CN1274700A - 压电陶瓷材料及由其制成的压电陶瓷烧结体 - Google Patents

压电陶瓷材料及由其制成的压电陶瓷烧结体 Download PDF

Info

Publication number
CN1274700A
CN1274700A CN00108875A CN00108875A CN1274700A CN 1274700 A CN1274700 A CN 1274700A CN 00108875 A CN00108875 A CN 00108875A CN 00108875 A CN00108875 A CN 00108875A CN 1274700 A CN1274700 A CN 1274700A
Authority
CN
China
Prior art keywords
sintered compact
piezoelectric ceramic
weight
piezoelectric ceramics
electromechanical coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00108875A
Other languages
English (en)
Other versions
CN1102554C (zh
Inventor
吉泽勇
堀川胜弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1274700A publication Critical patent/CN1274700A/zh
Application granted granted Critical
Publication of CN1102554C publication Critical patent/CN1102554C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

本发明的目的是提供能制造压电陶瓷烧结体的压电陶瓷材料,这种压电陶瓷烧结体具有设计窄带滤波器所需的机电耦合系数小、谐振电阻小和谐振频率对温度依赖性小之类的性能,该压电陶瓷材料含有用通式(PbaSrb)(ZrcTidMneNbf)O3表示且组成满足如下关系的主要组分:0.93≤a≤1.01,0.01≤b≤0.04,0.37≤c≤0.47,0.48≤d≤0.58,0.0105≤e≤0.06,0.02≤f≤0.06以及1.05≤2e/f≤2,相对于主要组分还含有大于等于0.003%重量至小于等于0.1%重量的SiO2和大于等于0.003%重量至小于等于0.1%重量的Al2O3的次要组分。

Description

压电陶瓷材料及由其制成的压电陶瓷烧结体
本发明涉及压电陶瓷材料及由其制成的压电陶瓷烧结体。具体地说,本发明涉及适用于需要较低机电耦合系数和较小谐振电阻的压电应用装置的压电陶瓷材料以及用这种压电陶瓷材料制得的压电陶瓷烧结体。
由于Pb[(Mn1/3Nb2/3),Zr,Ti]O3基压电陶瓷材料具有良好的谐振性能,所以它们已广泛用作制造压电应用装置中所用压电陶瓷器件的材料。上述器件包括利用体积波或表面波的滤波器、振荡器和陷波器。
例如日本专利公开5-327397揭示了实际上可用一种压电陶瓷材料制造具有良好谐振性能、谐振性能对温度的依从关系和耐热性的表面波装置。上述的压电陶瓷材料用通式(Pb1-xMex){(Mn1/3Nb2/3)aTibZrc}O3表示,式中Me表示至少一种选自Ca、Ba或Sr的元素,x、a和b满足如下关系:
0.005≤x≤0.10
0.01≤a≤0.14
0.40≤b≤0.60
0.26≤c≤0.59,且
a+b+c=1.00
日本专利公开5-24916揭示了一种改进了电学性能不规则性的{PbSr}{(TiZr)(MnNb)}O3基材料。这种材料含有0.005-0.040%重量SiO2和0.005-0.040%重量Al2O3中的至少一种成分。
然而,常规Pb[(Mn1/3Nb2/3),Zr,Ti]O3基压电陶瓷材料的问题是由于这种材料在饱和极化状态下的机电耦合系数大,所以其在饱和极化状态下不能用于需要较小机电耦合系数的窄带滤波器。另一个问题是当为了减小机电耦合系数使极化度处于饱和状态时,由于谐振电阻的增加而增加滤波器插入损耗。
窄带滤波器的谐振频率的温度稳定性需要优于宽带滤波器。对于这个问题,常规的Pb[(Mn1/3Nb2/3),Zr,Ti]O3基压电陶瓷材料不可能具有窄带滤波器所需的优良温度稳定性。
因此,本发明的一个目的是提供能满足设计窄带滤波器所需这些性能的压电陶瓷材料,特别是能满足机电耦合系数小、谐振电阻小和谐振频率对温度依赖性小之类性能的压电陶瓷材料,以及提供通过烧制这些压电陶瓷材料制成的压电陶瓷烧结体。
在一个方面,本发明提供至少含Pb、Sr、Zr、Mn、Nb、Si和Al的压电陶瓷材料,该压电陶瓷材料含有用通式(PbaSrb)(ZrcTidMneNbr)O3表示且组成满足如下关系的主要组分:0.93≤a≤1.01,0.01≤b≤0.04,0.37≤c≤0.47,0.48≤d≤0.58,0.0105≤e≤0.06,0.02≤f≤0.06以及1.05≤2e/f≤2,相对于主要组分它还含有大于等于0.003%重量至小于等于0.1%重量的SiO2和大于等于0.003%重量至小于等于0.1%重量的Al2O3的次要组分。
本发明的压电陶瓷材料较好在氧气氛中进行烧制。因此,本发明也涉及在氧气氛中烧制上述压电陶瓷材料而制得的压电陶瓷烧结体。
压电陶瓷烧结体较好用于机电耦合系数为饱和极化状态下的80%或更小的不饱和极化状态。
用上述的本发明方法可以制成机电耦合系数小、谐振电阻小和谐振频率对温度依赖性小的压电陶瓷烧结体。用这种适用于滤波器的压电陶瓷烧结体也可制得窄带插入损耗小和通带频率温度稳定性优良的滤波器。
主要组分中的含铅量(a)较好为0.93≤a≤1.01,因为当a小于0.93时,烧结性能就会降低,从而不能制得具有足够密度的烧结体,而当a大于1.01时,烧结体可能变形。
含锶量(b)较好为0.01≤b≤0.04,因为当b小于0.01时,由于极化度的降低使烧结体中的电学性能变得不均匀,而当b大于0.04时,机电耦合系数增加到很大,使烧结体不能用作需有较小机电耦合系数的窄带滤波器中所用的压电陶瓷材料。
当含锆量(c)和含钛量(d)分别超出如下范围时:0.37≤c≤0.47和0.48≤d≤0.58,谐振频率的温度依赖性小的温度范围就偏离滤波器常用的-20℃至80℃的环境温度范围。因此,含锆量(c)和含钛量(d)较好分别为0.37≤c≤0.47和0.48≤d≤0.58,以便制备适用于制造环境温度下温度稳定性好、实用性高的压电陶瓷烧结体的压电陶瓷材料。
含锰量(e)较好为0.0105≤e≤0.06,因为当e小于0.0105时,谐振电阻Zr就要增加,从而提高了滤波器插入损耗,而当e大于0.06,烧结体的绝缘电阻就会降低,从而难以进行极化处理。
含铌量(f)较好为0.02≤f≤0.06,因为当f小于0.02,就会发生不正常的晶粒生长,而当f大于0.06时,烧结温度就会增加到1250℃以上,从而明显促进PbO的挥发,结果引起烧结体变形的问题。
对于含锰量(e)和含铌量(f)的关系,2e/f之比限定在1.05≤2e/f≤2,因为当2e/f之比小于1.05时,谐振频率的温度依赖性就会增加,而2e/f之比大于2时,绝缘电阻就会减小,从而不能进行极化处理。
对于SiO2和Al2O3次要组分,SiO2和Al2O3的含量较好都为大于等于0.003%重量至小于等于0.1%重量,因为当SiO2或Al2O3的含量低于上述范围时,烧结体的机械强度就会不够,从而在以后的烧结体加工中造成损坏,而当它们的含量高于上述范围时,烧结性能会变劣,从而不能制得密实的烧结体,而且会增加谐振电阻Zr
本发明的压电陶瓷烧结体较好用于机电耦合系数为上述饱和极化状态下的80%或更小的不饱和极化状态。其目的是用降低极化度的方法来获得窄带滤波器所需的低机电耦合系数。本发明的压电陶瓷烧结体较好在氧气氛下烧制而得,因为甚至在氧气氛下烧制烧结体来降低极化度,使机电耦合系数为饱和极化状态下的80%或更低时,也不会增加谐振频率,从而抑制滤波器的插入损耗大大增加。
图1是表示当压电陶瓷烧结体的极化度降低时机电耦合系数k15和谐振电阻Zr之间关系的图。上述的压电陶瓷烧结体具有本发明实施例中制得的3号试样的组成。
图2是表示当在本发明实施例中制得的2号试样中含锰量(e)和含铌量(f)之间的2e/f之比变化时谐振频率的温度依从关系的图。
实施例
制备原料Pb3O4、SrCrO3、ZrO2、TiO2、MnCO3、Nb2O5、Al2O3和SiO2
按表1中所示的组成对这些原料进行称量,湿研磨混合后,在800-1100℃将这种混合物煅烧4小时。将煅烧后所得的粉末碾碎,加入合适的粘合剂进行造粒,然后经压模制成尺寸为20毫米×30毫米×8.5毫米的长方体模压件。
                               表1
试样号     a     b     c     d     e       f     SiO2(%重量)     Al2O3(%重量)
    1*2345*   0.910.930.981.011.03   0.020.020.020.020.02    0.4200.4200.4200.4200.420     0.5300.5300.5300.5300.530    0.020000.020000.020000.020000.02000     0.03000.03000.03000.03000.0300     0.0200.0200.0200.0200.020     0.0200.0200.0200.0200.020
    6*789*   1.000.990.960.94   0.000.010.040.06    0.4200.4200.4200.420     0.5300.5300.5300.530    0.020000.020000.020000.02000     0.03000.03000.03000.0300     0.0200.0200.0200.020     0.0200.0200.0200.020
    10*111213*   0.980.980.980.98   0.020.020.020.02    0.3500.3700.4700.490     0.6000.5800.4800.460    0.020000.020000.020000.02000     0.03000.03000.03000.0300     0.0200.0200.0200.020     0.0200.0200.0200.020
    14*15*16*17*18*   0.980.980.980.980.98   0.020.020.020.020.02    0.4350.4350.4350.4350.435     0.5490.5490.5490.5490.549    0.005000.005250.006700.010000.01033     0.01000.01000.01000.01000.0100     0.0200.0200.0200.0200.020     0.0200.0200.0200.0200.020
    19*20212223*   0.980.980.980.980.98   0.020.020.020.020.02    0.4270.4270.4270.4270.427     0.5390.5390.5390.5390.539    0.010000.010500.013330.020000.02067     0.02000.02000.02000.02000.0200     0.0200.0200.0200.0200.020     0.0200.0200.0200.0200.020
    24*252627*   0.980.980.980.98   0.020.020.020.02    0.4200.4200.4200.420     0.5300.5300.5300.530    0.015000.015750.030000.03100     0.03000.03000.03000.0300     0.0200.0200.0200.020     0.0200.0200.0200.020
    28*29303132*   0.980.980.980.980.98   0.020.020.020.020.02    0.3980.3980.3980.3980.398     0.5020.5020.5020.5020.502    0.030000.031500.040000.060000.06200     0.06000.06000.06000.06000.0600     0.0200.0200.0200.0200.020     0.0200.0200.0200.0200.020
    33*34*35*36*37*   0.980.980.980.980.98   0.020.020.020.020.02    0.3830.3830.3830.3830.383     0.4840.4840.4840.4840.484    0.040000.042000.053330.080000.08267     0.08000.08000.08000.08000.0800     0.0200.0200.0200.0200.020     0.0200.0200.0200.0200.020
    38*39404142*   0.980.980.980.980.98   0.020.020.020.020.02    0.4200.4200.4200.4200.420     0.5300.5300.5300.5300.530    0.020000.020000.020000.020000.02000     0.03000.03000.03000.03000.0300     0.0200.0200.0200.0200.020     0.0020.0030.0200.1000.120
    43*444546*   0.980.980.980.98   0.020.020.020.02    0.4200.4200.4200.420     0.5300.5300.5300.530    0.020000.020000.020000.02000     0.03000.03000.03000.0300     0.0020.0030.1000.120     0.0200.0200.0200.020
然后在1050-1250℃和氧气氛中将这些模压件烧制1-5小时,制成烧结体。将这些烧结体重叠和磨光后,通过在80-100℃的硅油浴中对其施加1-3千伏/毫米的电场30-60分钟进行极化处理,从而在烧结体上形成极化电极。
极化处理后,用切割锯沿与烧结体长边方向一致的方向从烧结体上切下尺寸为5.1毫米×1.7毫米×0.3毫米的矩形板。评价每一块按上述方法制得的矩形板经施加纵向振动后所得的压电性能。
在2千伏/毫米电场下极化的试样纵向振动上的机电耦合系数k15(%)、谐振电阻Zr(Ω)、-20℃至80℃温度范围内谐振频率温度系数|fr-TC|(ppm/℃)的绝对值和三点弯曲试验中的弯曲强度(MPa)列于表2中。标有(*)号的试样相当于不包括在本发明范围内的试样。
                              表2
试样号 k15(%)     Zr(Ω) |fr-TC|(ppm/℃) 弯曲强度(MPa)     备注
    1*2345*     ***283031***     **4.04.13.9***     ***282527***     ***120110105*** 烧结不充分不能加工
    6*789*     27283142     4.04.03.73.8     25242625     110110104115 谐振频率的分布是3号试样的3.5倍
    10*111213*     24283234     4.23.93.63.5     41353642     119115110115
    14*15*16*17*18*     ***************     ***************     ***************     *************** 不能加工不能加工不能加工不能加工不能加工
    19*20212223*     28272929***     5.34.94.64.2***     44342623***     107112114110*** 不能极化
    24*252627*     313132***     4.54.23.9***     423222***     110105111*** 不能极化
    28*29303132*     33323234***     3.93.93.53.6***     41312420***     115111114119*** 不能极化
    33*34*35*36*37*     ***************     ***************     ***************     *************** 不能加工不能加工不能加工不能加工不能加工
    38*39404142*     3131303028     3.73.83.94.57.5     2525252525     92105110115155
    43*444546*     32312928     3.83.74.87.8     25252525     90107122186
对于没有控制烧制气氛和在氧气氛中烧结模压件的情况,图1表示当降低表1所示3号试样的极化度时机电耦合系数k15和谐振电阻Zr之间的关系。
图1清楚地表明,在产生相同机电耦合系数的极化度条件下,在氧气氛下烧制模压件时的谐振电阻Zr小于没有控制烧制气氛时的谐振电阻。因此,当在氧气氛下烧制模压件时可获得谐振电阻低的低损耗材料,从而可通过控制极化度来制造机电耦合系数低的材料。
由表1和表2可知,当含铅量(a)降低到本发明范围以下0.91时,不能获得所需的烧结体,如1号试样所示。另一方面,当含铅量(a)增加到本发明范围以上1.03时,由于烧结体变形很大而不能对烧结体进行加工。因此,含铅量(a)显然较好为0.93≤a≤1.01,以便在实用变形范围内获得密度足够高的烧结体。
所有含锶量(b)为0.01或更高的试样,即6号和7号试样以外的试样都没有实用性问题,因为极化度降低时烧结体内谐振频率的不规则性是在3号对比试样的不规则性的1.5倍之内。然而,含锶量(b)降低到零并不是优选的,因为虽然其含量在本发明的范围内,但极化度降低时烧结体内谐振频率的不规则性是在3号对比试样的不规则性的3.5倍。另一方面,当含锶量(b)超过本发明的范围,达0.06时,该材料就不适用作窄带滤波器中所用的压电陶瓷材料,因为机电耦合系数k15增加了40%以上。因此,含锶量(b)较好为0.01≤b≤0.04。
如10或13号试样所示,当含锆量(c)和含钛量(d)分别超出如下范围时:0.37≤c≤0.47和0.48≤d≤0.58,谐振频率对温度依赖性小的温度范围就偏离滤波器常用的-20℃至80℃的环境温度范围。因此,|fr-TC|的绝对值增加并超过40ppm/℃,这样损害了该陶瓷烧结材料在窄带滤波器中的实用值,因为该材料需要有高精度的谐振频率对温度的依赖关系。因此,c值和d值较好分另别为0.37≤c≤0.47和0.48≤d≤0.58。
由19号试样可知,当含锰量(e)小于0.0105时,插入损耗增加到许可值以外,因为谐振电阻Zr增加至超过5Ω。另一方面,如32号试样所示,当含锰量(e)超过0.06时,烧结体不能用作压电材料,因为烧结体的绝缘电阻降低,使其难于进行极化处理。因此,由上述结果可知,含锰量(e)较好为0.0105≤e≤0.06,以便获得易于进行极化处理和谐振电阻Zr在实用范围内的压电陶瓷烧结体。
如14号至18号试样所示,当含铌量(f)降低到本发明范围以下0.01时,由于不正常的晶粒生长而经常出现粗的晶粒,从而在以后的加工过程中在加工表面上产生明显的缺陷。因此,存在一些工业应用加工性方面的问题。另一方面,如33-37号试样所示,当含铌量(f)增加到超过0.06达0.08时,烧结温度增加到1250℃以上,大大地促进了PbO的蒸发,从而使烧结体变形,以后就难以进行加工。因此,含铌量(f)较好为0.02≤f≤0.06。
图2表明当含锰量(e)和含铌量(f)之间的2e/f之比变化时谐振频率随温度的变化率。
如图2所示,当2e/f之比增加时,谐振频率对温度的依赖性降低。如19、24和28号试样所示,对于要求谐振频率对温度的高精度依赖关系的窄带滤波器材料来说,2e/f之比较好不超过1(该值不包括在本发明的范围内),因为|fr-TC|的绝对值增加至40ppm/℃以上。另一方面,如23、27和32号试样所示,当2e/f之比超过本发明的范围,达2.1时,由于绝缘电阻的减小而不能进行极化处理。因此,为了获得易于进行极化处理和具有良好温度性能的压电陶瓷烧结体,2e/f之比较好为1.05≤2e/f≤2。
如38或43号试样所示,次要组分SiO2或Al2O3的含量较好不小于本发明的范围,因为当烧结体的机械强度降低到100MPa或更低时,会在以后的加工过程中引起损坏。另一方面,如42或46号试样所示,当SiO2或Al2O3的含量大于本发明的范围时,除谐振电阻Zr增加至5Ω以上,烧结性能变差。因此,SiO2和Al2O3的含量较好分别为0.003-0.1%重量。
虽然已参照具体的实施例描述了本发明,但用相同方法制得的压电陶瓷材料和压电陶瓷烧结体并不局限于实施例中所述的压电陶瓷材料和压电陶瓷烧结体,在本发明的范围内可作各种变化。
例如,用本发明压电陶瓷烧结体所作的压电元件振动方式不必局限于纵向振动,也可以施加任何振动方式,包括膨胀振动、垂直振动和表面波。
本发明的压电陶瓷烧结体不仅可用于滤波器,也可用于其它压电应用装置的所有应用领域,如要求有低机电耦合系数的陷波器和振荡器。
虽然指定的氧化物和碳酸盐(如Pb3O4或SrCO3)已用作上述实施例中压电陶瓷材料的原料,但也可使用其它氧化物或最终转变成氧化物的其它化合物。
如上所述,通过烧制本发明的压电陶瓷材料可以获得机电耦合系数小、谐振电阻小和谐振频率对温度依赖性小的压电陶瓷烧结体。因此,通过使用上述的压电陶瓷烧结体可以获得窄带插入损耗小而谐振频率的温度稳定性好的压电元件,如滤波器。
当通过烧制本发明的压电陶瓷材料来获得压电陶瓷烧结体时,可以减少滤波器的插入损耗,而即使在机电耦合系数为饱和极化状态下的80%的不饱和极化状态时也不会使谐振电阻很大。因此,在不降低极化度的条件下,可较好地获得要求机电耦合系数低的窄带滤波器。

Claims (3)

1.一种至少含Pb、Sr、Zr、Mn、Nb、Si和Al的压电陶瓷材料,该压电陶瓷材料含有用通式(PbaSrb)(ZrcTidMneNbf)O3表示且组成满足如下关系的主要组分:
0.93≤a≤1.01
0.01≤b≤0.04
0.37≤c≤0.47
0.48≤d≤0.58
0.0105≤e≤0.06
0.02≤f≤0.06以及
1.05≤2e/f≤2,
其中相对于主要组分含有大于等于0.003%重量至小于等于0.1%重量的SiO2和大于等于0.003%重量至小于等于0.1%重量的Al2O3的次要组分。
2.一种压电陶瓷烧结体,它通过在氧气氛下烧制如权利要求1所述的压电陶瓷材料而得。
3.如权利要求2所述的压电陶瓷烧结体,它处于机电耦合系数低至饱和极化状态下的80%或更低的不饱和极化状态。
CN00108875A 1999-05-20 2000-05-19 压电陶瓷材料及由其制成的压电陶瓷烧结体 Expired - Lifetime CN1102554C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13978099A JP3570294B2 (ja) 1999-05-20 1999-05-20 圧電磁器材料およびそれを用いて得られた圧電磁器焼結体
JP139780/1999 1999-05-20

Publications (2)

Publication Number Publication Date
CN1274700A true CN1274700A (zh) 2000-11-29
CN1102554C CN1102554C (zh) 2003-03-05

Family

ID=15253259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00108875A Expired - Lifetime CN1102554C (zh) 1999-05-20 2000-05-19 压电陶瓷材料及由其制成的压电陶瓷烧结体

Country Status (6)

Country Link
US (1) US6299791B1 (zh)
JP (1) JP3570294B2 (zh)
KR (1) KR100487420B1 (zh)
CN (1) CN1102554C (zh)
DE (1) DE10024823B4 (zh)
FR (1) FR2793788B1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562402B2 (ja) * 1999-09-29 2004-09-08 株式会社村田製作所 圧電磁器材料およびこれを用いた表面波装置
JP3783534B2 (ja) * 2000-08-18 2006-06-07 株式会社村田製作所 圧電磁器焼結体および圧電磁器素子
US7045075B2 (en) * 2000-12-28 2006-05-16 Bosch Automotive Systems Corporation Ceramic material and piezoelectric element using the same
JP4733839B2 (ja) * 2001-02-08 2011-07-27 太平洋セメント株式会社 圧電素子の分極方法
DE10229086A1 (de) * 2001-09-29 2003-04-17 Ceramtec Ag Piezoelektrische keramische Werkstoffe auf der Basis von Bleizirkonattitanat (PZT) mit der Kristallstruktur des Perowskits
KR100431178B1 (ko) * 2001-11-12 2004-05-12 삼성전기주식회사 압전 트랜스의 제조방법
EP1519427B1 (en) 2003-09-24 2009-12-16 TDK Corporation Piezoelectric ceramic composition and manufacturing the same, and piezoelectric element
CN100391895C (zh) * 2004-03-26 2008-06-04 Tdk株式会社 压电陶瓷组合物
WO2005092817A1 (ja) * 2004-03-26 2005-10-06 Tdk Corporation 圧電磁器組成物
JP5392603B2 (ja) * 2009-03-13 2014-01-22 株式会社村田製作所 圧電セラミック電子部品の製造方法
JP5675503B2 (ja) * 2011-06-03 2015-02-25 日本碍子株式会社 圧電/電歪素子
CN109824357A (zh) * 2018-12-21 2019-05-31 贵州振华红云电子有限公司 高压电和高介电低温共烧压电陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3484377A (en) * 1966-12-08 1969-12-16 Nippon Electric Co Piezoelectric ceramic material
JPS6022515B2 (ja) * 1978-11-07 1985-06-03 三菱電機株式会社 圧電磁器組成物
JPH04270172A (ja) * 1991-02-22 1992-09-25 Matsushita Electric Ind Co Ltd 圧電磁器の製造方法
JP3163664B2 (ja) * 1991-07-15 2001-05-08 株式会社村田製作所 圧電磁器材料
JP3198613B2 (ja) * 1992-05-21 2001-08-13 株式会社村田製作所 表面波装置
JP3229528B2 (ja) * 1994-11-22 2001-11-19 松下電器産業株式会社 誘電体磁器及び誘電体共振器
JPH08283069A (ja) * 1995-04-07 1996-10-29 Nippon Cement Co Ltd 圧電セラミックス及びその製造方法

Also Published As

Publication number Publication date
CN1102554C (zh) 2003-03-05
KR20010049376A (ko) 2001-06-15
JP3570294B2 (ja) 2004-09-29
FR2793788A1 (fr) 2000-11-24
JP2000327419A (ja) 2000-11-28
DE10024823A1 (de) 2001-06-07
FR2793788B1 (fr) 2005-03-18
DE10024823B4 (de) 2005-03-10
KR100487420B1 (ko) 2005-05-03
US6299791B1 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US6884364B2 (en) Lead-free piezoelectric ceramic composition wherin Cu is contained in (KxA1-x)y(Nb1-zBz)O3perovskite compound, and process of preparing the same
JP3783534B2 (ja) 圧電磁器焼結体および圧電磁器素子
CN1102554C (zh) 压电陶瓷材料及由其制成的压电陶瓷烧结体
KR100645753B1 (ko) 압전 자기 조성물, 압전 세라믹 소자 및 압전 자기조성물의 제조방법
US6129886A (en) Method of preparation of piezoelectric ceramics
KR100685327B1 (ko) 압전자기 조성물, 압전소자
JP3750507B2 (ja) 圧電磁器組成物およびそれを用いた圧電セラミック素子
JP4169203B2 (ja) 圧電磁器組成物
JP2009078964A (ja) 圧電磁器の製造方法
JP4449331B2 (ja) 圧電磁器およびそれを用いた圧電磁器素子
KR0185029B1 (ko) 압전 세라믹
CN1173372C (zh) 压电陶瓷组合物和使用该组合物的压电器件
JP3864840B2 (ja) 圧電磁器組成物、圧電セラミック素子および圧電磁器組成物の製造方法
JP2008094706A (ja) 圧電磁器組成物及びレゾネータ
CN1194354C (zh) 压电陶瓷组合物和使用它的压电器件
JP3981221B2 (ja) 圧電磁器
CN1189416C (zh) 压电陶瓷组合物和使用该组合物的压电陶瓷元件
JP2006089367A (ja) 圧電磁器組成物
JPH10182225A (ja) 圧電磁器組成物
JP2001192266A (ja) 圧電体磁器組成物
CN101148350A (zh) 压电陶瓷组合物及谐振器
JP2007161516A (ja) 圧電磁器組成物
JP2007230792A (ja) 圧電磁器組成物
KR19980082359A (ko) 고주파 부품용 압전 세라믹 소재
JP2001019541A (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1046357

Country of ref document: HK

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030305