CN1278971C - 调整玻璃特性温度的方法以及采用该方法制备的玻璃制品 - Google Patents

调整玻璃特性温度的方法以及采用该方法制备的玻璃制品 Download PDF

Info

Publication number
CN1278971C
CN1278971C CNB028176049A CN02817604A CN1278971C CN 1278971 C CN1278971 C CN 1278971C CN B028176049 A CNB028176049 A CN B028176049A CN 02817604 A CN02817604 A CN 02817604A CN 1278971 C CN1278971 C CN 1278971C
Authority
CN
China
Prior art keywords
weight
glass
cao
glass composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028176049A
Other languages
English (en)
Other versions
CN1553882A (zh
Inventor
G·A·皮克拉罗
J·C·拉特利夫
R·马科维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitro SAB de CV
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Publication of CN1553882A publication Critical patent/CN1553882A/zh
Application granted granted Critical
Publication of CN1278971C publication Critical patent/CN1278971C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

提供了一种调整,例如降低玻璃组合物的熔化和/或成型温度和/或液相线温度的方法。所述方法能够在基本上没有改变玻璃的弯曲和退火温度的情况下加以实施。所述方法包括:减少玻璃组合物中MgO的含量,以及增加同样或者大约同样变化量的选自于CaO,R2O(Na2O和K2O),Al2O3和SiO2的至少两种或多种或者所有组分。

Description

调整玻璃特性温度的方法以及采用 该方法制备的玻璃制品
                    发明背景
本申请是2001年2月9日提交的系列号为09/780887的美国专利的部分继续专利申请,所述美国专利的题目是“METHODS OFADJUSTING GLASS MELTING AND FORMING TEMPERATURES WITHOUTSUBSTANTIALLY CHANGING BENDING AND ANNEALING TEMPERATURES ANDGLASS ARTICLES PRODUCED THEREBY”,在此引入该专利作为参考。
1.发明领域
本发明一般涉及具有改善的熔化和精炼特性的玻璃组合物,并且,更具体地,涉及,如果需要,在优选不改变玻璃的弯曲的温度和/或退火粘度的条件下,调整玻璃组合物以降低熔化和/或成型粘度(formingviscosity)和/或脱玻的温度的方法。本发明还涉及由该玻璃组合物制成的玻璃制品。
2.技术考虑
玻璃厂商熔化玻璃原料并且对玻璃熔体进行精炼,形成玻璃制品。例如,在传统的浮法玻璃生产过程中,在窑炉或者熔窑中加热玻璃原料,形成玻璃熔体。将玻璃熔体倒入熔融锡浴中,在该锡浴中,对玻璃熔体进行成型并连续冷却,形成浮法玻璃带。将浮法玻璃带冷却并切割成实心玻璃制品,例如浮法玻璃薄片。根据玻璃制品的要求性能选择所使用的特定原料以及它们的相对含量。示例性玻璃原料组成在美国专利5,071,796;5,837,629;5,688,727;5,545,596;5,780,372;5,352,640;以及5,807,417中进行了公开。此处列举的仅仅是部分组成实例。
正如玻璃制造领域中的普通专业人员将理解的那样,玻璃组合物的性能能够根据它们的温度和粘度特性加以确定。例如,玻璃的“熔化温度”通常被定义为玻璃粘度为100泊时的温度,该温度通常指的是″log 2″粘度(即,玻璃粘度(单位:泊)的对数值为2)的温度。类似地,“成型温度”(log 4粘度)、“弯曲温度”(log 7.6粘度)、“退火温度”(log 13粘度)以及“应变点”(log 14.5粘度)被分别定义为玻璃粘度(单位:泊)的对数值为4,7.6,13和14.5时的温度。“液相线温度”是玻璃开始脱玻时的温度,脱玻会导致玻璃产品出现所不希望的模糊。已知:成型温度与液相线温度之间的差值即为“工作范围”。通常理想地是工作范围大于40(22℃)。
玻璃制作者从玻璃厂商处购买平板玻璃板,并且将这些玻璃板加工成各种商品,例如建筑窗户、镜子、淋浴门、汽车窗、绝缘玻璃单元等。典型地,所述加工包括加热平板玻璃并且将玻璃板弯曲,然后,对玻璃板进行控制冷却,使之退火、回火或者热强化。对于特定类型的玻璃而言,弯曲、回火和/或退火温度都是制作加工过程中的重要经济因素,而且,在没有实质性改变现有制作加工过程的情况下,这些温度都不能轻易改变,而制作加工过程的改变花费大且耗时长。
由于对平板玻璃产品的产量以及质量要求的提高,平板玻璃厂商承受着提高玻璃产量,而同时又降低玻璃制造成本的压力。许多玻璃厂商正在以越来越高的生产量和温度运转玻璃窑炉,以满足增长的玻璃需求。但是,这种对提高玻璃产量的需求已导致几方面问题。例如,传统平板玻璃窑炉的工作温度典型地为2850(1564℃)量级。由于通过窑炉处理更多的玻璃原料,需要更多的燃料来在更短的时间内熔化数量更多的玻璃原料。这一燃料用量的增加显著提高了玻璃薄片或者制品的生产成本,并且造成熔化操作时热效率的下降。此外,在更高的产量和更高的温度下运行熔窑还可能例如通过引起硅砖拱(silica crown)和护壁的热和/或化学损坏,来破坏熔窑中的耐火材料,这可能导致熔窑上部结构发生早期失效或者坍塌以及在玻璃中形成实心缺陷。
应保持采用浮法玻璃工艺制备的玻璃的成型温度充分高,以避免玻璃发生脱玻,从而导致浮法玻璃产品中产生结晶缺陷。对于某些玻璃组合物而言,这种比较高的成型温度可能有问题,这会增大浮法玻璃熔窑部分,包括将玻璃熔体送入熔融锡浴的部分的溶解速度。例如,熔窑的成型耐火材料的工作寿命可能会缩短。
因此,有利的是,向玻璃厂商提供调整玻璃组合物(并且因此调整用于制备该玻璃组合物的原料)的方法,以便提供较低的熔点和/或较低的成型温度和/或较低的液相线温度。前者有助于减少燃料用量和熔窑损坏的可能性,而且同时又能够基本保持与初始玻璃组合物相同的弯曲和退火温度。后者能够延长包括成型耐火材料的熔窑部分的工作寿命。
发明概述
本发明提供一种调整,例如降低玻璃组合物的熔化和/或成型温度和/或液相线温度的方法。所述调整能够避免使玻璃的弯曲和/或退火温度发生显著改变。在一个方面,本发明的涉及含有氧化钙(CaO)和氧化镁(MgO)的玻璃组合物,已发现:增大CaO的量,例如重量百分比,或者减少大致相同数量(重量百分比)的MgO能够使玻璃具有较低的熔化和成型温度,而同时又基本上没有改变玻璃的弯曲和退火温度。而且,已发现:减少玻璃中MgO的含量并且增大CaO,R2O(Na2O和K2O),Al203和/或SiO2中的至少两种或者多种的含量能够降低液相线温度。对上述材料同时进行的减少和增加没有损害玻璃熔体的腐蚀性。此外,根据所要影响的温度是熔化温度、软化温度和/或液相线温度,来确定同时增加上述两种或多种所述材料中哪些材料的含量。例如,可以改变玻璃的软化温度,使不同熔窑的玻璃组合物相互匹配,获得对于任何随后的弯曲和退火操作所需的共同软化点。这时,可以提高CaO和R2O和/或Al2O3和/或SiO2的量,以使所述这些材料中两种或更多种材料的总增加量等于MgO的减少量。
在本发明的另一个方面,一种降低玻璃组合物的熔化和成型温度的方法包括采用其金属离子的场强比Ca++和/或Mg++低(例如Ba++或Sr++)的金属氧化物替代玻璃组合物中的至少一些CaO和/或MgO。
还提供了一种具有对平板玻璃厂商有利的性能的玻璃组合物。在一个实施方案中,所述玻璃组合物的熔化温度为约2570-2590(1410-1421℃),成型温度为1850-1894(1010-1034℃)。该玻璃组合物的弯曲温度为约1300-1350(704-732℃),退火温度为约1016-1020(547-549)。
在本发明的另一个方面,所述玻璃组合物具有较低的液相线温度,但是并未增加碱性组分,因而并未造成组合物的腐蚀性过强。在所述这一方面,所述玻璃组合物的熔化温度为约2510-2650(1376-1454℃),成型温度为约1800-1894(982-1034℃),液相线温度为约1780-1850(971-1010)。该玻璃组合物的弯曲温度可以为约1300-1350(704-732℃),退火温度为约1016-1020(547-549℃)。在这种玻璃组合物中,当玻璃中铁含量较高时,MgO的含量为约1-3%(重量),而当玻璃中铁含量较低时,其含量为约0.01-0.15%(重量)。铁含量较高的玻璃中铁含量至少0.1%,而铁含量较低的玻璃中的铁含量低于0.1%(重量)。当CaO+R2O+Al2O3的量的组合量为约23-29%(重量)时,这种组合能够补偿MgO的减少。
本发明提供以下技术方案:
(1)一种玻璃组合物,其含有:
SiO2                       70-75重量%
Na2O                       12-15重量%
K2O                        0-5重量%
CaO                        >9重量%
MgO                        <4重量%
Al2O3                      0.01-4重量%
SO3                        0-1重量%
Fe2O3                      0-2重量%
其中:
Na2O+K2O                   12-17
CaO+MgO              9-14
CaO+R20+Al2O3      23-29,其中R表示Na和K,
其中,玻璃组合物的熔化温度为1376-1454℃,成型温度为982-1034℃,液相线温度为971-1010℃。
(2)根据上述(1)的玻璃组合物,其中,在低铁含量玻璃中MgO的量为0.01-0.15重量%,所述玻璃的液相线温度为976-994℃。
(3)根据上述(1)的玻璃组合物,其中,液相线温度为976-1007℃。
(4)根据上述(1)的玻璃组合物,其中,CaO+R2O+Al2O3的总量为24-28重量%。
(5)根据上述(1)的组合物,其中,CaO含量范围在大于9至12重量%。
(6)根据上述(1)的组合物,其中,CaO+MgO含量范围为10-13.5重量%。
(7)根据上述(1)的组合物,其中所述玻璃为基础钠钙玻璃组合物,所述钠钙玻璃组合物通过熔化包含二氧化硅、苏打灰、白云石、石灰石和氧化剂的配合料形成,其中石灰石和白云石作为熔剂,帮助二氧化硅溶解并改善玻璃产品的耐久性。
(8)根据上述(7)的组合物,其中所述氧化剂是硝酸盐或硫酸盐。
(9)根据上述(1)的组合物,通过减少玻璃组合物中MgO的量,同时增加基本上同样重量百分数的至少两种选自于CaO,R2O,Al2O3和SiO2的组分,而具有降低的玻璃组合物的熔化、成型或液相线温度,同时保持玻璃组合物的弯曲和退火温度基本不变。
(10)一种玻璃组合物,其含有:
SiO2                        70-75重量%
Na2O                        12-15重量%
K2O                         0-5重量%
CaO                         >9重量%
MgO                         1-3重量%
Al203                       0.01-4重量%
SO3                      0-1重量%
Fe2O3                    至少0.1-2重量%
其中:
Na2O+K2O                 12-17
CaO+MgO                  9-14
CaO+R2O+Al2O           323-29,其中R表示Na和K,
其中,对于高铁含量,所述玻璃组合物的熔化温度为1376-1454℃,成型温度为982-1034℃,液相线温度为971-1010℃。
(11)根据上述(10)的玻璃组合物,其中,液相线温度为976-1007℃。
(12)根据上述(10)的玻璃组合物,其中,CaO+R2O+Al2O3的总量为24-28重量%。
(13)根据上述(10)的玻璃组合物,其中,CaO含量范围在大于9至12重量%。
(14)根据上述(10)的玻璃组合物,其中,CaO+MgO含量范围为10-13.5重量%。
                     附图简述
图1是本发明一种示例性(计算机模拟)的玻璃组合物的选定参量的归一化偏差与CaO%(重量)的关系曲线;
图2是本发明另一种示例性(计算机模拟)的玻璃组合物的选定参量的归一化偏差与CaO%(重量)的关系曲线;以及
图3是在八个月的时间周期中,热效率与所用CaO%(重量)的关系曲线,在所述时间周期中,玻璃生产窑炉根据本发明的特征进行运转。
发明描述
此处在说明书以及权利要求书中使用的所有表示尺寸、特理特性、处理参数、组分的数量、反应条件等的数字,均可以理解为:在任何情况下都可以用术语“大约”来修饰。因此,除非指出正相反,否则,在下面的说明书以及权利要求书中给出的数值均是近似值,它们都可以根据本发明力图获得的要求性能加以改变。至少,在并非试图将等同原则的适用限制在权利要求范围内的条件下,应该依据所报道的主要数字并且通过应用普通的舍入技术来解释每个用数字表示的数值。而且,此处公开的所有范围应该被理解为包括其所包含的任何以及所有子范围(subranges)。例如,所声称的范围“1-10”应该被认为包括处于最小值1和最大值10之间(并且包括此二值在内)的任何以及所有子范围;即,从最小值1或更大数值开始并且以最大值10或者更小数值结束的所有子范围,例如5.5-10。另外,任何涉及数量的数字,除非另有说明,均指的是基于玻璃组合物总重量的“重量百分比”。此处公开的玻璃组合物中铁的总含量,不管铁的实际存在形式如何,均根据标准分析实践,以Fe2O3表示。此处使用的术语“日光控制”和“日光控制特性”均指的是影响玻璃的日光性能例如可见光、IR光或UV光的透射率和/或反射率的特性。
本发明提供一种调整玻璃组合物,以改变,例如降低玻璃组合物的熔化和/或形成和/或液相线温度的方法,该方法能够在不显著改变玻璃的弯曲和/或退火温度的条件下实施。另一种方法是,能够改变特定玻璃组合物的弯曲和/或退火温度,使所述温度适合于范围更广的玻璃组合物。本发明还能够提供具有改善的熔化和形成特性的玻璃组合物,所述玻璃组合物尤其非常适合于浮法玻璃工艺。首先,将讨论实施用于调整上述具体温度的本发明示例性方法,然后讨论本发明的示例性玻璃组合物。
虽然可以采用任何类型的玻璃来实施本发明,但是,本发明尤其非常适合于浮法玻璃组合物,例如钠钙玻璃组合物,含有二氧化硅为主要组分,同时存在其它的熔化和精炼助剂。一种碱性钠钙玻璃组合物由含有二氧化硅(沙子)、苏打灰(一种苏打碳酸盐)、白云石(钙和镁的碳酸盐)、石灰石(钙的碳酸盐)以及氧化剂如硝酸盐或硫酸盐的原料制备而成。石灰石和白云石作为熔剂,帮助二氧化硅溶解并且改善玻璃产品的耐久性。正如本领域的专业人员将意识到的那样,原料各组分的相对量取决于所制备的玻璃的要求组成。
碎玻璃可以在将原料送入熔窑之前或者熔化期间添加至原料中。碎玻璃可以是透明玻璃或者可以包含通常的着色剂。碎玻璃中还可以包含二价或三价的铁,但是对于大部分日光控制玻璃产品而言,希望铁为二价态。
原料中还可以添加影响玻璃最终性能,例如日光特性如红外线(IR)或紫外线(UV)透射率、反射率,或者光学性能,美学性能等的其它材料。这些材料包括元素钛、硒、钴、铈、钒、钼、铬、镍、锰、铜或者它们的组合,以及它们的任何化合物。一般地,随着所述这些材料的量的增加,所获玻璃的可见光、IR和UV透射率减小。另外,某些所述材料可以起玻璃着色剂的作用,而且,可以添加在平板和/或浮法玻璃工业中已知的其它着色剂。
本发明的玻璃组合物可以包括少量的其它材料,例如熔化和精炼助剂、混入材料或杂质,例如元素钠、钾、钙、镁、锰、铝、硫、锶、锆、氯、钴、镍、硒、铬、钼、钡、钛、铈、锡、锌或铁,或者所述元素的化合物。
应该意识到:由于在上述浮法玻璃工艺中玻璃在锡熔体上形成,结果,可测量数量的锡的氧化物可能会进入接触锡熔体一侧的玻璃表面部分。典型地,即使没有有意识地在形成玻璃的原料中添加锡的化合物,一片浮法玻璃中也可能含有SnO2。在与锡接触的玻璃表面以下最初的25微米中,该氧化物的含量可能为0.05-2wt%。SnO2的典型背景浓度可以高达百万分之三十(PPM)。可以认为:在受到锡熔体支撑的玻璃表面约开始的10埃中,锡浓度高可能会稍稍提高此玻璃表面的反射性。但是,对玻璃性能的总体影响很小。
在本发明的实施中,已发现:对于玻璃组合物,特别是钠钙平板玻璃组合物而言,在玻璃组合物中增加选定量(%(重量))的CaO,而同时减少同样选定量(即:重量百分数变化与CaO相同)或者基本相同量的MgO(例如:选定量的最多±5%(重量),例如±5%(重量)或更低,例如±4%(重量)或更低,例如±3%(重量)或更低,例如±1%(重量)或更低,优选低于±1%(重量)),同时保持CaO+MgO总量基本不变(例如,保持该总量在初始总量的±5%(重量)以内,例如在±3%(重量)以内,例如在±1%(重量)以内,优选在低于±1%(重量)以内),能够在不显著改变玻璃的弯曲和退火温度的情况下,降低玻璃的熔化和成型温度。可以认为,而不限制本发明,这一结果至少部分基于如下事实:钙离子的原子场强(通常指定为z/a2,其中,″z″是离子电荷,而″a″是阴离子与阳离子之间的原子核距离)(0.33)低于镁离子的场强(0.45)。据信:与镁的共价键强度相比,钙离子场强较低可导致钙的共价键强度较低,结果,断开钙的共价键需要较小的剪切力,这样就使得玻璃的粘度在熔化和成型温度范围内较低。
在本发明的一个具体实施方案中,已发现:在玻璃组成中,提高CaO相对于MgO的相对量(基于玻璃组合物总重量的%(重量)),而同时保持CaO+MgO的总量(基于玻璃组合物总重量的%(重量))为12-15%(重量),例如12.1-15%(重量),例如12.5-13.0%(重量),例如12.8-12.9%(重量),则能够获得具有比调整之前更低的熔化和成型温度的玻璃,而同时又基本上没有改变玻璃的弯曲和退火温度。此处使用的短语“基本上没有改变弯曲和退火温度”或者“基本上保持弯曲和退火温度”均意味着玻璃的弯曲和退火温度的变化优选不大于约1-10(0.5-5℃),优选不大于约2-5(1-3℃),更优选低于约5(3℃),还要更优选低于约4(2.5℃),甚至更优选低于约3(2℃),并且最优选低于约2(1℃)。
在下面给出的实施例1-5中,对各种示例性玻璃组合物进行了模型化,以研究根据本发明的实践,保持其它玻璃组分其本不变的情况下,改变CaO和MgO的重量百分比的作用。正如本领域的专业人士将意识到的那样,为了形成所述这些玻璃组合物,调整原料组分,例如石灰石和白云石,以获得所要求的玻璃组合物。
基于对玻璃特性的这一新认识,可以制备出与以前实践相比,CaO含量较高而MgO含量较低(重量百分比)的玻璃制品,而同时又不会对玻璃的制造参数,如弯曲和/或退火温度有不利影响。
一个结合了本发明特征的示例性玻璃组合物的特征如下:
              表1
  组分   重量百分数
  SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3SiO2+Al2O3Na2O+K2OCaO+MgOCaO/MgO   70-7512-150-2>9<40-20-10-2≥7012-1512-13.52-5
正如本领域的专业人士将意识到的那样,该玻璃中也可以存在上述的其它传统成分或组分,例如着色剂、日光控制材料、混杂材料等。
在上述示例性组成中,优选CaO高于组合物总重量的9%(重量),并且,优选MgO低于4%(重量)。例如,CaO可以大于或等于10%(重量),例如10-10.5%(重量),例如10.25±0.25%(重量)。MgO可以小于或等于3%(重量),例如2-3%(重量),例如2.5±0.5%(重量)。CaO+MgO的总重量百分数优选约12.8-12.9,例如12.85±0.05。其它的示例性玻璃组合物包括:
                    表2
  组分   组合物1   组合物2
  SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3SiO2+Al2O3Na2O+K2OCaO+MgO   72.5313.790.02≥9.1≤40.030.20.572.5613.8112.85   72.8913.90≥10≤30.030.20.172.91-73.0113.912.69-12.8
优选恰好上面的其它示例性玻璃组合物的熔化温度低于2600(1425℃),例如2500-2600(1370-1425℃),例如2570-2590(1410-1421℃),成型温度低于约1900(1037℃),例如1800-1900(981-1037℃),例如1850-1894(1010-1034℃)。优选玻璃的弯曲温度低于约1400(759℃),例如1300-1400(704-759℃),例如1300-1350(704-732℃),退火温度低于约1050(565℃),例如1010-1050(543-565℃),例如1016-1020(547-549℃)。
在本发明的另一个具体实施方案中,已发现:增加玻璃组合物中选自于CaO,R2O(Na2O和/或K2O),SiO2和/或Al2O3中之一种或多种的相对量(基于玻璃组合物总重量的%(重量)),而同时减少MgO的量,能够降低液相线温度,而又不会损害玻璃熔体的腐蚀性。同时,将下述组分的总含量(基于玻璃组合物总重量的%(重量))保持在如下范围:
             表3
  组分   重量百分数
  SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3SiO2+Al2O3Na2O+K2OCaO+MgOCaO+R2O+Al2O3   70-7512-170-29-12<30.001-40-10-2≥7012-179-1423-29优选24-28)
与表1中的玻璃组合物一样,表3中的玻璃组合物也可以存在上述的其它传统组分或组分,例如着色剂、日光控制材料、混杂材料等。MgO的量一般低于3%(重量),但对于铁含量低的玻璃,如美国专利5,030,594(在此引入作为参考)介绍的玻璃而言,甚至更低。在铁含量低的玻璃中,MgO的量可以为0.01-0.15%(重量)。所述玻璃组合物的液相线温度优选1790-1820(976-994℃)。在铁含量较高,并且铁以任何形式(二价和/或三价)态存在,其含量至少0.1%(重量)的玻璃中,MgO的含量为1-3%(重量)。
具有上述组分含量的玻璃组合物能够使获得的玻璃的液相线温度较低,优选降低20(-11℃),最优选降低30(-17℃)。这可以在仅除该调整之前以外保持足够的熔化和成型温度的同时加以实现。而且,如果需要,该调整可以在不显著改变玻璃的弯曲和退火温度的情况下实施。对于后面这一调整,含量增加的材料基本上是CaO。这里,“基本上”指的是不显著改变玻璃的弯曲和退火温度的CaO量。表3中的玻璃组合物的熔化、成型和液相线温度范围可以如表4所示:
                      表4
  玻璃性能   (℃)   优选的(℃)
  熔化温度成型温度液相线温度   2510-2650(1376-1454)1800-1894(982-1034)1780-1850(971-1010)   2520-2640(1382-1449)1805-1884(985-1029)1789-1845(976-1007)
虽然给出上述的示例性玻璃组合物来描述本发明的一般构想,但是,应该理解:本发明不受这些特定的示例性实施方案限制。
由上述讨论以及下面的实施例,将会意识到:本发明的玻璃组合物能够提供改善的熔化和精炼特性,同时又能够保持基本相同的制备特性。例如,本发明的玻璃组合物具有降低的熔化温度意味着要求更少的燃料来促使玻璃原料组分熔化。另外,根据本发明的玻璃组合物制成的玻璃制品的熔点也比未实施本发明时低。这意味着:当使用本发明的玻璃制品作为玻璃熔窑中的碎玻璃时,需要较少的燃料来熔化碎玻璃,这又进一步减少了燃料需求。而且,玻璃制作者可以采用已有的弯曲和退火装置和方法来使用所述玻璃制品,而不需要制作者改变制作玻璃商品时使用的制作参数,例如弯曲和退火温度。此外,石灰石(CaO源)典型地比白云石(CaO和MgO源)便宜。因此,玻璃组成中增加CaO量而降低MgO量意味着原料中需要更多的石灰石、更少的白云石,这会降低玻璃原料的成本。
在本发明的又一个方面,除了如上所述改变玻璃组合物中的CaO和MgO的相对含量之外,可以采用具有低场强的材料完全或者部分地取代玻璃中的一种或多种组分,例如CaO和/或MgO。例如,CaO和/或MgO可以全部或者部分地用含有场强低于Ca++或Mg++的Ba++或Sr++的材料,例如氧化物来替代。
提出下面的实施例为的是证实本发明的原理。但是,本发明不受所提出的特定实施例所限。
预测性实例1
已开发一种平板玻璃组合物以及它们各个与温度相关的性能的数据库。该数据库主要根据采用浮法玻璃工艺制备的商用平板玻璃组合物建立起来。然后,采用商用的″Data Desk″和″SAS″统计程序对该数据库进行统计模型化,开发出用于各种玻璃特性,例如熔化温度、成型温度、弯曲温度、退火温度、液相线温度和工作范围的运算法则。采用Microsoft Corporation提供的EXCELTM菜单中的″Solver″程序对获得的运算法则进行优化处理。
表6示出了一种假想玻璃组合物中CaO和MgO的量变化时的计算机模拟结果,所述组合物的特点如下:
              表5
  组分   重量百分数
  SiO2Na2OK2OAl2O3SO3Fe2O3SiO2+Al2O3Na2O+K2OCaO+MgO   72.53±0.113.79±0.10.02±010.03±.010.2±.010.5±.0172.56±0.113.81±0.112.85±.05
                                          表6
  Wt.%CaO   Wt.%MgO   熔化温度   成型温度   弯曲温度   退火温度   工作范围(log4-液相线)
  9.209.409.509.599.699.799.9910.2010.3010.4010.50   3.653.453.353.253.153.052.852.642.542.442.34   2594(1423℃)2589(1421℃)2587(1419℃)2585(1418℃)2584(1418℃)2581(1416℃)2577(1414℃)2573(1412℃)2571(1411℃)2569(1409℃)2558(1403℃)   1868(1020℃)1866(1019℃)1865(1018℃)1865(1018℃)1864(1018℃)1863(1017℃)1861(1016℃)1859(1015℃)1859(1015℃)1858(1014℃)1857(1014℃)   1343(728℃)1344(729℃)1344(729℃)1344(729℃)1344(729℃)1344(729℃)1344(729℃)1344°(729℃)1344(729℃)1344(729℃)1344(729℃)   1022(550℃)1022(550℃)1023(551℃)1023(551℃)1023(551℃)1024(551℃)1025(552℃)1026(552℃)1027(553℃)1027(553℃)1028(553℃)   62(34℃)61(34℃)60(33℃)60(33℃)60(33℃)59(33℃)56(31℃)53(29℃)51(28℃)48(27℃)46(26℃)
如表6中计算机模拟结果所示,当组合物中CaO的重量百分数由9.20增至10.50(组合物中CaO+MgO的总重量百分数保持在12.84-12.85),玻璃的熔化温度由2594(1423℃)降至2558(1403℃),成型温度由1868(1020℃)降低至1857(1014℃)。但是,玻璃的弯曲温度仅仅由1343(728℃)变至1344(729℃),玻璃的退火温度由1022(550℃)变至1028(553℃)。
再如表6所示,随着组合物中CaO的重量百分数的增大,玻璃组合物的工作范围变窄。为了防止或者最大程度地限制工作范围变窄,可以依照要求,增加玻璃中Na2O+K2O的重量百分数和/或减少玻璃中SiO2+Al2O3的重量百分数。可以预见:当CaO的重量百分数为9.9-10.5时,上述组分的重量百分数变化0.05-0.1量级,将能够有效地保持工作范围大于50(28℃)。
预测性实例2
对另一种玻璃组成进行了如上所述的计算机模拟。模拟的玻璃特征如下:
               表7
  组分   重量百分数
  SiO2Na2OK2OAl2O3SO3Fe2O3SiO2+Al2O3Na2O+K2OCaO+MgO   72.89±0.113.9±0.100.02±0.010.2±.010.1±.0172.91±0.113.9±0.112.8±.11
表8示出了上述玻璃组成中改变CaO和MgO含量时的计算机模拟结果。
                                                表8
  Wt.%CaO   Wt.%MgO   熔化温度   成型温度   弯曲温度     退火温度    工作范围(log4-液相线)
  9.019.119.209.409.509.609.709.8010.0010.1010.2010.3010.4010.5010.60   3.793.693.593.393.293.193.092.992.792.692.592.492.392.292.19   2595(1424℃)2594(1423℃)2592(1422℃)2589(1421℃)2588(1420℃)2586(1419℃)2585(1418℃)2584(1418℃)2581(1416℃)2579(1415℃)2579(1415℃)2578(1414℃)2577(1414℃)2576(1413℃)2573(1412℃)   1867(1019℃)1867(1019℃)1866(1019℃)1865(1018℃)1864(1018℃)1864(1018℃)1863(1017℃)1862(1017℃)1861(1016℃)1861(1016℃)1860(1016℃)1860(1016℃)1859(1015℃)1859(1015℃)1858(1014℃)   1340(727℃)1340(727℃)1340(727℃)1340(727℃)1340(727℃)1340(727℃)1340(727℃)1340(727℃)1341(727℃)1341(727℃)1341(727℃)1340(727℃)1340(727℃)1340(727℃)1341(727℃)     1015(546℃)1015(546℃)1015(546℃)1016(547℃)1016(547℃)1017(547℃)1017(547℃)1017(547℃)1018(548℃)1019(548℃)1020(549℃)1020(549℃)1021(549℃)1021(549℃)1022(550℃)     65(36℃)64(36℃)64(36℃)61(34℃)60(33℃)58(32℃)57(32℃)55(31℃)51(31℃)48(27℃)47(27℃)46(26℃)46(25℃)44(29℃)36(20℃)
如表8所示,将玻璃中CaO的重量百分数由9.01增大至10.60,同时减少大致同样数量的MgO的重量百分数,可使玻璃的熔化温度降低约22(12℃),成型温度降低9(5℃),而玻璃的弯曲温度仅仅改变1(0.5℃),退火温度仅仅改变7(4℃)
如上所述,如果需要,可以依照要求,增大Na2O+K2O的重量百分数和/或减小SiO2+Al2O3的重量百分数,以便调整工作范围大于50(28℃)。
                  预测性实例3
对另一种玻璃组成进行了如上所述的计算机模拟。模拟的玻璃组合物含有如下组分:
            表9
  组分   重量百分数
  SiO2Na2OK2OFe2O3CaO+MgO   72.8013.900.030.1012.74
计算机模拟结果以图表形式在图1中示出,其中,各参量的变化参照基线值(0数值)以归一化偏差形式给出。所给出的各参量的“0数值”分别是:
熔化温度2600(1427℃)
成型温度1868(1020℃)
弯曲温度1344(729℃)
退火温度1013(545℃)
工作范围81(45℃)
液相线温度1787(975℃)
应变点943(506℃)
如图1所示,当CaO的相对含量增加时,尽管玻璃的熔化温度显著下降,但是,玻璃的弯曲和退火温度基本保持不变。
              预测性实例4
对具有下述组成的另一种玻璃组合物进行了模拟:
           表10
  组分   重量百分数
  SiO2Na2OAl2O3Fe2O3CaO+MgO   72.4113.780.160.4812.84
采用与图1类似方式,将计算机模拟结果作为相对于0值的归一化偏差在图2中示出。各参量的“0数值”分别是:
熔化温度2619(1437℃)
成型温度1870(1021℃)
弯曲温度1335(724℃)
退火温度1015(546℃)
工作范围61(34℃)
液相线温度1809(987℃)
应变点946(508℃)
                           实施例5
除了上述计算机模拟之外,还对本发明进行了试验,以确定实施本发明对传统玻璃熔窑热效率的影响。此处使用的术语“热效率”指的是熔化给定量玻璃原料所需的燃料理论数量(假定:二百五十万个BTU熔化1吨原料,而一百七十万个BTU熔化1吨碎玻璃)除以实际使用的燃料数量。术语“%热效率”是热效率乘以100。所试验的玻璃组成的特征为:
           表11
  组分   重量百分数
  SiO2Na2O+K2OFe2O3CaO+MgO   72.5613.850.4912.89
在玻璃窑炉中将构成该玻璃组成的原料熔化。图3显示当对原料的量进行调整,使玻璃组合物中的CaO的相对量(重量百分数)增加,而同时使玻璃组合物中MgO减少相同的量(重量百分数)时,热效率发生的变化。当CaO的重量百分数由约9.0%增大至约9.4%时,热效率一般由约32.5%提高至约35%。
表12给出了其中MgO含量降低而选自于CaO,R2O,Al2O3,SiO2中一种或多种的量增加的实际和预测性玻璃组成,它们均具有降低的液相线温度。
                        表12组合物以及它们的物理性能
  %氧化物   实施例6   实施例7   实施例8   实施例9   实施例10   实施例11   实施例12
  SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3   69.5214.820.3510.541.942.010.280.50   71.7814.200.409.391.372.060.230.51   72.0014.220.409.431.371.790.230.51   72.2014.450.409.431.141.630.230.52   72.2914.180.349.411.431.540.230.53   71.9314.020.399.292.111.540.200.52   72.1014.310.399.361.451.630.160.52
  总和(SUM)   99.95   99.94   99.95   99.99   99.95   100.00   99.92
  R2O/Al2O3RO/Al2O3CaO/MgOCaO+MgOSiO2/Al2O3SiO2+Al2O3CaO+R2O+Al2O3CaO+R2O+Al2O3/MgO   7.556.215.4312.4834.5971.5327.7214.28   7.098.246.8510.7634.8473.8426.0519.01   8.176.036.8810.8040.2273.7925.8418.86   9.116.488.2710.5744.2973.8325.9122.73   9.437.046.5810.8446.9473.8325.4717.81   9.367.404.4011.4046.7173.4725.2411.96   9.026.636.4610.8144.2373.7325.6917.72
  Log 2(/℃)Log 3.5(/℃)Log 4(/℃)Log 7.6(软化点)液相线()工作范围1(/℃)工作范围2(/℃)   2536/13911963/10731834/100113231843120//49-9/-23   2640/14492021/11051884/102913341805216/10279/26   2631/14442008/10981873/102313351801207/9772/22   2624/14402005/10961872/102213321796209/9876/24   2615/14352003/10951870/102113371803200/9367/19   2621/14382012/11001869/102113431815197/9254/12   2627/14422004/109613351797207/97
                    表12组合物以及它们的物理性能(续)
    %氧化物     实施例13     实施例14     实施例15     实施例16     实施例17     实施例18     实施例19
    SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3     71.7113.730.399.092.701.630.160.52     71.8113.870.399.162.391.630.160.52     71.9014.020.399.222.071.630.160.52     72.0014.160.399.291.761.630.160.52     70.2014.020.5369.862.202.390.2270.496     70.4213.790.5439.872.202.400.2190.500     70.3713.940.5159.932.202.250.2330.498
    总和     99.93     99.93     99.91     99.91     99.929     99.942     99.936
    R2O/Al2O3RO/Al2O3CaO/MgOCaO+MgOSiO2/Al2O3SiO2+Al2O3CaO+R2O+Al2O3CaO+R2O+Al2O3/MgOCaO+R2O+Al2O3/MgO     8.667.233.3711.7943.9973.3424.849.208.48     8.757.093.8311.5543.9973.4425.0510.4815.60     8.846.934.4511.2944.1173.5325.2612.20284.27     8.936.785.2811.0544.1773.6325.4714.47323.60      6.095.054.4812.0629.3772.5926.80612.18296.17     5.975.034.4912.0729.3472.8226.60312.09265.85     6.425.394.5112.1331.2872.6226.63512.11261.35
    Log 2(/℃)Log 3.5(/℃)Log 4(/℃)Log 7.6(软化点)液相线()工作范围1(/℃)工作范围2(/℃)     2637/14472021/110513421822199/93     2635/14462017/110313401815202/94     2632/14442012/110013381808204/96     2629/14432008/109813371802206/97
                            表12组合物以及它们的物理性能(续)
  %氧化物   实施例20   实施例21   实施例22   实施例23   实施例24   实施例25   实施例26
  SiO2Na2OK2OCaOMgOAl2O3SO3Fe2O3   71.0113.580.399.132.921.670.200.79   71.9613.940.389.251.611.550.210.80   73.9716.070.0149.470.090.030.1260.009   73.4115.600.01410.480.090.030.1280.007   72.8916.100.01510.520.090.020.1300.006   72.9415.580.01510.960.100.030.1310.007   73.3915.110.01510.990.100.020.1230.006
  总和   99.69   99.70   99.779   99.759   99.771   99.763   99.754
  R2O/Al2O3RO/Al2O3CaO/MgOCaO+MgOSiO2/Al2O3SiO2+Al2O3CaO+R2O+Al2O3   8.3710.443.1312.0542.5272.6824.77   9.247.015.7410.8646.4373.5125.12   536.13318.67105.229.562465.6774.0025.584   520.47352.33116.4410.572447.0073.4426.124   805.75530.50116.8910.613644.5072.9126.655   519.83368.67109.6011.062431.3379.9726.585   756.25554.50109.9011.093669.5073.4126.135
  Log 2(/℃)Log 3.5(/℃)Log 4(/℃)Log 7.6(软化点)液相线()工作范围1(/℃)工作范围2(/℃)   2595/14242003/109513381845   2599/14261998/109213321794   2568/14091953/10671819/993179623/-5157/69   2557/14031956/10691827/997178938/3167/75   2516/13801931/10551805/985178916/-9142/61   2521/13831935/10571809/98718054/-16130/54   2534/13901936/10581809/9871810-1/-18126/52
注解:粘度和液相线的测量值均为:+/-2(-17℃),而软化点则为+/-1(-17℃)
评价:实施例6的熔化粘度(MV)最低,但其液相线温度比标准值高14,SP比标准值低21。
实施例9的液相线温度最低,但是,其软化点(SP)较低,MP仅比标准值低16。
实施例10具有比标准值低26的液相线温度和低25的MV,以及低7的SP,该值仅仅高2-4。
标准值分别是:Log 2时为2640,Log 3.5时为2021,Log 4时为1886,Log 7.6时为1344,液相线为1829。
R2O=包括Na2O和K2O的碱金属氧化物
RO=包括CoO和MgO的碱土金属氧化物。

Claims (14)

1.一种玻璃组合物,其含有:
SiO2                  70-75重量%
Na2O                  12-15重量%
K2O                   0-5重量%
CaO                   >9重量%
MgO                   <4重量%
Al2O3                 0.01-4重量%
SO3                   0-1重量%
Fe2O3                 0-2重量%
其中:
Na2O+K2O              12-17
CaO+MgO               9-14
CaO+R2O+Al2O3       23-29,其中R表示Na和K,
其中,玻璃组合物的熔化温度为1376-1454℃,成型温度为982-1034℃,液相线温度为971-1010℃。
2.根据权利要求1的玻璃组合物,其中,在低铁含量玻璃中MgO的量为0.01-0.15重量%,所述玻璃的液相线温度为976-994℃。
3.根据权利要求1的玻璃组合物,其中,液相线温度为976-1007℃。
4.根据权利要求1的玻璃组合物,其中,CaO+R2O+Al2O3的总量为24-28重量%。
5.根据权利要求1的组合物,其中,CaO含量范围在大于9至12重量%。
6.根据权利要求1的组合物,其中,CaO+MgO含量范围为10-13.5重量%。
7.根据权利要求1的组合物,其中所述玻璃为基础钠钙玻璃组合物,所述钠钙玻璃组合物通过熔化包含二氧化硅、苏打灰、白云石、石灰石和氧化剂的配合料形成,其中石灰石和白云石作为熔剂,帮助二氧化硅溶解并改善玻璃产品的耐久性。
8.根据权利要求7的组合物,其中所述氧化剂是硝酸盐或硫酸盐。
9.根据权利要求1的组合物,通过减少玻璃组合物中MgO的量,同时增加同样重量百分数的至少两种选自于CaO,R2O,Al2O3和SiO2的组分,而具有降低的玻璃组合物的熔化、成型或液相线温度,同时保持玻璃组合物的弯曲和退火温度基本不变。
10.一种玻璃组合物,其含有:
SiO2                 70-75重量%
Na2O                 12-15重量%
K2O                  0-5重量%
CaO                  >9重量%
MgO                  1-3重量%
Al2O3                0.01-4重量%
SO3                  0-1重量%
Fe2O3                至少0.1-2重量%
其中:
Na2O+K2O             12-17
CaO+MgO              9-14
CaO+R2O+Al2O3      23-29,其中R表示Na和K,
其中,对于高铁含量,所述玻璃组合物的熔化温度为1376-1454℃,成型温度为982-1034℃,液相线温度为971-1010℃。
11.根据权利要求10的玻璃组合物,其中,液相线温度为976-1007℃。
12.根据权利要求10的玻璃组合物,其中,CaO+R2O+Al2O3的总量为24-28重量%。
13.根据权利要求10的玻璃组合物,其中,CaO含量范围在大于9至12重量%。
14.根据权利要求10的玻璃组合物,其中,CaO+MgO含量范围为10-13.5重量%。
CNB028176049A 2001-10-08 2002-10-03 调整玻璃特性温度的方法以及采用该方法制备的玻璃制品 Expired - Lifetime CN1278971C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/974,124 US6797658B2 (en) 2001-02-09 2001-10-08 Methods of adjusting temperatures of glass characteristics and glass articles produced thereby
US09/974,124 2001-10-08

Publications (2)

Publication Number Publication Date
CN1553882A CN1553882A (zh) 2004-12-08
CN1278971C true CN1278971C (zh) 2006-10-11

Family

ID=25521621

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028176049A Expired - Lifetime CN1278971C (zh) 2001-10-08 2002-10-03 调整玻璃特性温度的方法以及采用该方法制备的玻璃制品

Country Status (8)

Country Link
US (1) US6797658B2 (zh)
EP (1) EP1441995B1 (zh)
JP (1) JP2005505483A (zh)
CN (1) CN1278971C (zh)
CA (1) CA2458000C (zh)
ES (1) ES2673820T3 (zh)
MX (1) MXPA04002811A (zh)
WO (1) WO2003031359A2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501123A (ja) * 2002-09-27 2006-01-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 欠陥密度が低減したフロートガラスを作製する方法
US7772144B2 (en) * 2005-08-04 2010-08-10 Guardian Industries Corp. Glass composition for improved refining and method
US7488538B2 (en) * 2005-08-08 2009-02-10 Guardian Industries Corp. Coated article including soda-lime-silica glass substrate with lithium and/or potassium to reduce sodium migration and/or improve surface stability and method of making same
US20070207912A1 (en) * 2006-03-02 2007-09-06 Guardian Industries Corp. Method of making glass including use of boron oxide for reducing glass refining time
WO2008117088A1 (en) * 2007-03-28 2008-10-02 Pilkington Group Limited Glass composition
GB0810525D0 (en) * 2008-06-09 2008-07-09 Pilkington Group Ltd Solar unit glass plate composition
US20100255980A1 (en) 2009-04-03 2010-10-07 Guardian Industires Corp. Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method
WO2011017387A1 (en) * 2009-08-04 2011-02-10 Knauf Insulation Gmbh Flame resistant fiberglass insulation, products, and methods
US20120132269A1 (en) * 2010-05-20 2012-05-31 Cardinal Fg Company Glass substrates for high temperature applications
DE102010023176B4 (de) * 2010-06-09 2013-02-21 Schott Ag Verfahren zur Herstellung von Klarglas oder klarem Ziehglas unter Verwendung eines speziellen Läuterverfahrens
CN102381838B (zh) * 2010-09-06 2015-04-29 信义超薄玻璃(东莞)有限公司 一种脱毛剂在制作玻璃中的应用及采用脱毛剂制作玻璃的方法
CN102718403A (zh) * 2012-05-21 2012-10-10 安徽鑫民玻璃制品有限公司 一种节能环保玻璃及其制备方法
JP2015151282A (ja) * 2014-02-12 2015-08-24 旭硝子株式会社 フロートガラス製造装置、およびフロートガラス製造方法
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
US10479717B1 (en) 2016-10-03 2019-11-19 Owens-Brockway Glass Container Inc. Glass foam
US10364176B1 (en) 2016-10-03 2019-07-30 Owens-Brockway Glass Container Inc. Glass precursor gel and methods to treat with microwave energy
US10427970B1 (en) 2016-10-03 2019-10-01 Owens-Brockway Glass Container Inc. Glass coatings and methods to deposit same
JP7174262B2 (ja) * 2017-10-06 2022-11-17 セントラル硝子株式会社 自動車用合せガラス、及びその製造方法
CN112543747A (zh) * 2018-06-27 2021-03-23 维特罗平板玻璃有限责任公司 高铝低钠玻璃组合物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8728892D0 (en) * 1987-12-10 1988-01-27 Pilkington Plc Producing molten glass
US5071796A (en) 1989-08-14 1991-12-10 Ppg Industries, Inc. Flat glass composition with improved melting and tempering properties
FR2660921B1 (fr) 1990-04-13 1993-11-26 Saint Gobain Vitrage Internal Vitrage en verre teinte notamment pour toit de vehicules automobiles.
US5030594A (en) 1990-06-29 1991-07-09 Ppg Industries, Inc. Highly transparent, edge colored glass
DE69120509T2 (de) * 1990-11-26 1996-10-31 Central Glass Co Ltd Infrarote und Ultraviolette Strahlung absorbierendes Glas
JP2544035B2 (ja) * 1991-08-14 1996-10-16 セントラル硝子株式会社 高含鉄分・高還元率フリットガラス及びそれを用いた青色系熱線吸収ガラス
FR2682101B1 (fr) 1991-10-03 1994-10-21 Saint Gobain Vitrage Int Composition de verre colore destine a la realisation de vitrages.
JP2528579B2 (ja) 1991-12-27 1996-08-28 セントラル硝子株式会社 含鉄分・高還元率フリットガラスおよびこれを用いた紫外・赤外線吸収緑色ガラス
EP0561337A1 (en) * 1992-03-18 1993-09-22 Central Glass Company, Limited Bronze-colored infrared and ultraviolet radiation absorbing glass
EP0565882B1 (en) * 1992-03-19 1997-06-04 Central Glass Company, Limited Neutral gray-colored infrared and ultraviolet radiation absorbing glass
FR2710050B1 (fr) * 1993-09-17 1995-11-10 Saint Gobain Vitrage Int Composition de verre destinée à la fabrication de vitrages.
JP3368953B2 (ja) 1993-11-12 2003-01-20 旭硝子株式会社 紫外線吸収着色ガラス
FR2721599B1 (fr) 1994-06-23 1996-08-09 Saint Gobain Vitrage Composition de verre destinée à la fabrication de vitrages.
JPH08217485A (ja) 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線吸収ガラス
JPH08217486A (ja) 1995-02-20 1996-08-27 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収ガラス
WO1997017303A1 (fr) 1995-11-10 1997-05-15 Asahi Glass Company Ltd. Verre de couleur vert fonce
US5780372A (en) 1996-02-21 1998-07-14 Libbey-Owens-Ford Co. Colored glass compositions
US5688727A (en) 1996-06-17 1997-11-18 Ppg Industries, Inc. Infrared and ultraviolet radiation absorbing blue glass composition
JPH10182183A (ja) 1996-12-19 1998-07-07 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
FR2765569B3 (fr) 1997-07-01 1999-07-16 Saint Gobain Vitrage Composition de verre de type silico-sodo-calcique
US5807417A (en) 1997-07-11 1998-09-15 Ford Motor Company Nitrate-free method for manufacturing a blue glass composition
US6313052B1 (en) * 1998-02-27 2001-11-06 Asahi Glass Company Ltd. Glass for a substrate
JPH11292565A (ja) 1998-04-13 1999-10-26 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
AU755014B2 (en) 1998-08-26 2002-11-28 Nihon Yamamura Glass Co., Ltd. Ultraviolet-absorbing, colorless, transparent soda-lime silica glass
GB0020471D0 (en) 2000-08-19 2000-10-11 Pilkington Plc Glass compositions

Also Published As

Publication number Publication date
CN1553882A (zh) 2004-12-08
WO2003031359A2 (en) 2003-04-17
EP1441995A2 (en) 2004-08-04
US6797658B2 (en) 2004-09-28
US20030054938A1 (en) 2003-03-20
CA2458000C (en) 2010-08-24
EP1441995B1 (en) 2018-04-25
CA2458000A1 (en) 2003-04-17
JP2005505483A (ja) 2005-02-24
MXPA04002811A (es) 2004-07-05
ES2673820T3 (es) 2018-06-25
WO2003031359A3 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
CN1278971C (zh) 调整玻璃特性温度的方法以及采用该方法制备的玻璃制品
CN1154620C (zh) 无碱金属的铝硼硅酸盐玻璃及其用途
CN1276890C (zh) 制备无碱硅铝酸盐玻璃的方法
TWI491571B (zh) 用於顯示器裝置的玻璃板,用於顯示器裝置的平板玻璃及其製造方法
JP2007238398A (ja) ソーダ石灰系ガラス組成物
JP5573157B2 (ja) 基板用ガラス組成物および板ガラスの製造方法
CN1208266C (zh) 玻璃板的淬火方法
EP2604583B1 (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
CN1087612A (zh) 吸收紫外线的绿色玻璃
KR20130016312A (ko) 3디 정밀 성형 및 열적 굽힘을 위한 규산 알루미늄 유리
CN1693247A (zh) 具有高热稳定性的硅铝酸锂平板浮法玻璃
CN1392870A (zh) 形成玻璃纤维的组合物
WO2006080444A1 (ja) ガラスの製造方法
CN1239420C (zh) 钢化窗玻璃中的或与钢化窗玻璃相关的改进以及其中使用的玻璃
JP2019199399A (ja) 板ガラス、その製造方法およびその使用
JP5212102B2 (ja) 無アルカリガラスの製造方法
US6878652B2 (en) Methods of adjusting glass melting and forming temperatures without substantially changing bending and annealing temperatures and glass articles produced thereby
KR100917269B1 (ko) 박막트랜지스터 액정디스플레이 유리기판의 파유리를 원료로한 붕규산염계 장섬유유리의 뱃지조성물
CN1684914A (zh) 用于生产具有减少的缺陷密度的浮法玻璃的装置和方法
JP2009073726A (ja) 天然大理石様結晶化ガラス、天然大理石様結晶化ガラス物品及びその製造方法
CN114014538A (zh) 硅酸盐玻璃及其制备方法和应用
JP7418947B2 (ja) ガラス
JP2009091244A (ja) 無アルカリガラスの清澄方法
CN101080369A (zh) 玻璃组合物及其制造方法
JP4688398B2 (ja) 電灯用ガラス組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170309

Address after: Nuevo Leon, Mexico

Patentee after: VITRO, S.A.B. DE C.V.

Address before: Ohio, USA

Patentee before: PPG INDUSTRIES OHIO, Inc.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191112

Address after: Pennsylvania, USA

Patentee after: VITRO, S.A.B. de C.V.

Address before: Nuevo Leon, Mexico

Patentee before: VITRO, S.A.B. DE C.V.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061011