描述了本发明的实施例,从而以使本领域的普通技术人员能够完成和实施本发明,所提供的实施例仅用来例证和教导本发明的原理,而不是限制本发明。这样,在避免使本发明不清楚的适当描述中,该说明书可能省略某些本领域技术人员公知的信息。
图1-5显示了集中地并按顺序截取的多个截面图,这些截面图说明了制造用于ULSI的多层互连的例示方法。如图1所示,该方法从半导体晶片210开始。应理解该半导体晶片210可以处于制造的任何阶段。在半导体晶片210的表面上淀积10-30nm厚的氧化铜薄层220。虽然这里公开了使用铜和氧化铜制造多层互连,但是应理解其它的金属和它们的氧化物(例如铂和钯)也非常适用于所公开的方法。
在例示的实施例中,可以使用各种技术淀积氧化铜层220,包括CVD、电离-磁控管溅射技术、DC磁控管自溅射技术、等离子蒸发、等离子增强CVD、金属有机微波等离子CVD、来自二叔戊酰甲烷铜的CVD和脉冲激光淀积,但并不限于这些技术。
例如,V.F.Drobny等人在“Thin Solid Films”第61卷,NO.1,89-98(1979)中报道(在此引入作为参考),在氧-氩混合物中的反应溅射产生氧化铜薄膜,该氧化铜薄膜具有通过改变排放物中氧的分压而控制的参数范围。最近,A.Parretta等人在“PhysicaStatus Solidi A”,第155卷,No.2,399-404(1996)(在此引入作为参考)中研究了通过反应RF磁控管溅射制备的氧化铜膜的电和光特性,并得出结论:可以通过控制氧分压得到单相Cu2O和CuO。Parretta发现Cu2O膜的典型电阻率为43欧姆-cm,比纯铜至少高6个数量级。
在另一种技术中,如K.Santra等人在“Thin Solid Films”第213卷,No.2,226-9(1992)(在此引入作为参考)中所报道的,在恒定氧压力下通过等离子放电,利用蒸发金属铜在基片上淀积氧化铜膜。“所淀积”的一价氧化物在退火之后变相为二价氧化物。而且,如H.Holzsuch等人在Applied Physics A,Vol.A51,No.6,486-90(1990)(在此引入作为参考)中所报导的,使用乙酰丙酮化铜作为前体,通过增强CVD来淀积氧化铜膜。Holzsuch发现基片温度的增加使淀积的相从Cu2O+CuO改变为Cu。在高于500℃的温度,淀积速度高,但薄膜主要是金属铜。而且,B.Wisniesky等人在Journal de Physique,Vol.1,No.C2,389-95(1991)(在此引入作为参考)中介绍了作为创新技术的微波增强CVD,以允许使用乙酰丙酮化铜的易挥发的金属有机前体在铜的不同价态的低温下直接制备。但是请注意,合理的选择工艺参数例如微波功率、基片温度以及氧化剂气体N2O或者O的混合物允许金属铜、Cu2O或者CuO的形成。
近来,在由T.Mruyama在“太阳能材料和太阳能电池”,第56卷,No.1,85-92(1998)(在此引入作为参考)中报导的另一种方法中,通过常压CVD法从二叔戊酰甲烷铜和氧来制备多晶氧化铜薄膜。最近,Y.Matsuura等人在“Applied Optics”,Vol.38,No.9,1700-3(1999)(在此引入作为参考)中报导,在CVD工艺中使用乙酰丙酮化铜作为前体,在涂银玻璃细管的内侧淀积氧化铜介质膜。可以发现该氧化铜淀积物具有耐化学品和耐热的性能。
最后,在此再引入两种淀积氧化铜的其它方法作为参考。M.Shurr等人近来在“Thin Solid Films”,Vol.342,No.1-2,266-9(1999)中报导,利用有机前体由朗缪尔-勃拉吉特(L-B)多层膜来制备CuO的超薄膜,其中L-B多层膜由二十烷醇铜(Cu-arachidate)构成,通过热脱附(desorption)或UV脱附除去有机成份。R.Leuchtner等人在“外延氧化薄膜II,材料研究协会论文集学报”,Vol.401,551-56(1995)中报导了用于生长氧化铜膜的另一种技术。这里,使用铜金属或者氧化铜靶通过脉冲激光淀积(PLD)法生长氧化铜膜。在某些条件下,在450℃得到外延CuO膜。
参考图2,如上所述,在晶片210上淀积氧化铜的薄层220之后,使用第一光致抗蚀剂层230通过标准光刻术限定金属线图形215。仔细选择光致抗蚀剂层230的厚度,以便与金属线215的厚度匹配。参考图3,然后依照常规的或者以后开发的工艺,包括例如在名称为“导电材料构图方法”,Micro Docket No.99-0671的共同未决和共同转让的专利申请中描述的方法(这里引入作为参考),通过UV光致还原方法就地将曝光的氧化铜220转化为铜层240。通过选择性的CVD或者化学镀,选择性地淀积铜膜250到期望的厚度。在这些步骤之后,不使用CMP而为后续步骤提供平整表面255。
如图4所示,还可以制造通孔280。与如上所述淀积第一氧化铜层220的方式类似,在第一光致抗蚀剂层230和铜层250上淀积第二氧化铜籽晶层260。然后,利用其厚度与通路280的长度对应的光致抗蚀剂层270进行通孔光刻。现在参考图5,如上所述,利用UV光致还原法原地将曝光的氧化铜290转化为铜。通过选择性CVD或者化学镀,选择性地淀积铜膜295到所期望的厚度。再仔细选择第二光致抗蚀剂层270的厚度,以便与通孔280长度匹配。与前面一样,在这些步骤之后,不使用CMP而为后续步骤提供平整表面297。
通过以任何顺序重复前面的工序,能够制造想要的多层,以便形成多层互连结构。
在图6所示的可替换实施例中,前述工艺可以与氧化铜层220和第一光致抗蚀剂层230中埋置的铜层250之间的绝缘层300结合。该绝缘层300可以由在如上所述的第一光致还原步骤中不透过UV光的SiO2或者等效材料构成。
对于高性能封装中的应用来说,在前述步骤之后,所使用的光致抗蚀剂层230和270可以留下并用作低介电常数绝缘层。而且,在假定线间距大于10微米的情况下,由于线之间的漏电流将显著低于信号,因此,具有高电阻率并且自身几乎绝缘的氧化铜籽晶层220和260可以留在原地。
对于ULSI芯片中的应用来说,通过氧等离子灰化法除去所用的光致抗蚀剂层,并且通过上面Wisiniewsky等人所描述的蚀刻除去所用的氧化铜籽晶层220和250。采用该方法留下了完成的空气-桥结构,然后利用名称为“在集成电路中制作铜布线的方法及装置”(美国专利申请No.09/484303)的共同未决和共同转让的专利申请(在此引入上述文献作为参考)中所描述的材料和方法,可以使该结构钝化。如果需要,可以在一个操作中用适当的介质层填充空气空间。
在如上所述的例示方法中,假设设计的IC芯片没有未支撑的长线。对于较长的线来说,由于它们的重量,在加工过程中可能会下垂,应考虑美国专利No.5,891,797(在此引入作为参考)所描述的工序。对上层布线上的铜布线线宽有限制,因为宽的线被分为接近最小宽度和间距的几条线,这将在结构中确保充足的空间,以便能够除去下层和开口的空气-桥结构上的光致抗蚀剂。
总之,所公开的方法是一种利用铜以及氧化铜籽晶层的选择性地淀积,制造多层铜互连结构的新颖方法,消除和简化了许多浪费的CMP步骤,引入了加强的制造步骤,用于高性能封装和USLI芯片。
虽然这里已经详细说明和描述了本发明的各种实施例,但很显然在不离开本发明精神的情况下,可以在在此作出修改和添加,这些都包括在本发明的精神和附加的权利要求范围内。

Claims (27)

1.一种在半导体芯片制造中制造多层互连的方法,包括:
在半导体晶片上淀积金属氧化物层;
将该金属氧化物层的一个部分或多个部分转化为一部分或者多部分金属,而至少留下金属氧化物的其它部分;和
在该金属氧化物层的一个或者多个转化的和未转化的部分上淀积金属层。
2.如权利要求1的制造多层互连的方法,还包括:
在该金属氧化物层和转化为金属的金属氧化物层之间设置一绝缘层。
3.权利要求1的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
4.权利要求1的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
5.权利要求1的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是钯,该金属氧化物是氧化钯。
6.一种在半导体芯片制造中制造多层互连的方法,包括:
在半导体晶片上淀积第一金属氧化物层;
将该第一金属氧化物层的一个或者多个部分转化为一部分或者多部分金属,而至少留下该第一金属氧化物层的其余部分;
在该第一金属氧化物层的一个或者多个转化的和未转化的部分上淀积第一金属层;
在该第一金属层上淀积第二金属氧化物层;
将该第二金属氧化物层的一个或者多个部分转化为一部分或者多部分金属,而至少留下该第二金属氧化物层的其它部分;和
在该第二金属氧化物层的一个或者多个转化的和未转化的部分上淀积第二金属层。
7.如权利要求6的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
8.如权利要求6的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
9.如权利要求6的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是钯,该金属氧化物是氧化钯。
10.如权利要求6的制造多层互连的方法,还包括:
在该第一金属氧化物层和转化为金属的金属氧化物层之间设置一绝缘层。
11.一种在半导体芯片制造中制造多层互连的方法,包括:
在半导体晶片上淀积第一金属氧化物层;
将该第一金属氧化物层的一个或者多个部分转化为一部分或者多部分金属,而至少留下该第一金属氧化物层的其余部分;
在该第一金属氧化物层的一个或者多个转化的和未转化的部分上淀积第一金属层;
在该第一金属层上淀积第二金属氧化物层;
将该第二金属氧化物层的一个或者多个部分转化为一部分或者多部分金属,而至少留下该第二金属氧化物层的其它部分;和
在该第二金属氧化物层的一个或者多个转化的和未转化的部分上淀积第二金属层;
在该第二金属层上淀积第三金属氧化物层;
将该第三金属氧化物层的一个或者多个部分转化为一部分或者多部分金属,而至少留下该第三金属氧化物层的其它部分;和
在该第三金属氧化物层的一个或者多个转化的和未转化的部分上淀积第三金属层。
12.如权利要求11的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
13.如权利要求11的制造多层互连的方法,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
14.如权利要求11的制造多层互连的方法,其中自该金属氧化物层转化的金属是钯,金属氧化物是氧化钯。
15.如权利要求11的制造多层互连的方法,还包括:
在该第一金属氧化物层和转化为金属的第一金属氧化物层之间设置一绝缘层。
16.一种多层集成电路,包括:
至少一个或者多个集成器件;
金属氧化物的第一绝缘层,金属氧化物接触相应的一个或者多个集成器件、并通过在器件上淀积金属氧化物层而形成;
金属层,该金属层通过将该金属氧化物层的一个或者多个部分转化为一个或者多个转化的部分的金属、而至少留下金属氧化物的其它部分,以及在其上淀积一层金属而形成。
17.如权利要求16的多层集成电路,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
18.如权利要求16的多层集成电路,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
19.如权利要求16的多层集成电路,其中,自该金属氧化物层转化的该金属是钯,该金属氧化物是氧化钯。
20.一种多层集成电路,包括:
至少一个或者多个集成器件;
金属氧化物的第一绝缘层,该金属氧化物与相应的一个或者多个集成器件接触,并通过在器件上淀积金属氧化物层而形成;
第一金属层,该第一金属层通过将该金属氧化物层的一个或者多个部分转化为一个或者多个转化部分的金属、而至少留下该金属氧化物的其它部分,以及在其上淀积一层金属所形成;
金属氧化物的第二绝缘层,该金属氧化物与相应的第一金属层接触,并通过在该第一金属层上淀积第二金属氧化物层而形成;
第二金属层,该第二金属层通过将该第二金属氧化物层的一个或者多个部分转化为一个或者多个转化部分的金属而至少留下该金属氧化物的其它部分、以及通过在其上淀积一层金属所形成。
21.如权利要求20的多层集成电路,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
22.如权利要求20的多层集成电路,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
23.如权利要求20的多层集成电路,其中,自该金属氧化物层转化的该金属是钯,该金属氧化物是氧化钯。
24.一种多层集成电路,包括;
至少一个或者多个集成器件;
金属氧化物的第一绝缘层,该金属氧化物与相应的一个或者多个集成器件接触,并通过在器件上淀积金属氧化物层而形成;
第一金属层,该第一金属层通过将该金属氧化物层的一个或者多个部分转化为一个或者多个转化部分的金属而至少留下该金属氧化物的其它部分、并且在其上淀积一层金属而形成;
金属氧化物的第二绝缘层,该金属氧化物与相应的第一金属层接触,并通过在该第一金属层上淀积第二金属氧化物层而形成;
第二金属层,该第二金属层通过将该第二金属氧化物层的一个或者多个部分转化为一个或者多个转化部分的金属而至少留下该金属氧化物的其它部分、并且通过在其上淀积一层金属层而形成;
金属氧化物的第三绝缘层,该金属氧化物与相应的第二金属层接触,并通过在该第二金属层上淀积第三金属氧化物层而形成;
第三金属层,该第三金属层通过将该第三金属氧化物层的一个或者多个部分转化为一个或者多个转化部分的金属而至少留下该金属氧化物的其它部分、并且通过在其上淀积一层金属而形成。
25.如权利要求24的多层集成电路,其中,自该金属氧化物层转化的该金属是铜,该金属氧化物是氧化铜。
26.如权利要求24的多层集成电路,其中,自该金属氧化物层转化的该金属是铂,该金属氧化物是氧化铂。
27.权利要求24的多层集成电路,其中,自该金属氧化物层转化的该金属是钯,该金属氧化物是氧化钯。
CNB028045556A 2001-02-05 2002-02-04 用于超大规模集成的多层铜互连的方法 Expired - Fee Related CN1280882C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/777,816 US6451685B1 (en) 2001-02-05 2001-02-05 Method for multilevel copper interconnects for ultra large scale integration
US09/777,816 2001-02-05

Publications (2)

Publication Number Publication Date
CN1531749A CN1531749A (zh) 2004-09-22
CN1280882C true CN1280882C (zh) 2006-10-18

Family

ID=25111370

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028045556A Expired - Fee Related CN1280882C (zh) 2001-02-05 2002-02-04 用于超大规模集成的多层铜互连的方法

Country Status (6)

Country Link
US (2) US6451685B1 (zh)
EP (1) EP1366513A4 (zh)
JP (1) JP2004524684A (zh)
KR (1) KR100754757B1 (zh)
CN (1) CN1280882C (zh)
WO (1) WO2002063672A1 (zh)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936531B2 (en) * 1998-12-21 2005-08-30 Megic Corporation Process of fabricating a chip structure
US7035880B1 (en) 1999-07-14 2006-04-25 Commvault Systems, Inc. Modular backup and retrieval system used in conjunction with a storage area network
US7395282B1 (en) 1999-07-15 2008-07-01 Commvault Systems, Inc. Hierarchical backup and retrieval system
US7389311B1 (en) 1999-07-15 2008-06-17 Commvault Systems, Inc. Modular backup and retrieval system
US7434219B2 (en) * 2000-01-31 2008-10-07 Commvault Systems, Inc. Storage of application specific profiles correlating to document versions
US6658436B2 (en) 2000-01-31 2003-12-02 Commvault Systems, Inc. Logical view and access to data managed by a modular data and storage management system
US7003641B2 (en) 2000-01-31 2006-02-21 Commvault Systems, Inc. Logical view with granular access to exchange data managed by a modular data and storage management system
US7155481B2 (en) 2000-01-31 2006-12-26 Commvault Systems, Inc. Email attachment management in a computer system
US7494927B2 (en) 2000-05-15 2009-02-24 Asm International N.V. Method of growing electrical conductors
US6602653B1 (en) 2000-08-25 2003-08-05 Micron Technology, Inc. Conductive material patterning methods
KR100390918B1 (ko) * 2001-08-30 2003-07-12 주식회사 하이닉스반도체 반도체 메모리 소자의 제조방법
JP2005505039A (ja) 2001-09-28 2005-02-17 コムヴォールト・システムズ・インコーポレーテッド 情報記憶装置にオブジェクトをアーカイブする装置及び方法
US7932603B2 (en) * 2001-12-13 2011-04-26 Megica Corporation Chip structure and process for forming the same
US6905979B2 (en) * 2002-12-23 2005-06-14 Intel Corporation Apparatus and method for improving AC coupling on circuit boards
US7454569B2 (en) 2003-06-25 2008-11-18 Commvault Systems, Inc. Hierarchical system and method for performing storage operations in a computer network
US7546324B2 (en) 2003-11-13 2009-06-09 Commvault Systems, Inc. Systems and methods for performing storage operations using network attached storage
US7253125B1 (en) 2004-04-16 2007-08-07 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
US20060009038A1 (en) * 2004-07-12 2006-01-12 International Business Machines Corporation Processing for overcoming extreme topography
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US7867889B2 (en) * 2004-12-01 2011-01-11 Nxp B.V. Method of forming an interconnect structure on an integrated circuit die
US8025922B2 (en) 2005-03-15 2011-09-27 Asm International N.V. Enhanced deposition of noble metals
US7666773B2 (en) 2005-03-15 2010-02-23 Asm International N.V. Selective deposition of noble metal thin films
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8454750B1 (en) 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
KR101379015B1 (ko) 2006-02-15 2014-03-28 한국에이에스엠지니텍 주식회사 플라즈마 원자층 증착법을 이용한 루테늄 막 증착 방법 및고밀도 루테늄 층
EP1990432B1 (en) * 2006-02-28 2012-04-11 Advanced Interconnect Materials, LLC Semiconductor device, its manufacturing method, and sputtering target material for use in the method
US8952612B1 (en) 2006-09-15 2015-02-10 Imaging Systems Technology, Inc. Microdischarge display with fluorescent conversion material
US10037905B2 (en) * 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US7734669B2 (en) 2006-12-22 2010-06-08 Commvault Systems, Inc. Managing copies of data
US8719809B2 (en) 2006-12-22 2014-05-06 Commvault Systems, Inc. Point in time rollback and un-installation of software
WO2009029871A1 (en) * 2007-08-31 2009-03-05 Zettacore, Inc. Methods of treating a surface to promote binding of molecule(s) of interest, coatings and devices formed therefrom
US20090056994A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
KR101544198B1 (ko) 2007-10-17 2015-08-12 한국에이에스엠지니텍 주식회사 루테늄 막 형성 방법
US8396838B2 (en) 2007-10-17 2013-03-12 Commvault Systems, Inc. Legal compliance, electronic discovery and electronic document handling of online and offline copies of data
US7655564B2 (en) * 2007-12-12 2010-02-02 Asm Japan, K.K. Method for forming Ta-Ru liner layer for Cu wiring
US7799674B2 (en) 2008-02-19 2010-09-21 Asm Japan K.K. Ruthenium alloy film for copper interconnects
US8769048B2 (en) 2008-06-18 2014-07-01 Commvault Systems, Inc. Data protection scheduling, such as providing a flexible backup window in a data protection system
US8352954B2 (en) 2008-06-19 2013-01-08 Commvault Systems, Inc. Data storage resource allocation by employing dynamic methods and blacklisting resource request pools
US9128883B2 (en) 2008-06-19 2015-09-08 Commvault Systems, Inc Data storage resource allocation by performing abbreviated resource checks based on relative chances of failure of the data storage resources to determine whether data storage requests would fail
US8084104B2 (en) 2008-08-29 2011-12-27 Asm Japan K.K. Atomic composition controlled ruthenium alloy film formed by plasma-enhanced atomic layer deposition
US8725688B2 (en) 2008-09-05 2014-05-13 Commvault Systems, Inc. Image level copy or restore, such as image level restore without knowledge of data object metadata
US20100070474A1 (en) 2008-09-12 2010-03-18 Lad Kamleshkumar K Transferring or migrating portions of data objects, such as block-level data migration or chunk-based data migration
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US8133555B2 (en) 2008-10-14 2012-03-13 Asm Japan K.K. Method for forming metal film by ALD using beta-diketone metal complex
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US8329569B2 (en) 2009-07-31 2012-12-11 Asm America, Inc. Deposition of ruthenium or ruthenium dioxide
US8609526B2 (en) * 2009-10-20 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Preventing UBM oxidation in bump formation processes
US9345149B2 (en) * 2010-07-06 2016-05-17 Esionic Corp. Methods of treating copper surfaces for enhancing adhesion to organic substrates for use in printed circuit boards
KR101702645B1 (ko) 2010-08-18 2017-02-06 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US9021198B1 (en) 2011-01-20 2015-04-28 Commvault Systems, Inc. System and method for sharing SAN storage
US8849762B2 (en) 2011-03-31 2014-09-30 Commvault Systems, Inc. Restoring computing environments, such as autorecovery of file systems at certain points in time
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
US10157184B2 (en) 2012-03-30 2018-12-18 Commvault Systems, Inc. Data previewing before recalling large data files
US9633216B2 (en) 2012-12-27 2017-04-25 Commvault Systems, Inc. Application of information management policies based on operation with a geographic entity
US9459968B2 (en) 2013-03-11 2016-10-04 Commvault Systems, Inc. Single index to query multiple backup formats
US10169121B2 (en) 2014-02-27 2019-01-01 Commvault Systems, Inc. Work flow management for an information management system
US9648100B2 (en) 2014-03-05 2017-05-09 Commvault Systems, Inc. Cross-system storage management for transferring data across autonomous information management systems
WO2015147843A1 (en) * 2014-03-27 2015-10-01 Intel Corporation Precursor and process design for photo-assisted metal atomic layer deposition (ald) and chemical vapor deposition (cvd)
US9823978B2 (en) 2014-04-16 2017-11-21 Commvault Systems, Inc. User-level quota management of data objects stored in information management systems
US9740574B2 (en) 2014-05-09 2017-08-22 Commvault Systems, Inc. Load balancing across multiple data paths
CN105304157B (zh) * 2014-06-25 2017-06-23 上海量子绘景电子股份有限公司 具有导电铜网络的透明导电薄膜及其制备方法
US9502255B2 (en) 2014-10-17 2016-11-22 Lam Research Corporation Low-k damage repair and pore sealing agents with photosensitive end groups
US9444811B2 (en) 2014-10-21 2016-09-13 Commvault Systems, Inc. Using an enhanced data agent to restore backed up data across autonomous storage management systems
CN105702630B (zh) * 2014-11-26 2020-07-10 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10761942B2 (en) 2018-03-12 2020-09-01 Commvault Systems, Inc. Recovery point objective (RPO) driven backup scheduling in a data storage management system using an enhanced data agent
US10860443B2 (en) 2018-12-10 2020-12-08 Commvault Systems, Inc. Evaluation and reporting of recovery readiness in a data storage management system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634203A (en) * 1969-07-22 1972-01-11 Texas Instruments Inc Thin film metallization processes for microcircuits
US4352716A (en) 1980-12-24 1982-10-05 International Business Machines Corporation Dry etching of copper patterns
DE3840199C2 (de) 1988-11-29 1994-12-01 Heraeus Noblelight Gmbh Verfahren zur Strukturierung von bei der stromlosen Metallisierung katalytisch aktiven Metallschichten mittels UV-Strahlung
IL98660A (en) 1991-06-28 1996-10-16 Orbotech Ltd Method of printing an image on a substrate particularly useful for producing printed circuit boards
JP2885616B2 (ja) 1992-07-31 1999-04-26 株式会社東芝 半導体装置およびその製造方法
JP2814445B2 (ja) 1992-09-16 1998-10-22 インターナショナル・ビジネス・マシーンズ・コーポレイション 選択的な金の低温化学蒸着
US5459098A (en) 1992-10-19 1995-10-17 Marietta Energy Systems, Inc. Maskless laser writing of microscopic metallic interconnects
US5736002A (en) 1994-08-22 1998-04-07 Sharp Microelectronics Technology, Inc. Methods and equipment for anisotropic, patterned conversion of copper into selectively removable compounds and for removal of same
US5686789A (en) 1995-03-14 1997-11-11 Osram Sylvania Inc. Discharge device having cathode with micro hollow array
US5744376A (en) * 1996-04-08 1998-04-28 Chartered Semiconductor Manufacturing Pte, Ltd Method of manufacturing copper interconnect with top barrier layer
EP0843597A4 (en) 1996-06-05 1999-02-24 Univ Toledo AUTOCATALYTIC DEPOSITION OF A METAL LAYER ON AN ACTIVE SUBSTRATE
US5695810A (en) 1996-11-20 1997-12-09 Cornell Research Foundation, Inc. Use of cobalt tungsten phosphide as a barrier material for copper metallization
US6016027A (en) 1997-05-19 2000-01-18 The Board Of Trustees Of The University Of Illinois Microdischarge lamp
US5993679A (en) 1997-11-06 1999-11-30 Anelva Corporation Method of cleaning metallic films built up within thin film deposition apparatus
US6249055B1 (en) 1998-02-03 2001-06-19 Advanced Micro Devices, Inc. Self-encapsulated copper metallization
US6100190A (en) * 1998-02-19 2000-08-08 Rohm Co., Ltd. Method of fabricating semiconductor device, and semiconductor device
JP2000216160A (ja) 1999-01-27 2000-08-04 Hitachi Ltd 半導体製造方法、および半導体製造装置
JP2001144090A (ja) * 1999-11-11 2001-05-25 Nec Corp 半導体装置の製造方法
US6348125B1 (en) * 2000-01-17 2002-02-19 Micron Technology, Inc. Removal of copper oxides from integrated interconnects

Also Published As

Publication number Publication date
KR100754757B1 (ko) 2007-09-04
US6451685B1 (en) 2002-09-17
KR20030086994A (ko) 2003-11-12
EP1366513A4 (en) 2008-04-23
JP2004524684A (ja) 2004-08-12
WO2002063672A1 (en) 2002-08-15
US6593656B2 (en) 2003-07-15
CN1531749A (zh) 2004-09-22
US20020106884A1 (en) 2002-08-08
EP1366513A1 (en) 2003-12-03
US20020106890A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
CN1280882C (zh) 用于超大规模集成的多层铜互连的方法
CN1053765C (zh) 导电体连线的制造方法
KR20020074202A (ko) 알루미늄, 구리, 금 및 은 야금을 위한 시드층을 제공하기위한 프로세스
US20050124131A1 (en) Method of forming an inductor with continuous metal deposition
JP3031301B2 (ja) 銅配線構造およびその製造方法
KR20010020476A (ko) 자유 공간 유전체를 이용한 초고속 칩 상호 접속
US6469609B2 (en) Method of fabricating silver inductor
US6853522B2 (en) Microtransformer for system-on-chip power supply
US4872050A (en) Interconnection structure in semiconductor device and manufacturing method of the same
US7592220B2 (en) Capacitance process using passivation film scheme
US20010017402A1 (en) Semiconductor device and method of manufacturing the same
US6992871B2 (en) Microtransformer for system-on-chip power supply
US5814558A (en) Interconnect capacitance between metal leads
US6084290A (en) HSQ dielectric interlayer
US6033982A (en) Scaled interconnect anodization for high frequency applications
EP0343269B1 (en) High performance interconnect system for an integrated circuit
CN1118871C (zh) 形成金属互连的方法
KR100614782B1 (ko) 이중 다마신 구조를 포함하는 집적회로 제조방법 및 집적회로
JP2002231723A (ja) 集積回路の製造における銅被覆のためのバリア層
CN1150325A (zh) 半导体器件中cvd铝膜的制造方法
US5888898A (en) HSQ baking for reduced dielectric constant
US5420068A (en) Semiconductor integrated circuit and a method for manufacturing a fully planar multilayer wiring structure
US20050020059A1 (en) Method for forming aluminum-containing interconnect
KR19990051220A (ko) 플러그 금속막을 구비한 반도체 소자의 금속배선 형성방법
US7049246B1 (en) Method for selective fabrication of high capacitance density areas in a low dielectric constant material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061018

Termination date: 20120204