CN1276495C - 以具超短脉冲宽度的激光脉冲的脉冲串处理存储器链路的激光器系统及方法 - Google Patents

以具超短脉冲宽度的激光脉冲的脉冲串处理存储器链路的激光器系统及方法 Download PDF

Info

Publication number
CN1276495C
CN1276495C CNB018035868A CN01803586A CN1276495C CN 1276495 C CN1276495 C CN 1276495C CN B018035868 A CNB018035868 A CN B018035868A CN 01803586 A CN01803586 A CN 01803586A CN 1276495 C CN1276495 C CN 1276495C
Authority
CN
China
Prior art keywords
laser
link
pulse
laser output
output pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018035868A
Other languages
English (en)
Other versions
CN1394358A (zh
Inventor
Y·孙
E·J·史文森
R·S·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Scientific Industries Inc
Original Assignee
Electro Scientific Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Scientific Industries Inc filed Critical Electro Scientific Industries Inc
Publication of CN1394358A publication Critical patent/CN1394358A/zh
Application granted granted Critical
Publication of CN1276495C publication Critical patent/CN1276495C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • H01L23/5258Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive the change of state resulting from the use of an external beam, e.g. laser beam or ion beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种超短激光脉冲运用非热性的方式来切断传导链路(22),并提供较宽的处理窗口,消除不需要的HAZ效应,并实现较好的切断链路品质。脉冲串的时间区间最好为10ns至500ns范围,而脉冲串中的各激光脉冲的脉冲宽度一般短于25ps、最好短于或等于10ps、而最佳大约为10ps至100fs或者更短。每当激光器系统(60)在各链路(22)上发出脉冲串的激光脉冲,可通过传统激光定位系统(62)而如同单一“脉冲”一样来处理该脉冲串,从而执行进行中的链路去除而无需停机,可运用传统的波长或其谐波。

Description

以具超短脉冲宽度的激光脉冲的脉冲串 处理存储器链路的激光器系统及方法
技术领域
本发明涉及存储器或者其它IC链路的激光处理,特别涉及一种利用具有超短脉冲宽度的激光脉冲的脉冲串(burst)来切断IC链路的激光器系统及方法。
发明背景
在IC元件的制造过程中,其产品经常会由于子表面层或图样的调准变化或微粒状的污染物而招致缺陷。图1、2A和2B显示IC元件或工件12的重复性电子电路10,其一般以行或列来制作,而包含多个重复的冗余电路元件14,诸如存储器单元20的备用的行16与列18。参照图1、2A和2B,电路10同样也是设计来包含电路触点24之间的特定激光可切断电路的链路22,能够将之去除从而断开有缺陷的存储器单元20,其并且例如能够替代存储器装置中的冗余单元26,这种存储器装置例如为DRAM、SRAM或嵌入式存储器等等。类似技术同样用来切断链路,以便规划逻辑产品、门阵列、或者ASIC。
链路22大约为0.5-2微米(μm)厚度,并且以传统大约0.8-2.5μm的链路宽度28、链路长度30,以及与邻近电路或元件34大约2-8μm的元件至元件节距(中央至中央的间距)32来设计,诸如链路结构36。尽管最为普及的链路材料是多晶硅及其类似成分,然而存储器生产厂家最近已经采用各种传导性更好的金属链路材料,这些材料可包含——但不限于——铝、铜、金镍、钛、钨、铂、以及其它金属、金属合金、诸如氮化钛或氮化钽的金属氮化物、诸如硅化钨的金属硅化物、或其它类似金属的材料。
测试电路10、电路元件14或单元20的缺陷,便可将缺陷的位置映射到数据库或程序中。20多年来,传统上都使用1.047μm或1.064μm红外线(IR)激光波长来爆破性地去除电路链路22。传统的存储器链路处理系统对于链路22集中使用具有大约4至20毫微秒(ns)脉冲宽度的单一脉冲激光输出。图2A和2B显示具有光点(spot)尺寸直径40的激光光点38,其照射链路结构36,该链路结构36由定位于硅基底42之上并介于钝化层堆叠成分层之间的一多晶硅或金属链路22所构成,其中该钝化层堆叠包含一覆盖钝化层44(示于图2A而未显示于图2B)以及一下方的钝化层46,该覆盖钝化层44厚度一般为2000-10000埃()。硅基底42吸收相对小比例的IR辐射量,而诸如硅氧化物或硅氮化物的传统钝化层44和46对于IR辐射相对透明。图2C为图2B的链路结构为原有技术的激光脉冲去除链路22之后的片断侧视图。
为避免对基底42的损坏而同时保持足够能量来处理金属或非金属的链路22,Sun等人在美国专利第5,265,114号以及美国专利第5,473,624号中提出在诸如1.3μm的较长激光波长下使用单一的9至25ns的脉冲来处理硅晶片上的存储器链路22。在1.3μm激光波长下,链路材料以及硅基底42之间的吸收对比远大于在传统的1μm激光波长之下。这一技术所提供的甚为宽广的激光处理窗口(process window)以及更好的处理品质已经用于工业中大约三年,且相当成功。
然而,1.0μm以及1.3μm激光波长有一些缺点。进入高度导电性金属链路22的这种IR激光射束12的耦合系数相对较差;用于链路切断的IR激光射束12实际可实现的光点尺寸38则相对较大,并会限制链路宽度28、触点24之间的链路长度30、以及链路节距32的临界尺寸。这一传统的激光链路处理是依靠加热、熔化、及蒸发链路22,并产生一种机械应力增强作用而爆破性地打开重叠的钝化层44。这种传统的链路处理激光脉冲会产生一大的热影响区(heat affected zone,HAZ),其导致包含所切断链路的装置的品质恶化。
热应力爆破特性也在某种程度上与链路22宽度有关。随链路宽度变得窄于1μm,钝化层44的爆破图案便会变得不规则,并导致链路处理质量不稳定,而这是不可接受的,并会限制电路密度。因此,热应力特性会限制链路22的临界尺寸并且妨碍更大的电路密度。
近来Sun等人的美国专利第6,057,180号以及Swenson等人的美国专利第6,025,256号说明了使用紫外线(UV)激光器输出并通过不同的材料去除机制来切断或者暴露“开启”重叠钝化层的链路的方法,其具有射束光点尺寸较小的益处。然而,通过这种UV激光脉冲所进行的链路本身的去除则需要吸收UV的钝化材料,而且其仍是一“热(thermal)”处理。
Mourou等人的美国专利第5,656,186号揭示了一种通过高重复频率的超快速激光脉冲的激光来引发断裂(breakdown)及烧蚀(ablation)的通用方法。
Miyauchi等人的美国专利第5,208,437号揭示了使用一种次毫微秒(subnanosecond)脉冲宽度的单一脉冲来处理链路的方法。
Rieger等人的美国专利第5,742,634号揭示了一种具有二极管抽运(diod pumping)的同时Q开关及锁模(rnode-locked)钕(Nd)激光器装置。该激光器会发射一连串的脉冲,各脉冲在100ns时间区间外封(envelop)下具有60至300微微秒(ps)持续时间。具有60至300ps持续时间的脉冲会表现出材料处理的“热”机制。
发明概要
本发明的一个目的是提供一种用来改善IC链路的激光处理质量的方法或装置。
本发明的另一目的为利用超短激光脉冲的脉冲串来处理链路,而其中的超短激光脉冲具有与重叠钝化层以及链路材料的非热交互作用(nonthermal interaction)。
本发明的又一个目的为利用超短激光脉冲的脉冲串来处理进行中的链路(links on-the-fly)。
本发明利用超短激光脉冲的脉冲串来切断IC链路,替代使用传统链路处理系统的单一的多毫微秒激光脉冲。脉冲串的时间区间最好在10至500ns范围内;并且脉冲串内各激光脉冲的脉冲宽度通常短于25ps,最好短于或等于10ps,而最佳则大约为10ps至100飞秒(femtosecond,fs)。由于脉冲串内的各激光脉冲为超短,因此其与目标材料(钝化层以及金属链路)的交互作用并非热力性质。每个激光脉冲会脱落大约100-2000的薄的子层(sublayer)材料,视激光能量、激光波长、以及材料类型而定,直到其链路被切断为止。脉冲串中超短激光脉冲的数量受到控制,使得最后一个脉冲将链路底部清除而留下下方钝化层以及基底完好无损。由于脉冲串的整个区间在10ns至500ns的范围内,因此可将脉冲串(burst)视为传统链路切断激光定位系统所用的单一“脉冲”。因此,激光器系统仍然能够处理进行中的链路,亦即当激光器系统对各链路发出激光脉冲的脉冲串时,其定位系统不必停止移动。
除了超短脉冲激光处理的“非热性(nonthermal)”以及良好控制性之外,最常见的超短脉冲激光源在大约800nm的波长下进行发射,并利于提供小尺寸的激光光点。最好使用二极管抽运(pumped)的、或二极管抽运固态连续波(continuous wave,CW)绿光抽运(green pumped)的、锁模的固体激光器而在传统的波长或其谐波上产生所述超短脉冲。
由以下参照附图而作的优选实施例的详细说明,即明显易见本发明的其它目的及优点。
附图简述
图1是DRAM的部份示意图,显示在一般电路单元的备用行中的可规划链路(programmable link)的冗余布局。
图2A是传统大型半导体链路结构的片断侧视图,该结构接收由原有技术的脉冲参数所描述的激光脉冲。
图2B是图2A的链路结构以及激光脉冲的片断俯视图,连同相邻的电路结构。
图2C是图2B的链路结构的片断侧视图——在该链路为原有技术的激光脉冲所去除之后。
图3显示超短激光脉冲的脉冲串的范例性功率对时间关系图,其中该超短激光脉冲根据本发明而用以切断链路。
图4显示另一超短激光脉冲的脉冲串的范例性功率对时间关系图,其中该超短激光脉冲根据本发明而用以切断链路;
图5显示又一超短激光脉冲的脉冲串的范例性功率对时间关系图,其中该超短激光脉冲根据本发明而用以切断链路。
图6为一种优选UV激光器系统实施例的部分示意简图,该系统包含一个工件定位器,其与用于实现本发明的方法的一种激光处理控制系统相配合。
图7是可根据本发明而使用的一种激光器配置的示意图。
图8是可根据本发明而使用的另一种激光器配置的示意图。
优选实施例详述
图3至5显示范例性超短激光脉冲52a、52b、52c(通称为激光脉冲52)的脉冲串50a、50b、50c(统称为脉冲串50)的功率对时间关系图,其中的超短激光脉冲根据本发明而用来切断链路22。各脉冲串的时间区间最好小于50ns,而在10ns至200ns的范围中更佳。脉冲串50内的各激光脉冲52的脉冲宽度通常短于25ps,最好短于或等于10ps,而最佳则为约10ps至100fs或者更短。由于认为以此激光脉冲52所进行的材料处理是一种非热处理,而不像以较长脉冲宽度的激光脉冲所进行的处理材料,因此激光脉冲宽度最好短于10ps。
在激光脉冲52的脉冲串50中,各激光脉冲52会去掉需要去除的钝化层44和/或链路材料的一小部份或子层,而在链路结构36或IC装置12中不产生大量的热。激光光点最好聚焦于重叠的钝化层44。由于其极短的脉冲宽度,各脉冲会呈现出高激光能量密度,其在传统的透明钝化材料中导致介电质断裂。每个激光脉冲都断开重叠钝化层44中大约1000-2000(举例来说)的薄子层,直到重叠的钝化层44去除为止。连续的超短激光脉冲通过类似的逐层方式而烧蚀金属链路22。对传统的不透明材料而言,各超短脉冲会烧蚀具有相当于所用波长下材料吸收深度的厚度的子层。在接近UV、可视、以及近IR的波长下,对大多数金属而言,每个单一超短激光脉冲的吸收或烧蚀(ablation)深度大约为100-300。
根据激光器输出的波长以及链路材料的特性,通过选择每个激光脉冲52的能量以及每个脉冲串中激光脉冲的数量,即可准确地计算并控制施加到链路22的脉冲52的切断深度,从而清除任何给定链路22的底部,而留下下方的钝化层46以及基底42完好无损。因此,即使是在使用接近UV范围的激光波长的时候,实际上消除了损坏硅基底42的危险。尽管在许多环境中,每个超短激光脉冲52的能量的宽广范围仍会产生大体相似的切断深度。在优选实施例中,每个超短激光脉冲52会烧蚀在光点尺寸40内的材料的大约0.02-0.2μm的深度。一般而言,在高于约1kHz、而最好为1kHz至20kHz或者更高的频率下,所集中的光点尺寸40的优选烧蚀参数包括每个脉冲串的激光能量在0.01与10mJ之间。优选的脉冲串50包含2至50个超短脉冲52,4至20个超短脉冲52则更好。
可对超短脉冲52的脉冲串50的能量密度分布(profile)加以控制,使之优于传统单一的多毫微秒激光脉冲的能量密度分布。参照图3,各超短脉冲52a能够以相同的能量密度来产生,从而为脉冲脉冲串50a提供一致的“平顶”的能量密度分布。能够以具有电光(electro-optic,E-O)或声光(acousto-op,A-O)的光闸以及光学放大器(图8)的锁模激光器来实现脉冲串50a。
参照图4,可调整脉冲52b的能量密度,使得脉冲52b的脉冲串50b能够模仿传统的多毫微秒激光脉冲的能量密度分布。可通过同时Q开关以及锁模激光器系统60(图6)来实现脉冲串50b。
参照图5,脉冲串50c描述各种不同能量密度分布的其中之一,其可便利地切断具有不同类型与厚度的链路或钝化材料的链路结构36的链路22。图中未示的另一种可替代的脉冲串50具有高能量密度的起始脉冲52以及下降能量密度的后沿脉冲52。脉冲串50的这种能量密度分布对于清除链路的底部而不冒损坏特别灵敏的工件的危险是有用的。通过规划供给E-O或A-O元件的电压或者通过利用及改变起偏器(polarizer)的回转,即可实现脉冲串50c的成形。
最好每个脉冲串50切断单一的链路22。在大多数应用中,各脉冲串50的能量密度分布相同。然而,当工件12包含不同类型(不同材料或不同尺寸)的链路22时,随定位系统62(图6)扫描工件12,可应用各种能量密度分布(高度与长度以及形状)。
由以上所述可知,较之传统的链路处理,以超短脉冲52的脉冲串50所进行的链路处理提供了较为宽广的处理窗口以及所切断的链路的较佳品质。脉冲串50中脉冲52的通用性允许针对特定的链路特性而作更好的修整(tailoring)。除了超短激光处理“非热”以及控制良好的性质之外,最常用的超短激光源大约为800nm波长,并可便利地产生小尺寸的激光光点。
材料与脉冲52的交互作用的大体非热性允许将IR激光输出用于较窄的链路22之上,而不会产生不规则的不可接受的爆破图样。短于IR的激光波长同样也可用于所述处理,并具有附加的更小激光射束光点尺寸的优点,因而有利于更窄和更密集的链路的处理。这一较佳的链路去除解决方案使链路22得以更加紧密地定位,从而增加了电路密度。尽管链路结构36可具有传统尺寸,然而举例来说,链路宽度28仍可小于或者等于大约1.0μm。同样,由于可对脉冲52的脉冲串50加以修整,若所需要的并非是典型的0.5μm的高度,即可修改链路22之上或之下的钝化层44的高度。此外,以脉冲串50的超短脉冲52所处理的链路22之间的中心至中心节距32可实际上小于传统射束切断脉冲所切除的链路22之间的节距32。例如,链路22可与其它链路22或邻近电路结构34相距2.0μm或者更近。
图6显示简化激光器系统60的优选实施例,其包括用来产生脉冲串的超短激光脉冲的CW锁模激光器64,用以根据本发明而实现所需的链路切断。从大约200nm与1320nm的优选激光波长包含(但不受限于)1.3、1.064或1.047、1.03-1.05、0.75-0.85μm或者来自Nd:YAG、Nd:YLF、Nd:YVO4、Yb:YAG或Ti:蓝宝石激光器(Sapphire laser)64的第二、第三、第四或第五次谐波。技术人员会认识到,可购得和使用发射其它适当波长的激光。
由于可去除倍频元件来消除谐波转换,因而在此将激光器系统60模式化为第二次谐波(532nm)的Nd:YAG激光器64,此仅为范例之用。Nd:YAG或者其它的固体激光器器64最好通过激光二极管70或者激光二极管抽运的固体激光器所抽运(pumped),其放射线72则通过透镜组件74而聚焦于激光共振器82。激光共振器82最好包含一个激光器(lasant)84——其最好具有短的吸收长度,以及沿光轴90而位于聚焦/交叠镜(focusing/folding mirror)76和78之间的Q开关86。镜78将光线反射至镜76并且反射至半导体可饱和吸收器镜元件92,以便使激光器64锁模。镜76将光线反射至镜78并且反射至部份反射的输出耦合器94,而输出耦合器94则使共振器的输出96沿光轴98传播。谐波转换加倍元件(doubler)102最好置于共振器82的外部,以便将激光射束的频率转换成为二次谐波的激光输出104。技术人员会认识到,其中使用了对于UV的谐波转换,诸如光闸或极化状态改变器和起偏器的E-O元件106位于谐波转换装置之前。技术人员会认识到,由于超短激光脉冲的宽度,易于实现较高的激光强度、较高的激光频率转换效率。
技术人员会认识到,使用众所周知的谐波转换技术——利用Nd:YAG(532nm、355nm、266nm)和Nd:YLF(524nm、349nm、262nm)的第二、第三或第四谐波的其中任一谐波、或者Ti:蓝宝石(375-425nm)的第二次谐波,可较佳地处理特定类型的链路22。谐波转换处理说明于V.G.Dmitrier等人所著的“非线性光学晶体手册(Handbook ofNonlinear Optical Crystals)”(pp.138-141,Springer-Verlag,纽约,1991年ISBN 3-540-53547-0)。
一种范例性的Nd:YAG或Nd:YLF激光器64为瑞士苏黎士的Time-Bandwidth所售的JAGUARTM。JAGUAR-QCW-1000TM提供了在大于1mJ的脉冲能量下具有高达8-10ps脉冲宽度的脉冲,重复频率为0-100Hz。JAGUAR-QCW-250TM提供了在大于250μJ的脉冲能量下具有高达25或30ps脉冲宽度的脉冲,重复频率为0-5kHz。
另一种范例性的激光器64可以是锁模Ti-蓝宝石超短脉冲激光器,其激光波长处于近IR范围内,例如750-850nm。Spectra Physics制出了一种称为MAI TAITM的Ti-蓝宝石超快速激光器,其提供在750-850nm范围内的1W功率下具有100飞秒(fs)脉冲宽度的超短脉冲52,重复频率为80MHz。这一激光器64通过二极管抽运的倍频的固体绿色YAG激光器(5W或10W)来抽运。
图7显示激光器系统108简化的可替代配置的方块图,用于实施本发明。技术人员会认识到,对谐波转换的绿色及更长波长的光线而言,E-O元件106最好位于谐波转换的转换器102之后。
图8显示激光器系统110另一个简化的可替代配置的方块图,以便使用二次共振器或放大器112。
激光输出104(无论其波长)可通过各种位于射束路径120上的传统光学组件116和118来处理。组件116和118可以包含射束扩展器(beam expander)或其它激光光学组件,以便使激光输出104准直而产生具有有用传播特性的射束。可选用一个或多个射束反射镜122、124、126与128,其在所需的激光波长下为高反射性,而在不用的波长下则为高透射性,所以只有所需的激光波长会到达链路结构36。聚焦透镜130最好使用F1、F2或F3的单一组件或多重组件的透镜系统,其将准直的脉冲激光器系统输出140聚焦而产生聚焦的光点尺寸40,该光点尺寸40在直径上最好小于2μm或者更小,视波长而定。
一种优选的射束定位系统62详细说明于Overbeck的美国专利第4,532,402号。射束定位系统62优选使用一种激光控制器160,其控制至少二个平台或层级(堆叠的或分轴的)并与反射器122、124、126和128配合,将激光器系统输出140对准并聚焦于IC装置或工件12上的所要加工的激光链路22上。射束定位系统60基于所提供的测试或设计数据,允许在相同或不同工件12上的链路22之间进行快速去除,从而产生极佳的链路切断操作。
位置数据最好通过激光器系统输出140的超短脉冲52的脉冲串50来导引聚焦的激光光点38,使其在工件12上指向链路结构36,从而去除链路22。激光器系统60最好以超短激光脉冲52来切断每个进行中的链路22,而并不在任何一链路22上停止射束定位系统62,从而保持高生产量。由于脉冲串50小于500ns,因此如同单一的多毫微秒脉冲一般,通过定位系统62而处理各脉冲串50。
激光控制器160根据链路结构36的特性,提供关于脉冲52所需的能量与脉冲宽度、脉冲52的数目、和/或脉冲串50的形状与时间区间的指令。激光控制器160会受时序数据影响,该时序数据使得激光器系统60的发射同步于平台的移动,例如描述于Konecny的美国专利第5,453,594号的“辐射射束位置与放射协调系统(Radiation BeamPosition and Emission Coordination)”。另外,技术人员会认识到,激光控制器160可经由鲍克尔盒(Pockels cell)或声光元件106用于激光能量的额外空穴(extracavity)调制,和/或可以有所选择地指示一个或多个控制Q开关86或E-O元件106的子控制器164。射束定位系统62可替代地或者额外地利用说明于Culter等人的美国专利第5,751,585号所描述的改良或射束定位器,该专利转让给本专利申请的受让人。同样也可使用其它固定激光器头(fixed head)、如检流计(galvanometer)的快速定位器头、压电特性或音圈控制镜(voice coil-controlled mirror)、或线性马达驱动的传统定位系统或是由美国奥勒岗州波特兰市的ElectroScientific lndustries(ESl)公司所制造的9300或9000型号系列中使用的定位系统。
对本领域技术人员而言,显而易见,可就本发明上述实施例的细节进行许多改变而不违反其根本原则。因此,本发明的范围应该仅由所附权利要求书范围所确定。

Claims (69)

1.一种切断导电性冗余存储器或集成电路链路的方法,该导电性冗余存储器或集成电路链路介于在基底上所制作电路中的各对导电性触点之间,该方法包括:
对一射束定位器提供代表该电路中导电性冗余存储器链路的位置的射束定位数据,其中所述链路具有相应的链路宽度;
在第一时间区间中,由一激光器产生有至少二个激光输出脉冲的第一组的第一脉冲串,在该第一组中的每个激光输出脉冲具有短于25微微秒的脉冲宽度持续时间和大于所述链路宽度的光点尺寸,并且该第一脉冲串具有短于500毫微秒的脉冲串宽度持续时间;
响应于所述射束定位数据,引导所述激光输出脉冲的第一组的第一脉冲串照射介于第一触点之间的第一位置上的第一导电性冗余存储器链路,来自所述第一组的至少二个激光输出脉冲去除该第一导电性链路的不同部分,且所述第一脉冲串切断介于所述第一触点之间的该第一导电性链路;
在第二时间区间中,由一激光器产生有至少二个激光输出脉冲的第二组的第二脉冲串,该第二时间区间按时间顺序不同于所述第一时间区间,在该第二组中的每个激光输出脉冲具有短于25微微秒的脉冲宽度持续时间和大于所述链路宽度的光点尺寸,且所述第二脉冲串具有短于500毫微秒的脉冲串宽度持续时间;
响应于所述射束定位数据,引导所述激光输出脉冲的第二组的第二脉冲串照射介于第二触点之间的第二位置上的第二导电性冗余存储器链路,该第二位置不同于所述第一位置,来自所述第二组的至少二个激光输出脉冲去除该第二导电性链路的不同部分,且所述第二脉冲串切断介于所述第二触点之间的该第二导电性链路。
2.如权利要求1的方法,其中所述激光输出脉冲具有短于10微微秒的脉冲宽度持续时间。
3.如权利要求2的方法,进一步包括:
在大于10MHz的重复频率下,产生所述第一和第二组的激光输出脉冲。
4.如权利要求2的方法,其中所述第一和第二组的激光输出脉冲具有短于1微微秒的脉冲宽度持续时间。
5.如权利要求2的方法,其中每个链路形成一链路结构的一部分,该链路结构包含重叠该链路的一钝化层。
6.如权利要求5的方法,其中该钝化层通过所述激光输出脉冲和所述钝化层之间较少的热交互作用而去除。
7.如权利要求5的方法,其中来自每个所述组的至少一个所述激光输出脉冲去除该钝化层的一0.01-0.2微米的子层。
8.如权利要求2的方法,进一步包括:
在大于1kHz的重复频率下,产生所述第一和第二脉冲串。
9.如权利要求2的方法,其中来自每个所述组的至少一个激光输出脉冲去除该链路的一0.01-0.03微米的子层。
10.如权利要求9的方法,其中至少一个所述链路包含铝、铬化物、铜、掺杂多晶硅、二硅化物、金、镍、镍铬合金、铂、聚合物、氮化钽、钛、氮化钛、钨、或者硅化钨。
11.如权利要求2的方法,其中该链路通过所述激光输出脉冲和该链路之间较少的热交互作用而去除。
12.如权利要求2的方法,进一步包括在大约200nm以及1320nm之间的波长下,产生所述第一和第二组的激光输出脉冲。
13.如权利要求2的方法,进一步包括由一连续波抽运的锁模的固体激光器来产生所述第一与第二组的激光输出脉冲。
14.如权利要求2的方法,进一步包括切断该链路而不损伤其下方的所述基底。
15.如权利要求2的方法,其中所述第一与第二脉冲串被控制成具有相同的能量密度分布。
16.如权利要求2的方法,其中所述第一组中的各激光输出脉冲被控制成具有相同的强度。
17.如权利要求2的方法,其中所述第一组中的至少二个激光输出脉冲具有不同的强度。
18.如权利要求2的方法,其中使所述第一与第二脉冲串成形,而与传统的多毫微秒链路处理激光脉冲的能量密度分布相匹配。
19.如权利要求2的方法,其中该射束定位器提供所述基底与所述输出脉冲的脉冲串所造成的激光光点之间的连续相对移动,从而使得所述链路在进行中得到处理。
20.如权利要求2的方法,其中该链路具有小于1微米的宽度。
21.一种选择性地从选定链路结构的位置去除目标材料的方法,每个所选定链路结构包含选定要去除的导电性冗余存储器链路或集成电路链路,每个选定的导电性链路具有链路宽度并介于一对相关的导电性触点之间,其中所述导电性触点是在基底上或一可选的下方钝化层上制成的,与所述链路结构相关的该基底和该下方钝化层的特征在于各自的激光损伤阈值,其中该下方钝化层介于该导电性链路与该基底之间,所述方法包括:
对一射束定位器提供代表选定导电性链路的一个或多个位置的射束定位数据,该射束定位器响应于该射束定位数据而产生激光光点位置对于该基底的相对运动;
对每个选定链路结构产生一组二个或更多个的时间上错开的激光输出脉冲,在所述组中的每个所述激光脉冲的特征在于其激光光点在该激光光点位置具有光点尺寸和能量特性曲线,该光点尺寸大于所述链路宽度而该能量特性曲线低于任何下方的钝化层和所述基底的对应的激光损伤阈值;
协调激光输出脉冲的产生与该射束定位器所产生的相对运动,使得该相对运动大致连续而在所述组中的激光输出脉冲依次照射所述选定链路结构,从而在所述组中的每个激光输出脉冲的激光光点将所述链路宽度包含在内,而所述组除去在所述选定链路结构的位置上的目标材料但不招致对任何下方钝化层或所述基底的损伤。
22.如权利要求21的方法,进一步包括用带有一额外空穴可选选通装置的、连续波抽运的锁模的固体激光器来产生所述激光输出脉冲。
23.如权利要求22的方法,进一步包括利用一放大器装置来放大所述激光输出脉冲。
24.如权利要求21的方法,进一步包括用同时Q开关和锁模的固体激光器来产生所述激光输出脉冲。
25.如权利要求21的方法,其中所述目标材料包括导电性链路材料且所述组切断所选定的链路材料。
26.如权利要求25的方法,其中通过在至少一个所述激光输出脉冲和所述导电性链路材料之间较少的热交互作用来除去所述导电性链路材料。
27.如权利要求25的方法,其中所述导电性链路材料为一覆盖钝化层所覆盖,且所述组除去该覆盖钝化层并切断该导电性链路材料。
28.如权利要求21的方法,其中所述导电性链路材料包括铝、铬化物、铜、掺杂多晶硅、二硅化物、金、镍、镍铬合金、铂、聚合物、氮化钽、钛、氮化钛、钨或者硅化钨。
29.如权利要求21的方法,其中至少一个所述激光输出脉冲除去深度为0.01-0.03微米的所述导电性链路材料。
30.如权利要求21的方法,其中所述目标材料包括覆盖所选定链路的覆盖钝化层。
31.如权利要求30的方法,其中所述激光输出脉冲组通过直接激光烧蚀来除去所述覆盖钝化层。
32.如权利要求30的方法,其中至少一个所述激光输出脉冲通过直接激光烧蚀来除去深度为0.01-0.2微米的所述覆盖钝化层。
33.如权利要求30的方法,其中每个所述激光输出脉冲的脉冲宽度短于10微微秒,且其中至少一个所述激光输出脉冲通过直接激光烧蚀来除去深度为0.01-0.2微米的所述覆盖钝化层。
34.如权利要求30的方法,其中通过在至少一个所述激光输出脉冲和所述覆盖钝化层之间较少的热交互作用来除去所述覆盖钝化层。
35.如权利要求21的方法,其中每组所述激光输出脉冲具有短于300毫微秒的持续时间。
36.如权利要求21的方法,其中产生至少两组所述激光输出脉冲,用以在大于10kHz的设定重复频率下对准相应选定的导电性链路而除去目标材料。
37.如权利要求21的方法,其中每个所述激光输出脉冲具有在大约100飞秒与25微微秒之间的脉冲宽度。
38.如权利要求35的方法,其中每个所述激光输出脉冲具有在大约100飞秒与25微微秒之间的脉冲宽度。
39.如权利要求21的方法,其中每个所述激光输出脉冲具有短于10微微秒的脉冲宽度。
40.如权利要求35的方法,其中每个所述激光输出脉冲具有短于10微微秒的脉冲宽度。
41.如权利要求21的方法,其中每个所述激光输出脉冲具有大约0.01微焦耳-10毫焦耳的激光能量。
42.如权利要求21的方法,其中所述组中的每个所述激光输出脉冲被控制成具有相同的激光能量。
43.如权利要求21的方法,其中所述组中的每个所述激光输出脉冲具有不同的激光能量。
44.如权利要求21的方法,进一步包括产生波长在大约200nm与1320nm之间的所述激光输出脉冲。
45.一种利用激光输出来切断导电性链路的激光器系统,该导电性链路位于基底上或钝化层上所制作电路中的相应的各对导电性触点之间并且具有相应的链路宽度,所述激光器系统包括:
一抽运源,用以提供抽运光;
一激光共振器,适用于接收该抽运光并且发射出激光脉冲,每个该激光脉冲都具有短于25微微秒的脉冲宽度持续时间,该激光共振器包含一固体激光器;
一锁模装置,用于将该激光共振器锁模;
一脉冲串选通装置,用于将激光脉冲选通成为离散的激光输出的脉冲串,使得每个脉冲串都包含至少二个激光脉冲并具有短于500毫微秒的脉冲串宽度持续时间;
一射束定位系统,用于改变介于所述链路与上述激光输出所造成的激光光点之间的相对位置;及
一激光器系统控制器,用于协调该射束定位系统与该脉冲串选通装置,使得每个脉冲串中各激光脉冲的激光光点在空间上相邻并且实际上重叠,所述激光光点所具有的光点尺寸大于所述链路宽度,且各脉冲串照射单一链路而去除目标材料。
46.一种利用激光输出从选定链路结构的位置除去目标材料的激光器系统,每个选定链路结构包含选定要去除的导电性冗余存储器链路或集成电路链路,每个所选定的导电性链路具有链路宽度并介于在基底上制成的一对相关的导电性触点之间,该基底和一可选的下方钝化层的特征在于激光损伤阈值,其中该下方钝化层介于该导电性链路与相关于所述链路结构的该基底之间,所述激光器系统包括:
一抽运源,用以为激光共振器提供抽运光;
一激光共振器,适用于接收该抽运光并且发射出激光脉冲;
一锁模装置,用于将该激光共振器锁模;
一可选的选通装置,用于将激光脉冲选通成为离散的各组激光输出,使得每组都包含至少二个时间上错开的激光输出脉冲,在一组中的每个所述激光输出脉冲的特征在于,其激光光点具有光点尺寸以及在所述目标材料上的激光光点位置上的能量特性曲线,该光点尺寸大于所述链路的宽度而该能量特性曲线低于所述基底以及任何下方钝化层的对应的激光损伤阈值;
一射束定位系统,其响应于代表选定链路的一个或多个位置的射束定位数据而产生所述激光光点的位置对于所述基底的相对运动;及
一激光器系统控制器,用于协调该脉冲串选通装置的操作与上述由该射束定位系统所产生的相对运动,使得该相对运动大致连续而在所述组中的激光输出脉冲依次照射所述选定链路结构,从而在所述组中的每个激光输出脉冲的激光光点将所述链路宽度包含在内,而且所述组除去在所述选定链路结构的位置上的目标材料但不招致对所述基底或任何下方钝化层的损伤。
47.如权利要求46的激光器系统,其中该抽运源适用于连续波抽运,该激光共振器包含一固体激光器,并且该可选的选通装置位于该激光共振器的外部。
48.如权利要求46的激光器系统,进一步包括一放大器装置,用于放大所述激光输出脉冲。
49.如权利要求46的激光器系统,其中该激光共振器包含一固体激光器,并且该可选的选通装置包含一位于该激光共振器内的Q开关以同时用锁模和Q开关方式操作所述系统。
50.如权利要求46的激光器系统,其中该目标材料包括导电性链路材料且所述组切断所选定的导电性链路。
51.如权利要求50的激光器系统,其中该导电性链路材料通过在至少一个所述激光输出脉冲和该导电性链路材料之间较少的热交互作用而除去。
52.如权利要求50的激光器系统,其中该导电性链路材料为一覆盖钝化层所覆盖,且所述组除去该覆盖钝化层并切断所述导电性链路。
53.如权利要求46的激光器系统,其中所选定的导电性链路包含铝、铬化物、铜、掺杂多晶硅、二硅酸盐、金、镍、镍铬合金、铂、聚合物、氮化钽、钛、氮化钛、钨、或者硅化钨。
54.如权利要求46的激光器系统,其中至少一个所述激光输出脉冲除去深度为0.01-0.03微米的所述导电性链路材料。
55.如权利要求46的激光器系统,其中该目标材料包括覆盖在所述导电性链路上的覆盖钝化层。
56.如权利要求55的激光器系统,其中各所述组的激光脉冲通过直接激光烧蚀来除去所述覆盖钝化层。
57.如权利要求55的激光器系统,其中至少一个所述激光输出脉冲通过直接激光烧蚀来除去深度为0.01-0.2微米的所述覆盖钝化层。
58.如权利要求55的激光器系统,其中每个所述激光输出脉冲的脉冲宽度短于10微微秒,且其中至少一个所述激光输出脉冲通过直接激光烧蚀来除去深度为0.01-0.2微米的所述覆盖钝化层。
59.如权利要求55的激光器系统,其中通过在至少一个所述激光输出脉冲和所述覆盖钝化层之间较少的热交互作用来除去所述覆盖钝化层。
60.如权利要求46的激光器系统,其中各组中的激光输出脉冲具有短于300毫微秒的持续时间。
61.如权利要求46的激光器系统,其中产生至少两组所述激光输出脉冲,用以在大于10kHz的设定重复频率下对准相应选定的导电性链路而除去目标材料。
62.如权利要求46的激光器系统,其中每个所述激光输出脉冲具有在大约100飞秒与25微微秒之间的脉冲宽度。
63.如权利要求60的激光器系统,其中每个所述激光输出脉冲具有在大约100飞秒与25微微秒之间的脉冲宽度。
64.如权利要求46的激光器系统,其中每个所述激光输出脉冲具有短于10微微秒的脉冲宽度。
65.如权利要求60的激光器系统,其中每个所述激光输出脉冲具有短于10微微秒的脉冲宽度。
66.如权利要求46的激光器系统,其中每个所述激光输出脉冲具有大约0.01微焦耳-10毫焦耳的激光能量。
67.如权利要求46的激光器系统,其中所述组中的每个所述激光输出脉冲被控制成具有相同的的激光能量。
68.如权利要求46的激光器系统,其中所述组中的每个所述激光输出脉冲具有不同的激光能量。
69.如权利要求46的激光器系统,其中所述激光输出脉冲的波长至少为以下一种:约1.3,1.064,或1.047,1.03-1.05,0.75-0.85μm或者是来自Nd:YAG、Nd:YLF、Nd:YVO4、Yb:YAG或Ti:蓝宝石激光器的第二、第三、第四或第五次谐波。
CNB018035868A 2000-01-10 2001-01-09 以具超短脉冲宽度的激光脉冲的脉冲串处理存储器链路的激光器系统及方法 Expired - Fee Related CN1276495C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17533700P 2000-01-10 2000-01-10
US60/175,337 2000-01-10
US22353300P 2000-08-04 2000-08-04
US60/223,533 2000-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN 200610115065 Division CN1919520A (zh) 2000-01-10 2001-01-09 激光切断集成电路中导电性链路的激光器系统及方法

Publications (2)

Publication Number Publication Date
CN1394358A CN1394358A (zh) 2003-01-29
CN1276495C true CN1276495C (zh) 2006-09-20

Family

ID=26871111

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018035868A Expired - Fee Related CN1276495C (zh) 2000-01-10 2001-01-09 以具超短脉冲宽度的激光脉冲的脉冲串处理存储器链路的激光器系统及方法

Country Status (9)

Country Link
US (1) US6574250B2 (zh)
EP (1) EP1247297A2 (zh)
JP (1) JP5123456B2 (zh)
KR (2) KR100850262B1 (zh)
CN (1) CN1276495C (zh)
AU (1) AU2001227764A1 (zh)
CA (1) CA2395960A1 (zh)
TW (1) TW476988B (zh)
WO (1) WO2001051243A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536119A (zh) * 2014-07-09 2017-03-22 高质激光有限公司 使用非圆形激光光束来处理材料

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734387B2 (en) * 1999-05-27 2004-05-11 Spectra Physics Lasers, Inc. Method and apparatus for micro-machining of articles that include polymeric materials
US6822978B2 (en) * 1999-05-27 2004-11-23 Spectra Physics, Inc. Remote UV laser system and methods of use
US20040134894A1 (en) * 1999-12-28 2004-07-15 Bo Gu Laser-based system for memory link processing with picosecond lasers
US7723642B2 (en) * 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US7838794B2 (en) * 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US20060141681A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US7671295B2 (en) * 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US6887804B2 (en) 2000-01-10 2005-05-03 Electro Scientific Industries, Inc. Passivation processing over a memory link
US20030222324A1 (en) * 2000-01-10 2003-12-04 Yunlong Sun Laser systems for passivation or link processing with a set of laser pulses
JP2002040627A (ja) * 2000-07-24 2002-02-06 Nec Corp レーザパターン修正方法並びに修正装置
US8497450B2 (en) * 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput
US20070173075A1 (en) * 2001-03-29 2007-07-26 Joohan Lee Laser-based method and system for processing a multi-material device having conductive link structures
US6777645B2 (en) * 2001-03-29 2004-08-17 Gsi Lumonics Corporation High-speed, precision, laser-based method and system for processing material of one or more targets within a field
US7563695B2 (en) * 2002-03-27 2009-07-21 Gsi Group Corporation Method and system for high-speed precise laser trimming and scan lens for use therein
US6951995B2 (en) 2002-03-27 2005-10-04 Gsi Lumonics Corp. Method and system for high-speed, precise micromachining an array of devices
JP2004200221A (ja) * 2002-12-16 2004-07-15 Toray Eng Co Ltd レーザマーキング方法及び装置
US6979798B2 (en) * 2003-03-07 2005-12-27 Gsi Lumonics Corporation Laser system and method for material processing with ultra fast lasers
US7361171B2 (en) 2003-05-20 2008-04-22 Raydiance, Inc. Man-portable optical ablation system
US7113327B2 (en) * 2003-06-27 2006-09-26 Imra America, Inc. High power fiber chirped pulse amplification system utilizing telecom-type components
US6947454B2 (en) * 2003-06-30 2005-09-20 Electro Scientific Industries, Inc. Laser pulse picking employing controlled AOM loading
US7616669B2 (en) * 2003-06-30 2009-11-10 Electro Scientific Industries, Inc. High energy pulse suppression method
US7367969B2 (en) * 2003-08-11 2008-05-06 Raydiance, Inc. Ablative material removal with a preset removal rate or volume or depth
US8173929B1 (en) * 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US7115514B2 (en) * 2003-10-02 2006-10-03 Raydiance, Inc. Semiconductor manufacturing using optical ablation
KR100804253B1 (ko) * 2003-08-19 2008-02-18 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 레이저 섬유 증폭기의 증폭기 출력 제어 방법
KR101188356B1 (ko) * 2003-12-02 2012-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사장치, 레이저 조사방법 및 반도체장치의제조방법
EP1547719A3 (en) * 2003-12-26 2009-01-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing crystalline semiconductor film
EP1553643A3 (en) * 2003-12-26 2009-01-21 Sel Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing crystalline semiconductor film
US7173212B1 (en) * 2004-02-13 2007-02-06 Semak Vladimir V Method and apparatus for laser cutting and drilling of semiconductor materials and glass
US7057135B2 (en) * 2004-03-04 2006-06-06 Matsushita Electric Industrial, Co. Ltd. Method of precise laser nanomachining with UV ultrafast laser pulses
US7491909B2 (en) * 2004-03-31 2009-02-17 Imra America, Inc. Pulsed laser processing with controlled thermal and physical alterations
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7139294B2 (en) * 2004-05-14 2006-11-21 Electro Scientific Industries, Inc. Multi-output harmonic laser and methods employing same
US7804043B2 (en) * 2004-06-15 2010-09-28 Laserfacturing Inc. Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser
US7687740B2 (en) * 2004-06-18 2010-03-30 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots delivering multiple blows
US8383982B2 (en) * 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots
US7923306B2 (en) * 2004-06-18 2011-04-12 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots
US8148211B2 (en) * 2004-06-18 2012-04-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously
US7935941B2 (en) * 2004-06-18 2011-05-03 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots spaced on-axis on non-adjacent structures
US7435927B2 (en) * 2004-06-18 2008-10-14 Electron Scientific Industries, Inc. Semiconductor link processing using multiple laterally spaced laser beam spots with on-axis offset
US7629234B2 (en) * 2004-06-18 2009-12-08 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laterally spaced laser beam spots with joint velocity profiling
US7633034B2 (en) * 2004-06-18 2009-12-15 Electro Scientific Industries, Inc. Semiconductor structure processing using multiple laser beam spots overlapping lengthwise on a structure
US8137340B2 (en) * 2004-06-23 2012-03-20 Applied Harmonics Corporation Apparatus and method for soft tissue ablation employing high power diode-pumped laser
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
JP2006032419A (ja) * 2004-07-12 2006-02-02 Disco Abrasive Syst Ltd ウエーハのレーザー加工方法
US7902002B2 (en) * 2004-07-30 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20060032841A1 (en) * 2004-08-10 2006-02-16 Tan Kee C Forming features in printhead components
JP4649927B2 (ja) * 2004-09-24 2011-03-16 アイシン精機株式会社 レーザ誘起改質加工装置及び方法
US20060114948A1 (en) * 2004-11-29 2006-06-01 Lo Ho W Workpiece processing system using a common imaged optical assembly to shape the spatial distributions of light energy of multiple laser beams
US7289549B2 (en) * 2004-12-09 2007-10-30 Electro Scientific Industries, Inc. Lasers for synchronized pulse shape tailoring
US7396706B2 (en) * 2004-12-09 2008-07-08 Electro Scientific Industries, Inc. Synchronization technique for forming a substantially stable laser output pulse profile having different wavelength peaks
US7630418B2 (en) 2005-01-10 2009-12-08 Kresimir Franjic Laser system for generation of high-power sub-nanosecond pulses with controllable wavelength in 2-15 μm region
US20060191884A1 (en) * 2005-01-21 2006-08-31 Johnson Shepard D High-speed, precise, laser-based material processing method and system
US7528342B2 (en) * 2005-02-03 2009-05-05 Laserfacturing, Inc. Method and apparatus for via drilling and selective material removal using an ultrafast pulse laser
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
BE1016782A3 (fr) * 2005-09-22 2007-06-05 Laser Engineering Applic Procede de marquage interne par laser dans les materiaux transparents et laser et dispositif utilises pour l'application de ce procede.
KR101358241B1 (ko) * 2005-12-06 2014-02-05 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 동시에 모드-잠겨진, q-스위치된 레이저
JP2009518109A (ja) * 2005-12-07 2009-05-07 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収用品の製造方法
GB2434483A (en) * 2006-01-20 2007-07-25 Fianium Ltd High-Power Short Optical Pulse Source
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
US8232687B2 (en) 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US7444049B1 (en) 2006-01-23 2008-10-28 Raydiance, Inc. Pulse stretcher and compressor including a multi-pass Bragg grating
US9130344B2 (en) * 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US20070215575A1 (en) * 2006-03-15 2007-09-20 Bo Gu Method and system for high-speed, precise, laser-based modification of one or more electrical elements
US7822347B1 (en) 2006-03-28 2010-10-26 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
US20080086118A1 (en) * 2006-05-17 2008-04-10 Applied Harmonics Corporation Apparatus and method for diode-pumped laser ablation of soft tissue
US7605343B2 (en) 2006-05-24 2009-10-20 Electro Scientific Industries, Inc. Micromachining with short-pulsed, solid-state UV laser
US8084706B2 (en) * 2006-07-20 2011-12-27 Gsi Group Corporation System and method for laser processing at non-constant velocities
JP2008147406A (ja) * 2006-12-08 2008-06-26 Cyber Laser Kk レーザによる集積回路の修正方法および装置
EP1990126B1 (en) * 2007-05-08 2012-11-21 Volvo Car Corporation Method of laser cutting a painted or multilayered workpiece by means of a scanned laser beam
US8116341B2 (en) * 2007-05-31 2012-02-14 Electro Scientific Industries, Inc. Multiple laser wavelength and pulse width process drilling
US20090004368A1 (en) * 2007-06-29 2009-01-01 Weyerhaeuser Co. Systems and methods for curing a deposited layer on a substrate
US7903326B2 (en) 2007-11-30 2011-03-08 Radiance, Inc. Static phase mask for high-order spectral phase control in a hybrid chirped pulse amplifier system
US20090141750A1 (en) * 2007-12-03 2009-06-04 Electro Scientific Industries, Inc. Systems and methods for link processing with ultrafast and nanosecond laser pulses
GB2458475B (en) * 2008-03-18 2011-10-26 Xsil Technology Ltd Processing of multilayer semiconductor wafers
US20090246413A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method for fabricating thin films
US20090246530A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method For Fabricating Thin Films
US8598490B2 (en) 2008-03-31 2013-12-03 Electro Scientific Industries, Inc. Methods and systems for laser processing a workpiece using a plurality of tailored laser pulse shapes
US8526473B2 (en) * 2008-03-31 2013-09-03 Electro Scientific Industries Methods and systems for dynamically generating tailored laser pulses
US8476552B2 (en) * 2008-03-31 2013-07-02 Electro Scientific Industries, Inc. Laser systems and methods using triangular-shaped tailored laser pulses for selected target classes
US7982160B2 (en) * 2008-03-31 2011-07-19 Electro Scientific Industries, Inc. Photonic clock stabilized laser comb processing
US8178818B2 (en) * 2008-03-31 2012-05-15 Electro Scientific Industries, Inc. Photonic milling using dynamic beam arrays
US20090289382A1 (en) * 2008-05-22 2009-11-26 Raydiance, Inc. System and method for modifying characteristics of a contact lens utilizing an ultra-short pulsed laser
US8125704B2 (en) 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
US8309885B2 (en) * 2009-01-15 2012-11-13 Electro Scientific Industries, Inc. Pulse temporal programmable ultrafast burst mode laser for micromachining
US8246714B2 (en) * 2009-01-30 2012-08-21 Imra America, Inc. Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
JP2010232650A (ja) * 2009-03-04 2010-10-14 Omron Corp レーザ光源装置、レーザ加工装置、レーザ光源装置の制御装置、およびレーザ光源装置の制御方法
US10307862B2 (en) * 2009-03-27 2019-06-04 Electro Scientific Industries, Inc Laser micromachining with tailored bursts of short laser pulses
JP2010258120A (ja) * 2009-04-23 2010-11-11 Fujifilm Corp 超短波パルス光源およびそれを備えた2光子吸収記録媒体記録装置
US20110210105A1 (en) * 2009-12-30 2011-09-01 Gsi Group Corporation Link processing with high speed beam deflection
US8540173B2 (en) * 2010-02-10 2013-09-24 Imra America, Inc. Production of fine particles of functional ceramic by using pulsed laser
US8858676B2 (en) * 2010-02-10 2014-10-14 Imra America, Inc. Nanoparticle production in liquid with multiple-pulse ultrafast laser ablation
US20110192450A1 (en) * 2010-02-10 2011-08-11 Bing Liu Method for producing nanoparticle solutions based on pulsed laser ablation for fabrication of thin film solar cells
US8642448B2 (en) 2010-06-22 2014-02-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
WO2012021748A1 (en) 2010-08-12 2012-02-16 Raydiance, Inc. Polymer tubing laser micromachining
US9120181B2 (en) 2010-09-16 2015-09-01 Coherent, Inc. Singulation of layered materials using selectively variable laser output
DE102011000768B4 (de) * 2011-02-16 2016-08-18 Ewag Ag Laserbearbeitungsverfahren und Laserbearbeitungsvorrichtung mit umschaltbarer Laseranordnung
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US8557682B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-layer mask for substrate dicing by laser and plasma etch
US8507363B2 (en) 2011-06-15 2013-08-13 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US8759197B2 (en) 2011-06-15 2014-06-24 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8912077B2 (en) 2011-06-15 2014-12-16 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier
US9126285B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
US8557683B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US9129904B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
US8598016B2 (en) 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
DE112012002844T5 (de) 2011-07-05 2014-04-24 Electronic Scientific Industries, Inc. Verfahren zur Laserbearbeitung mit einem thermisch stabilisierten akustooptischen Strahlablenker und thermisch stabilisiertes Hochgeschwindigkeits-Laserbearbeitungssystem
US8951819B2 (en) 2011-07-11 2015-02-10 Applied Materials, Inc. Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US9061373B2 (en) * 2011-11-30 2015-06-23 Medtronic, Inc. Welding method including continuous wave welding and pulse welding for component of an implantable medical device
CN104254428B (zh) 2011-12-07 2016-12-07 通用原子公司 用于激光制造加工的方法和系统
JP5789527B2 (ja) * 2012-01-18 2015-10-07 株式会社アマダホールディングス レーザ加工装置及びレーザ発振制御方法
KR101333554B1 (ko) * 2012-03-21 2013-11-28 위아코퍼레이션 주식회사 레이저 펄스를 이용한 강화유리 가공 방법
CN102605333B (zh) * 2012-03-28 2013-11-27 中国矿业大学 高温环境下具有高激光损伤阈值氧化钽薄膜的制备方法
US8652940B2 (en) 2012-04-10 2014-02-18 Applied Materials, Inc. Wafer dicing used hybrid multi-step laser scribing process with plasma etch
US8946057B2 (en) 2012-04-24 2015-02-03 Applied Materials, Inc. Laser and plasma etch wafer dicing using UV-curable adhesive film
US8969177B2 (en) 2012-06-29 2015-03-03 Applied Materials, Inc. Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film
US9048309B2 (en) 2012-07-10 2015-06-02 Applied Materials, Inc. Uniform masking for wafer dicing using laser and plasma etch
US8859397B2 (en) 2012-07-13 2014-10-14 Applied Materials, Inc. Method of coating water soluble mask for laser scribing and plasma etch
US8845854B2 (en) 2012-07-13 2014-09-30 Applied Materials, Inc. Laser, plasma etch, and backside grind process for wafer dicing
US8940619B2 (en) 2012-07-13 2015-01-27 Applied Materials, Inc. Method of diced wafer transportation
US8993414B2 (en) 2012-07-13 2015-03-31 Applied Materials, Inc. Laser scribing and plasma etch for high die break strength and clean sidewall
WO2014022681A1 (en) 2012-08-01 2014-02-06 Gentex Corporation Assembly with laser induced channel edge and method thereof
US9159574B2 (en) 2012-08-27 2015-10-13 Applied Materials, Inc. Method of silicon etch for trench sidewall smoothing
US9252057B2 (en) 2012-10-17 2016-02-02 Applied Materials, Inc. Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application
US8975162B2 (en) 2012-12-20 2015-03-10 Applied Materials, Inc. Wafer dicing from wafer backside
US9236305B2 (en) 2013-01-25 2016-01-12 Applied Materials, Inc. Wafer dicing with etch chamber shield ring for film frame wafer applications
US8980726B2 (en) 2013-01-25 2015-03-17 Applied Materials, Inc. Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers
TWI619165B (zh) 2013-03-14 2018-03-21 應用材料股份有限公司 以雷射及電漿蝕刻進行的基板切割所用的含非光可界定雷射能量吸收層的多層遮罩
US8883614B1 (en) 2013-05-22 2014-11-11 Applied Materials, Inc. Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach
US9105710B2 (en) 2013-08-30 2015-08-11 Applied Materials, Inc. Wafer dicing method for improving die packaging quality
US9224650B2 (en) 2013-09-19 2015-12-29 Applied Materials, Inc. Wafer dicing from wafer backside and front side
US9460966B2 (en) 2013-10-10 2016-10-04 Applied Materials, Inc. Method and apparatus for dicing wafers having thick passivation polymer layer
US9041198B2 (en) 2013-10-22 2015-05-26 Applied Materials, Inc. Maskless hybrid laser scribing and plasma etching wafer dicing process
US9312177B2 (en) 2013-12-06 2016-04-12 Applied Materials, Inc. Screen print mask for laser scribe and plasma etch wafer dicing process
US9299614B2 (en) 2013-12-10 2016-03-29 Applied Materials, Inc. Method and carrier for dicing a wafer
US9293304B2 (en) 2013-12-17 2016-03-22 Applied Materials, Inc. Plasma thermal shield for heat dissipation in plasma chamber
US8927393B1 (en) 2014-01-29 2015-01-06 Applied Materials, Inc. Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing
US9018079B1 (en) 2014-01-29 2015-04-28 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean
US9012305B1 (en) 2014-01-29 2015-04-21 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean
US9299611B2 (en) 2014-01-29 2016-03-29 Applied Materials, Inc. Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance
US8991329B1 (en) 2014-01-31 2015-03-31 Applied Materials, Inc. Wafer coating
US9236284B2 (en) 2014-01-31 2016-01-12 Applied Materials, Inc. Cooled tape frame lift and low contact shadow ring for plasma heat isolation
US20150255349A1 (en) 2014-03-07 2015-09-10 JAMES Matthew HOLDEN Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
US9130030B1 (en) 2014-03-07 2015-09-08 Applied Materials, Inc. Baking tool for improved wafer coating process
US9275902B2 (en) 2014-03-26 2016-03-01 Applied Materials, Inc. Dicing processes for thin wafers with bumps on wafer backside
US9076860B1 (en) 2014-04-04 2015-07-07 Applied Materials, Inc. Residue removal from singulated die sidewall
US8975163B1 (en) 2014-04-10 2015-03-10 Applied Materials, Inc. Laser-dominated laser scribing and plasma etch hybrid wafer dicing
US8932939B1 (en) 2014-04-14 2015-01-13 Applied Materials, Inc. Water soluble mask formation by dry film lamination
US8912078B1 (en) 2014-04-16 2014-12-16 Applied Materials, Inc. Dicing wafers having solder bumps on wafer backside
US8999816B1 (en) 2014-04-18 2015-04-07 Applied Materials, Inc. Pre-patterned dry laminate mask for wafer dicing processes
US9159621B1 (en) 2014-04-29 2015-10-13 Applied Materials, Inc. Dicing tape protection for wafer dicing using laser scribe process
US8912075B1 (en) 2014-04-29 2014-12-16 Applied Materials, Inc. Wafer edge warp supression for thin wafer supported by tape frame
US8980727B1 (en) 2014-05-07 2015-03-17 Applied Materials, Inc. Substrate patterning using hybrid laser scribing and plasma etching processing schemes
US9112050B1 (en) 2014-05-13 2015-08-18 Applied Materials, Inc. Dicing tape thermal management by wafer frame support ring cooling during plasma dicing
US9034771B1 (en) 2014-05-23 2015-05-19 Applied Materials, Inc. Cooling pedestal for dicing tape thermal management during plasma dicing
US9165832B1 (en) 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
US9093518B1 (en) 2014-06-30 2015-07-28 Applied Materials, Inc. Singulation of wafers having wafer-level underfill
US9130057B1 (en) 2014-06-30 2015-09-08 Applied Materials, Inc. Hybrid dicing process using a blade and laser
US9142459B1 (en) 2014-06-30 2015-09-22 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination
US9349648B2 (en) 2014-07-22 2016-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process
US9117868B1 (en) 2014-08-12 2015-08-25 Applied Materials, Inc. Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
US9196498B1 (en) 2014-08-12 2015-11-24 Applied Materials, Inc. Stationary actively-cooled shadow ring for heat dissipation in plasma chamber
US9281244B1 (en) 2014-09-18 2016-03-08 Applied Materials, Inc. Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process
US11195756B2 (en) 2014-09-19 2021-12-07 Applied Materials, Inc. Proximity contact cover ring for plasma dicing
US9177861B1 (en) 2014-09-19 2015-11-03 Applied Materials, Inc. Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile
US9196536B1 (en) 2014-09-25 2015-11-24 Applied Materials, Inc. Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process
US9130056B1 (en) 2014-10-03 2015-09-08 Applied Materials, Inc. Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing
US9245803B1 (en) 2014-10-17 2016-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process
US10692765B2 (en) 2014-11-07 2020-06-23 Applied Materials, Inc. Transfer arm for film frame substrate handling during plasma singulation of wafers
US9355907B1 (en) 2015-01-05 2016-05-31 Applied Materials, Inc. Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process
US9330977B1 (en) 2015-01-05 2016-05-03 Applied Materials, Inc. Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process
US9159624B1 (en) 2015-01-05 2015-10-13 Applied Materials, Inc. Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach
JP6464789B2 (ja) * 2015-02-10 2019-02-06 オムロン株式会社 検査装置及びレーザ加工装置並びにレーザ加工検査方法
US9601375B2 (en) 2015-04-27 2017-03-21 Applied Materials, Inc. UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach
US9721839B2 (en) 2015-06-12 2017-08-01 Applied Materials, Inc. Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch
US9478455B1 (en) 2015-06-12 2016-10-25 Applied Materials, Inc. Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
US9972575B2 (en) 2016-03-03 2018-05-15 Applied Materials, Inc. Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process
US9852997B2 (en) 2016-03-25 2017-12-26 Applied Materials, Inc. Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process
JP6755707B2 (ja) * 2016-05-12 2020-09-16 株式会社ディスコ レーザー加工装置
US9793132B1 (en) 2016-05-13 2017-10-17 Applied Materials, Inc. Etch mask for hybrid laser scribing and plasma etch wafer singulation process
JP6770340B2 (ja) * 2016-05-30 2020-10-14 株式会社ディスコ ウエーハの生成方法
CN106238907A (zh) * 2016-08-22 2016-12-21 大族激光科技产业集团股份有限公司 Led晶圆片的激光加工方法
JP6363680B2 (ja) * 2016-11-16 2018-07-25 ファナック株式会社 レーザ装置
US11158540B2 (en) 2017-05-26 2021-10-26 Applied Materials, Inc. Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process
US10363629B2 (en) 2017-06-01 2019-07-30 Applied Materials, Inc. Mitigation of particle contamination for wafer dicing processes
US10535561B2 (en) 2018-03-12 2020-01-14 Applied Materials, Inc. Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process
US11081855B2 (en) * 2018-06-18 2021-08-03 Coherent, Inc. Laser-MOPA with burst-mode control
US11355394B2 (en) 2018-09-13 2022-06-07 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment
US11011424B2 (en) 2019-08-06 2021-05-18 Applied Materials, Inc. Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process
US11342226B2 (en) 2019-08-13 2022-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process
US10903121B1 (en) 2019-08-14 2021-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process
US11600492B2 (en) 2019-12-10 2023-03-07 Applied Materials, Inc. Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process
US11211247B2 (en) 2020-01-30 2021-12-28 Applied Materials, Inc. Water soluble organic-inorganic hybrid mask formulations and their applications
CN112756808A (zh) * 2020-12-31 2021-05-07 天津爱旭太阳能科技有限公司 一种减少晶硅太阳能电池复合损失的切割方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114018A (en) 1976-09-30 1978-09-12 Lasag Ag Method for ablating metal workpieces with laser radiation
US4532402A (en) * 1983-09-02 1985-07-30 Xrl, Inc. Method and apparatus for positioning a focused beam on an integrated circuit
JPS61290719A (ja) * 1985-06-19 1986-12-20 Hitachi Ltd レ−ザ出力制御装置
JPH0821623B2 (ja) * 1985-09-20 1996-03-04 株式会社日立製作所 レ−ザ処理方法
US4646308A (en) 1985-09-30 1987-02-24 Spectra-Physics, Inc. Synchronously pumped dye laser using ultrashort pump pulses
US4932031A (en) 1987-12-04 1990-06-05 Alfano Robert R Chromium-doped foresterite laser system
US5034951A (en) 1989-06-26 1991-07-23 Cornell Research Foundation, Inc. Femtosecond ultraviolet laser using ultra-thin beta barium borate
JPH03278489A (ja) * 1990-02-14 1991-12-10 Nippon Koden Corp レーザ手術装置
US5042040A (en) 1990-03-30 1991-08-20 At&T Bell Laboratories Amplitude noise reduction for optically pumped modelocked lasers
JP3150322B2 (ja) * 1990-05-18 2001-03-26 株式会社日立製作所 レーザによる配線切断加工方法及びレーザ加工装置
US5175664A (en) 1991-12-05 1992-12-29 Diels Jean Claude Discharge of lightning with ultrashort laser pulses
DE4229399C2 (de) 1992-09-03 1999-05-27 Deutsch Zentr Luft & Raumfahrt Verfahren und Vorrichtung zum Herstellen einer Funktionsstruktur eines Halbleiterbauelements
US5265114C1 (en) 1992-09-10 2001-08-21 Electro Scient Ind Inc System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
US5453594A (en) * 1993-10-06 1995-09-26 Electro Scientific Industries, Inc. Radiation beam position and emission coordination system
US5611946A (en) 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5558789A (en) 1994-03-02 1996-09-24 University Of Florida Method of applying a laser beam creating micro-scale surface structures prior to deposition of film for increased adhesion
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
JP2526806B2 (ja) 1994-04-26 1996-08-21 日本電気株式会社 半導体レ―ザおよびその動作方法
US5513194A (en) 1994-06-30 1996-04-30 Massachusetts Institute Of Technology Stretched-pulse fiber laser
US5742634A (en) * 1994-08-24 1998-04-21 Imar Technology Co. Picosecond laser
US5539764A (en) 1994-08-24 1996-07-23 Jamar Technologies Co. Laser generated X-ray source
US5751585A (en) * 1995-03-20 1998-05-12 Electro Scientific Industries, Inc. High speed, high accuracy multi-stage tool positioning system
US5786560A (en) 1995-03-31 1998-07-28 Panasonic Technologies, Inc. 3-dimensional micromachining with femtosecond laser pulses
US5627848A (en) 1995-09-05 1997-05-06 Imra America, Inc. Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
US5956354A (en) 1996-06-06 1999-09-21 The University Of Maryland Baltimore County Dual media laser with mode locking
US5998759A (en) 1996-12-24 1999-12-07 General Scanning, Inc. Laser processing
US6025256A (en) * 1997-01-06 2000-02-15 Electro Scientific Industries, Inc. Laser based method and system for integrated circuit repair or reconfiguration
US5848080A (en) 1997-05-12 1998-12-08 Dahm; Jonathan S. Short pulsewidth high pulse repetition frequency laser
JPH11197863A (ja) * 1998-01-09 1999-07-27 Nikon Corp レーザ加工装置
US5953354A (en) 1998-02-03 1999-09-14 General Electric Co. Laser resonator optical alignment
US5987049A (en) 1998-04-24 1999-11-16 Time-Bandwidth Products Ag Mode locked solid-state laser pumped by a non-diffraction-limited pumping source and method for generating pulsed laser radiation by pumping with a non-diffraction-limited pumping beam
US6057180A (en) 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
US6281471B1 (en) 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US6552301B2 (en) 2000-01-25 2003-04-22 Peter R. Herman Burst-ultrafast laser machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536119A (zh) * 2014-07-09 2017-03-22 高质激光有限公司 使用非圆形激光光束来处理材料

Also Published As

Publication number Publication date
JP2003519933A (ja) 2003-06-24
CA2395960A1 (en) 2001-07-19
KR20020070332A (ko) 2002-09-05
TW476988B (en) 2002-02-21
AU2001227764A1 (en) 2001-07-24
EP1247297A2 (en) 2002-10-09
US6574250B2 (en) 2003-06-03
KR20070040849A (ko) 2007-04-17
CN1394358A (zh) 2003-01-29
US20020003130A1 (en) 2002-01-10
KR100850262B1 (ko) 2008-08-04
JP5123456B2 (ja) 2013-01-23
WO2001051243A3 (en) 2001-12-13
WO2001051243A2 (en) 2001-07-19
KR100830128B1 (ko) 2008-05-20

Similar Documents

Publication Publication Date Title
CN1276495C (zh) 以具超短脉冲宽度的激光脉冲的脉冲串处理存储器链路的激光器系统及方法
US7671295B2 (en) Processing a memory link with a set of at least two laser pulses
US7348516B2 (en) Methods of and laser systems for link processing using laser pulses with specially tailored power profiles
US6887804B2 (en) Passivation processing over a memory link
CN1198329C (zh) 用紫外激光输出切断导电链路的方法
USRE33947E (en) Laser scribing method
KR101370156B1 (ko) 하나 이상의 타겟 링크 구조 제거를 위한 레이저기반 방법 및 시스템
CN1293682C (zh) 以一组至少两个激光脉冲处理存储器连接线的方法
US20030222324A1 (en) Laser systems for passivation or link processing with a set of laser pulses
CN1919520A (zh) 激光切断集成电路中导电性链路的激光器系统及方法
JPH10125632A (ja) レーザエッチング方法及びその装置
US20060141681A1 (en) Processing a memory link with a set of at least two laser pulses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060920

Termination date: 20180109