CN1270946A - 取代烯烃的制备 - Google Patents

取代烯烃的制备 Download PDF

Info

Publication number
CN1270946A
CN1270946A CN00102296A CN00102296A CN1270946A CN 1270946 A CN1270946 A CN 1270946A CN 00102296 A CN00102296 A CN 00102296A CN 00102296 A CN00102296 A CN 00102296A CN 1270946 A CN1270946 A CN 1270946A
Authority
CN
China
Prior art keywords
reaction
independently
alkyl
replacement
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00102296A
Other languages
English (en)
Other versions
CN1183061C (zh
Inventor
P·施瓦布
M·舒尔兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1270946A publication Critical patent/CN1270946A/zh
Application granted granted Critical
Publication of CN1183061C publication Critical patent/CN1183061C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

通式E-CH2-CH=CH-CH2-E1(Ⅰ)所示的C6化合物的制备方法,该方法包括:在含有钌化合物或钌配合物的均相催化剂存在下使通式R-CH=CH-CH2-E(Ⅱ)和/或R1-CH=CH-CH2-E1(Ⅲ)的化合物进行自复分解反应或交叉复分解反应,式中:E,E1独立地是-CHO、-COOH、-COOR2、-C(O)NR3R4、-CN,R、R1独立地是H、C1-12-烷基、C6-12-芳基或C7-13烷芳基,以及R2,R3,R4独立地是H、C1-12-烷基、C7-13-芳烷基。

Description

取代烯烃的制备
本发明涉及通过自复分解或交叉复分解作用来制备取代烯烃的方法。
烯烃的复分解(岐化作用)按其最简单的形式包括通过碳-碳双键的断裂和重整而进行的烯烃的可逆性的金属催化的烷基转移作用。在非环状烯烃的复分解的情况下,在自复分解作用与交叉复分解作用或共复分解作用之间是有区别的,在自复分解中,烯烃经重整后成为两种摩尔质量不同的烯烃的混合物(例如,丙烯转化成乙烯和2-丁烯),而交叉复分解或共复分解则描述两种不同烯烃的反应(例如,丙烯与1-丁烯反应生成乙烯和2-戊烯)。烯烃复分解反应的进一步的应用领域包括通过环烯烃的开环易位聚合(ROMP)和α,ω-二烯的非环二烯的易位聚合(ADMET)来合成不饱和聚合物。较新的应用是环烯烃与非环烯烃的选择性开环反应,以及闭环反应(RCM),通过该反应,优选从α,ω-二烯开始,可制备出各种大小不同的不饱和环。
适用于复分解反应的催化剂原则上是各种均相或多相的过渡金属化合物。
多相催化剂,例如载于无机氧化载体上的钼、钨或铼的氧化物在非官能化烯烃的反应中显示出高活性和再生能力,但是当使用官能化烯烃如油酸甲酯时,往往必须用烷基化剂进行预处理以增加其活性。含有protic官能基团(例如羟基、羧基或氨基)的烯烃会导致多相催化剂的自发失活。
本发明涉及制备ECH2CH=CHCH2E类型的双官能C6-烃类如己二酸及其衍生物的方法,该方法以RCH=CHCH2E类型的烯烃的复分解反应作为形成C6单元的关键步骤。
这种类型的C6-烃类,经过官能化后是工业上重要的前体物和中间体:例如己二酸可用作生产尼龙6.6(纤维领域)的前体物,且目前为止大都通过环己烷的氧化裂解来制备。更近的研究包括从丁二烯形成己二酸的反应,例如通过中间体1,4-二甲氧基-2-丁烯的羰基化的孟山都工艺,和通过在甲醇存在下的丁二烯的两步羰基化的BASF工艺。
两步羰基化要求激烈的反应条件,而且从丁二烯开始得到己二酸收率十分一般,即整个两阶段约为70%。
因此,上述的复分解反应看来是制备所需化合物的一种可能的替代路线。
当使用贫电子烯烃如丙烯酸或其衍生物时均相复分解催化剂在烯烃方面的通常高的活性就会急剧降低。尤其是,RCH=CH(CH2)nE类型的烯烃在已知的复分解催化剂存在下进行自复分解反应生成RCH=CHR和E(CH2)nCH=CH(CH2)nE时,如果E是一种吸电子取代基,n是0或1,以及R=H、烷基或芳基,则该反应就会成问题。因此,在文献中很少提及在自复分解反应中使用取代烯烃如3-戊烯酸甲基、3-戊烯酸或3-戊烯腈,因为它们的活性低得不能令人满意。
J.Chem.Soc.,Chem.Commun.1983,262-263,同一杂志的1981,1081-1082和J.Organomet.Chem.(有机金属化学),1985,280,115-122,描述了CH2=CH(CH2)nCN类型的不饱和腈在预先用SnMe4或SnEt4活化过的多相Re2O7/Al2O3催化剂存在下的自复分解反应。尽管4-戊烯腈以高达约90%的收率进行反应,但是烯丙基腈除了异构化生成巴豆腈之外并未进行任何生产性的复分解反应。
Recl.Trav.Chim.Pays-Bas 1977,96(11),86-90,描述了使用均相催化剂体系WCl6/SnMe4进行的低分子量不饱和酯类的复分解反应。虽然3-戊烯酸甲酯在2摩尔WCl6/SnMe4的存在下反应生成2-丁烯和脱氢己二酸酯的选择性为95%,但其缺点是该催化剂体系对进料中的杂质具有高度的敏感性。当使用所提到的催化剂体系时,不可能用不饱和酸进行复分解反应。
J.Mol.Catal.1992,76,181-187涉及用WCl6(或WOCl4)/1,1,3,3-四甲基-1,3-二硅环丁烷(DSBC)催化剂体系进行的官能化烯烃的复分解反应。在使用WOCl4/DSBC的最佳实验中,4-戊烯酸甲酯以54%的转化率转化成相应的C8二酯的选择性为94%。在同样的催化剂体系的存在下,烯丙基腈以53%的转化率转化成脱氢己二腈并消除乙烯的选择性为82%。
Chem.Lett.1976,1021-1024叙述了使用WCl6/Me2Al2Cl2时转化率为60%的4-戊烯酸甲酯的复分解反应。
本发明的一个目的是开发一种采用合适的、通常有用的催化剂体系在适中的反应条件下从易得的原料制备双官能化C6-烃类的经济的、有吸引力的合成路线。
我们已经发现,这个目的可通过下述制备通式(I)化合物的方法达到:
    E-CH2-CH=CH-CH2-E1            (I),该方法包括:在含有钌化合物或钌配合物的均相催化剂存在下使通式(II)和/或(III)的化合物进行自复分解反应或交叉复分解反应:
    R-CH=CH-CH2-E                   (II)
    R1-CH=CH-CH2-E1               (III)式中:
E,E1独立地是-CHO、-COOH、-COOR2、-C(O)NR3R4、-CN,
R、R1独立地是H、C1-12-烷基、C6-12-芳基或C7-13烷芳基,以及
R2,R3,R4独立地是H、C1-12-烷基、C7-13-芳烷基。
因此,按照本发明该目的是通过一种工艺序列达到的,其中形成ECH2CH=CHCH2E类型的C6-烃类的关键步骤是按照下列反应方程式的RCH=CHCH2E类型的烯烃的自复分解反应:
Figure A0010229600061
作为联产品,RCH=CHR以化学计量量形成,如果希望的话,可通过后续反应进行进一步加工。例如,通过RCH=CHR的乙醇分解可以制得CH2=CHR类型的α-烯。
在上面的方程式中,E是醛、酯、酸、酰胺或腈官能。R是氢或烷基,芳基或烷芳基基团。优选的烷基R是直链C1-6烷基,如甲基或乙基,或支化的C1-6烷基,其中支化点离双键至少有1个亚甲基基团。
也可以使具有不同基团R、R1和E、E1的基材在交叉复分解反应中互相反应。在这种情况下,预期产生混合的反应产物。
优选地,E=E′,R=R′。E和E′特别优选酯或羧基。R和R′优选甲基或乙基基团。
本发明的方法在含有钌化合物或钌配合物的均相催化剂存在下进行。优选使用钌-亚烷基配合物作为催化剂。钌-亚烷基配合物优选地选自下列配合物:
Figure A0010229600072
式中 B可以进一步用配体L4来稳定,且
X是不配位、或仅与金属中心形成弱配位的阴离子,
Y是一齿或多齿阴离子配体,
R和R′彼此独立,各是氢或有取代或无取代的C1-20-烷基、C6-20-芳基或C7-20-烷芳基基团,以及
L1、L2、L3和L4彼此独立,是不带电的电子给体配体,
或者选自通式C或D的钌配合物
      RuX′Y′(=CH-CH2R″)L1L2                 (C)
      RuX′Y′(=CHR″)L1L2                      (D)式中:
X′,Y′是相同或不同的阴离子配体,
R″是氢或有取代或无取代的C1-20-烷基或C6-20-芳基基团,以及
L1和L2彼此独立,是不带电的电子给体配体。
不带电的电子给体配体优选是含有至少2个大基团的膦、胂、,胺类、吡啶类、π配位的烯烃或溶剂分子。不带电的电子给体配体特别优选地选自通式为PRaRbRc的膦,其中Ra和Rb独立地是苯基基团或空间位阻有机基团,Rc是氢、有取代或无取代的C1-12烷基或C6-20芳基基团,或者按Ra的定义。
Ra和Rb优选地选自异丙基、叔丁基、环戊基、环己基、苯基或基。
这类配合物公开于例如下列文献中:WO 93/20111,WO 96/04289,WO 96/06185,WO 97/03096,以及DE-A-197 36 609和DE-A-198 00 934。
阳离子催化剂体系包含作为活性组分的通式 A(阳离子碳炔配合物)或 B(阳离子碳烯配合物)或包含这两者的混合物的阳离子钌配合物:
Figure A0010229600091
式中 B可进一步用配体L4加以稳定。
AB两种结构中:
X-是不配位或仅仅很弱地配位到金属中心上的阴离子,例如选自元素周期表中III~VII主族的配合阴离子,如BR″4 -(R″=F、苯基,可以带有1个或多个氟原子或全氟代C1-6烷基作为取代基,如C5H5-nFn,式中n=1~5)、PF6 -、AsF6 -、SbF6 -、ClO4 -、CF3SO3 -或FSO3 -
Y是-齿或多齿阴离子配体,
R和R′彼此独立,各是氢或有取代或无取代的C1-20-烷基、C6-20-芳基或C7-20-烷芳基或-芳烷基基团,以及
L1、L2、L3和L4彼此独立,是不带电的电子给体配体,优选氮给体,如胺类和吡啶类,含有至少2个大基团如异丙基、叔丁基、环戊基、环己基和基等的膦、胂和类化合物,或者π配位的烯烃或溶剂分子。
各基团优选具有下述含义:
X-是BR″4 -,其中R″=F或C6H3(m-CF3)2
Y是卤素、优选氯,或OR,其中R=C1-6-烷基、C6-12-芳基,优选苯氧化物,
R是H,
R′是C1-6-烷基、C6-12-芳基、C7-20-芳烷基,优选甲基或苄基,
L1,L2是含有至少2个大基团的膦化合物,
L3,L4是环状或非环状的醚类或叔胺,如NMe2苯基、NMe3、NEt3
活性组分 A和/或 B的合成,或含有这些活性组分的混合物的合成可以从许多有机金属起始原料开始进行,例如
-通过RuY(H)(=C=CHR)L1L2型的氢化(亚乙烯基)配合物的反应,这种配合物可以通过使RuClH(H2)L1L2与端炔HC≡CR、与R+X-反应来合成,其中X-是非配位或弱配位阴离子。RuClH(H2)L2可以按文献方法制备,例如在L存在下在氢气氛中在异丙醇中从聚合的钌前体物[RuCl2(COD)]x(COD=环辛二烯)制备(Werner等人,Organometallics(有机金属化合物)1996,15,1960-1962),或在L和叔胺(NEt3)存在下在氢气氛中在仲丁醇中从同样的起始原料制备(Grubbs等人,有机金属化合物,1997,16,3867-3869)。RuClH(H2)L2也可以从RuCl3·H2O开始,通过在THF中在活化的镁存在下在氢气氛中与L反应而制得(BASF AG,DE-A-198 00 934,该申请有较早的优先权,但不是在先公开),且优选原位与1-炔反应,得到相应的氢化(氯)亚乙烯基配合物RuClH(=C=CHR)L2。后者可以分离出来,或者原位与H+X-(X-=非配位阴离子)反应生成按照本发明使用的活性组分 A和/或 B
-通过RuYY′(=CHR)L1L2型(这里Y可以与Y′相同)的化合物与R+X-反应,其中X-是非配位或弱配位阴离子。混合阴离子型亚烷基配合物RuXY(=CHCH2R)L2可按DE-A-198 00 934中所述方法从RuXH(=C=CHR)L2开始制备。
-通过RuYY′(=CHR)L1L2型化合物在配体L3存在下与能夺取阴离子的金属盐M+X-或路易斯酸如BF3或AlCl3反应,其中X-是非配位或仅仅是弱配位的阴离子,阴离子配体Y和Y′可以相同或不同。MX可以例如是AgB(C5F5)4、AgPF6或AgSbF6
R+X-、M+X-和相应的路易斯酸与有机金属起始原料的摩尔比优选为1∶10~1000∶1。
生成活性组分 A和/或 B的反应最好在惰性气体氖围中在有机溶剂中进行,优选在能通过配位使不饱和金属中心稳定化的溶剂中进行。这类溶剂例如有脂族醚或环醚如二噁烷或THF、胺、DMSO、腈、膦、胂、、水、烯烃或其它2-电子给体化合物。反应最好在THF中在-100~+100℃,优选-80~-40℃,在压力为1毫巴~100巴,优选0.5~5巴的条件下进行。
可以用1摩尔当量或更多的R+X-进行反应。使用过量的R+X-时所生成的L1-3RX对该反应没有负面影响。所得到的含有活性组分 A和/或 B的组合物可原位用作高活性复分解催化剂体系,或可以在低温下在惰性气体氛围中贮存。如果愿意的话,活性组分 AB可以以分离的形式使用。
原则上,该反应在1秒~10小时后,优选在3秒~1小时后就完成。适用的反应容器通常是玻璃或钢制容器,如果需要的话,可以衬以陶瓷。
通式(C)
      RuX′Y′(=CH-CH2R″)L1L2                (C)(式中:
X′,Y′是相同或不同的阴离子配体,
R″是氢或有取代或无取代的C1-20-烷基或C6-20-芳基基团,以及
L1和L2彼此独立,各是不带电的电子给体配体)所示的钌配合物的制备优选地接下述步骤进行:
(a)使RuX3与L1和L2在惰性溶剂中在还原剂和氢以及式IV化合物
      R″-C≡CH                                (IV)(式中R″的定义同上)的存在下,在水的存在或不存在下进行反应,生成式V的化合物
      RuX′H(=C=CHR″)L1L2                   (V)式中X′、R″、L1、L2的定义同上,
(b)将式V的化合物从反应混合物中分离出来,随后在水的存在或不存在下,使其在惰性溶剂中与HY′、(HL1)Y′或(HL2)Y′和式IV的化合物进行反应
     R″-C≡CH                                (IV)式中R″的定义同上,
(c)随后使产物与HY′、〔HL1〕Y′或〔HL2〕Y′进行反应。
已经发现,上述的钌配合物可以通过在还原剂的存在下使原料RuX′3,优选RuCl3·3(H2O)与配体L1和L2、氢和式IV的端炔进行简单的反应,无需分离中间体而直接从原料以非常好的收率制得。这种钌配合物在碳烯的碳原子上没有乙烯类取代基。起始原料可以廉价制备,且容易得到。
为了制备式(C)的混合阴离子配合物,可先制备或分离出式V的中间体,随后进一步反应。这就使得能引进不同的配体X′和Y′。
该合成的第一阶段是RuX′3与配体L1和L2在惰性溶剂中在还原剂和氢的存在下进行反应。可以使用的溶剂是芳烃、杂芳烃、环状或非环状醚类。优选的溶剂是甲苯、NMP、四氢呋喃、二烷基醚、二醇的醚类和二噁烷。特别优选的是四氢呋喃。
作为还原剂,可以使用在反应条件下能使Ru(III)还原为Ru(II)的任何一种还原剂。
优选在金属或非金属还原剂的存在下,优选在碱金属、碱土金属或过渡金属如钯或锌的存在下用氢进行还原反应,这些金属可以以金属形式存在和/或载带在载体上。碱土金属优选是镁,且优选以活化形式使用。活化可以通过例如与含氯有机溶剂接触来实现。例如,在惰性气体氖围下的单容器反应中,可将镁放入稀释的含氯有机溶剂如二氯乙烷中,在反应容器中,在经过1秒至10小时,优选1分钟至1小时的诱导期后在氢气氛围中与溶剂、RuX′3和配体L1和L2反应。在该反应步骤(a)中的温度优选是0~100℃,特别优选是20~80℃,尤其40~60℃。压力优选是0.1~100巴,特别优选是0.5~5巴,尤其0.8~1.5巴。反应时间优选是10分钟~100小时,特别优选是1小时~10小时。配体L1和L2合在一起与所用的钌盐的摩尔比优选是2~20∶1,特别优选是2~5∶1。在步骤(a)反应后,反应混合物优选在-80~100℃,特别优选在-40~50℃,尤其在-30~20℃的温度范围与1-炔反应。这里,最初使用的钌盐与1-炔的摩尔比优选是1∶1~1∶10。该反应优选地在0.1~10巴,特别优选在0.8~1.5巴,尤其在1~1.4巴压力下进行,优选30秒~10小时,特别优选1分钟~1小时。
在式(C)的钌配合物中,X′是一齿阴离子配体,例如卤素、假卤素、羧酸盐、二丙酮化物。X′特别优选卤素,尤其溴或氯,特别是氯。特别优选用RuCl3·3H2O进行反应。
在式(C)的钌配合物中,Y′可以是与X′相同的配体。Y′优选是不同于X′的卤素,或连接到聚合物或载体上的羧基,这就使得可以将催化剂固定在载体上。式V中间体中的配体X′可以通过盐与MY′的复分解反应而被取代,这里M是碱金属或铵,优选钾。这也使得可以获得产品混合物。
如上所述,L1和L2是不带电的电子给体配体。基团R是氢或有取代或无取代的C1-20-烷基,优选C1-6-烷基,或C6-20-芳基,优选C6-8-芳基。式(C)的特别优选的钌配合物是化学式为RuCl2(=CH-CH3)(PCy3)2和RuCl2(=CH-CH2-Ph)(PCy3)2的配合物,式中Cy是环己基基团,Ph是苯基基团。
通式
          RuX′2(=CH-CH2R″)L1L2(式中:
X′是阴离子配体,
R″是氢或有取代或无取代的C1-20-烷基或C6-20-芳基基团,以及
L1和L2彼此独立,各是不带电的电子给体配体)所示的钌配合物也可以通过下述步骤制得:
a)使RuX′3与二烯在还原助剂的存在或不存在下,在基于一种或多种脂族仲醇的溶剂中进行反应,然后在至少一种配位弱碱和氢的存在下与L1和L2反应,且不分离出中间体,
b)随后在可溶性氯源的存在下,使产物与通式R″-C≡CH所示的化合物反应,式中R″的定义同上。
与先有技术中所述的催化剂体系相比,按照本发明使用的钌配合物甚至在很低的催化剂浓度(100ppm~1%)下,以及在中等反应条件(T=0~200℃,p=1巴绝压)下也能达到高的选择性和较长时间的催化剂工作寿命。
当使用通式为RCH=CHCH2E(其中R=Me或Et)的内烯烃时,为了提高下述反应的转化率,引进乙烯可能是需要的或者至少是有利的。在此情况下,乙烯可用作汽提气体。
Figure A0010229600141
在所述的任何反应中都不必加入溶剂,例如戊烷、丙酮、醚和甲苯,但加入溶剂对反应并无不良影响。
进行反应的温度是0~200℃,压力是0.01~100巴,通常在10分钟~100小时可完成反应。
反应可以在诸如玻璃容器、反应罐、管式反应器或循环反应器之类的反应器中按连续方式或间歇方式进行。由于这些反应是平衡反应,所以有利的作法是,应尽可能快速地从平衡反应中除去工艺产物,以便达到很高的转化率。对于反应中会生成低沸物联产品如乙烯、2-丁烯或丙烯的那些反应而言,这种作法是特别有用的。
为了分离工艺产物,可采用蒸馏方法对含有溶解或悬浮在工艺产物中的催化剂的反应混合物进行后处理,而工艺产物则可经精馏后分离。含有催化剂的蒸馏釜液可返回到反应中。也可将该催化剂在高沸点溶剂中进行再循环。为了从平衡中原位除去所生成的低沸点组分,本发明的方法也可以在反应式蒸馏设备中进行,以便使转化率达到最高。
用作复分解反应起始原料的RCH=CHCH2E(R和E,参见上面)型的化合物可以从易得的起始原料,例如二烯如丁二烯例如通过加氢甲酰化、羰基化或氢氰化以高收率制得。
存在于复分解产物中的双官能C6-烃类可通过特别是加氢、加氢甲酰化、还原性胺化、氧化或闭环等进行进一步加工。
本发明通过下列实施例说明。
实施例1
脱氢己二酸甲酯(C6-二酯)的合成
在Schlenk管中,使100g(0.88mol)3-戊烯酸甲酯(3-MP)在各种温度下和常压下与677mg(0.9mmol)RuCl2(=CHMe)(PCy3)2反应。在几分钟内,观察到溶液从紫色变为酒红色的特征颜色变化。在整个实验过程中反应空间处于封闭状态,以便使所生成的低沸点联产品无法逃逸。在不同反应时间后取样并通过气相色谱进行分析。结果总结于下表中:T=20℃
    1小时     5小时     20小时
转化率3-MP     9     12     18
选择性C6-二酯     100     100     99
T=40℃
    1小时     5小时     20小时
转化率3-MP     13     15     18
选择性C6-二酯     99     99     98
T=80℃
    1小时     5小时     20小时
转化率3-MP     20     21     2
选择性C6-二酯     99     98     97
实施例2
脱氢己二酸(C6-二酸)的合成
在Schlenk管中,使100g(1.0mol)3-戊烯酸在80℃和常压下与760mg(1.0mmol)RuCl2(=CHMe)(PCy3)2反应。在整个实验过程中反应空间处于封闭状态,以便使所生成的低沸点联产品无法逃逸。在几分钟内,观察到溶液从紫色变方酒红色的特征颜色变化。5小时后,反应混合物用气相色谱进行分析。
转化率3-戊烯酸=23%
选择性C6-二酸=98%
实施例3
在乙烯存在下合成脱氢己二酸甲酯(C6-二酯)
在装配有气体入口管的Schlenk管中,使100g(0.88mol)3-戊烯酸甲酯在室温下与677mg(0.9mmol)RuCl2(=CHMe)(PCy3)2反应,同时往该溶液中通入缓慢的乙烯气流。在几分钟内,观察到溶液从紫色变为酒红色的特征颜色变化。连续通入乙烯1小时,从溶液中汽提出所生成的丙烯。随后用气相色谱法对反应混合物进行分析。
转化率3-戊烯酸=45%
选择性C6-二酯=98%
实施例4
在100毫巴下合成脱氢己二酸甲酯(C6-二酯)
在40℃,在100毫巴下合成脱氢己二酸甲酯(C6-二酯)将100g(0.88mol)3-戊烯酸甲酯在装配有滴液漏斗的圆底烧瓶中与677mg(0.9mmol)RuCl2(=CHMe)(PCy3)2进行混合,然后在100毫巴低压下用1小时的时间逐渐加入另外的400g(3.51mol)3-戊烯酸甲酯,以除去所生成的2-丁烯。在40℃将反应混合物再搅拌1小时,最后用蒸馏法进行后处理。
收率C6-二酯=211g(分离的,理论的56%)

Claims (9)

1.通式(I)所示的C6化合物的制备方法
   E-CH2-CH=CH-CH2-E1              (I),该方法包括:在含有钌化合物或钌配合物的均相催化剂存在下使通式(II)和/或(III)的化合物进行自复分解反应或交叉复分解反应:
   R-CH=CH-CH2-E                    (II)
   R1-CH=CH-CH2-E1                 (III)式中:
E,E1独立地是-CHO、-COOH、-COOR2、-C(O)NR3R4、-CN,
R、R1独立地是H、C1-12-烷基、C6-12-芳基或C7-13烷芳基,以及R2,R3,R4独立地是H、C1-12-烷基、C7-13-芳烷基。
2.如权利要求1所要求的方法,其中用钌-亚烷基配合物作为催化剂。
3.如权利要求2所要求的方法,其中所述的钌-亚烷基配合物选自通式A或B的阳离子钌配合物或包含它们的混合物:式中 B可以进一步用配体L4来稳定,且
X是不配位、或仅与金属中心形成弱配位的阴离子,
Y是一齿或多齿阴离子配体,
R和R′彼此独立,各是氢或有取代或无取代的C1-20-烷基、C6-20-芳基或C7-20-烷芳基基团,以及
L1、L2、L3和L4彼此独立,是不带电的电子给体配体,
或者选自通式C或D的钌配合物
      RuX′Y′(=CH-CH2R″)L1L2                 (C)
      RuX′Y′(=CHR″)L1L2                      (D)式中:
X′,Y′是相同或不同的阴离子配体,
R″是氢或有取代或无取代的C1-20-烷基或C6-20-芳基基团,以及
L1和L2彼此独立,是不带电的电子给体配体。
4.如权利要求3所要求的方法,其中所述的不带电的电子给体配体是含有至少2个大基团的膦类、胂类、类化合物,胺类、吡啶类、π配位的烯烃或溶剂分子。
5.如权利要求4所要求的方法,其中所述不带电的电子给体配体选自下式所示的膦类化合物
PRaRbRc
其中Ra和Rb独立地是苯基基团或空间位阻有机基团,Rc是氢、有取代或无取代的C1-12烷基或C6-20芳基基团,或者按Ra的定义。
6.如权利要求3~5中任何一项所要求的方法,其中X是卤素,Y是相同的卤素或不同的卤素,或者是键合到聚合物上或载体上的羧基。
7.如权利要求1~5中任何一项所要求的方法,其中E与E′相同,R与R′相同。
8.如权利要求1~5中任何一项所要求的方法,其中所述反应在乙烯存在下进行。
9.如权利要求1~5中任何一项所要求的方法,其中R-CH=CH-CH2-E是3-戊烯酸甲酯或3-戊烯酸。
CNB001022962A 1999-02-22 2000-02-22 取代烯烃的制备 Expired - Fee Related CN1183061C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19907519A DE19907519A1 (de) 1999-02-22 1999-02-22 Verfahren zur Herstellung von substituierten Olefinen
DE19907519.0 1999-02-22

Publications (2)

Publication Number Publication Date
CN1270946A true CN1270946A (zh) 2000-10-25
CN1183061C CN1183061C (zh) 2005-01-05

Family

ID=7898406

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001022962A Expired - Fee Related CN1183061C (zh) 1999-02-22 2000-02-22 取代烯烃的制备

Country Status (10)

Country Link
US (1) US6506944B1 (zh)
EP (1) EP1031553B1 (zh)
JP (1) JP2000297063A (zh)
CN (1) CN1183061C (zh)
CA (1) CA2298943A1 (zh)
DE (2) DE19907519A1 (zh)
ES (1) ES2190912T3 (zh)
MX (1) MXPA00001573A (zh)
MY (1) MY121529A (zh)
TW (1) TW476753B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371044A (zh) * 2013-12-19 2015-02-25 上海克琴化工科技有限公司 一种钌金属催化剂的制备及其在开环易位聚合反应中的应用
CN109468348A (zh) * 2008-03-11 2019-03-15 基因组股份公司 己二酸酯或硫代酯合成
CN116947695A (zh) * 2023-09-19 2023-10-27 上海如鲲新材料股份有限公司 一种1,3,6-己烷三腈的制备方法和应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1230207B1 (en) * 1999-11-18 2005-06-22 Richard L. Pederson Metathesis syntheses of pheromones or their components
DE10015452A1 (de) * 2000-03-29 2001-10-04 Bayer Ag Verfahren zur Polymerisation von polar substituierten Cycloalkenen
CA2462005A1 (en) * 2004-02-23 2005-08-23 Bayer Inc. Process for the preparation of low molecular weight hydrogenated nitrile rubber
DE102004033312A1 (de) * 2004-07-08 2006-01-26 Boehringer Ingelheim Pharma Gmbh & Co. Kg Kontinuierliches Metatheseverfahren mit Ruthenium-Katalysatoren
US7303294B1 (en) * 2004-09-14 2007-12-04 Magna Donnelly Mirrors North America L.L.C. Vehicle mirror system with reduced friction actuation and movement
FR2921363B1 (fr) * 2007-09-20 2009-11-06 Arkema France Procedes de synthese de diacides gras par metathese de diacides insatures obtenus par fermentation d'acides gras naturels
WO2010062958A1 (en) * 2008-11-26 2010-06-03 Elevance Renewable Sciences, Inc. Methods of producing jet fuel from natural oil feedstocks through metathesis reactions
CA2742793C (en) * 2008-11-26 2016-05-10 Elevance Renewable Sciences, Inc. Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions
CA2760789C (en) * 2009-05-05 2016-07-19 Stepan Company Sulfonated internal olefin surfactant for enhanced oil recovery
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
BR112012008608B8 (pt) 2009-10-12 2022-06-14 Elevance Renewable Sciences Método de refinação de óleo natural
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US9139493B2 (en) 2011-12-22 2015-09-22 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9169174B2 (en) 2011-12-22 2015-10-27 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9133416B2 (en) 2011-12-22 2015-09-15 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229419A1 (de) * 1982-08-06 1984-02-09 Consortium für elektrochemische Industrie GmbH, 8000 München Verfahren zur durchfuehrung der heterogen-katalysierten olefin-metathese
JPS5929634A (ja) * 1982-08-12 1984-02-16 Sumitomo Chem Co Ltd アジピン酸およびアジピン酸ジエステルの製造方法
US5312940A (en) * 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
AU691645B2 (en) * 1992-04-03 1998-05-21 California Institute Of Technology High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
WO1994023836A1 (en) * 1993-04-08 1994-10-27 E.I. Du Pont De Nemours And Company Catalyst composition and process for the production of unsaturated diesters
US5831108A (en) * 1995-08-03 1998-11-03 California Institute Of Technology High metathesis activity ruthenium and osmium metal carbene complexes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468348A (zh) * 2008-03-11 2019-03-15 基因组股份公司 己二酸酯或硫代酯合成
US11365432B2 (en) 2008-03-11 2022-06-21 Genomatica, Inc. Adipate (ester or thioester) synthesis
CN109468348B (zh) * 2008-03-11 2023-05-16 基因组股份公司 己二酸酯或硫代酯合成
CN104371044A (zh) * 2013-12-19 2015-02-25 上海克琴化工科技有限公司 一种钌金属催化剂的制备及其在开环易位聚合反应中的应用
CN104371044B (zh) * 2013-12-19 2016-09-21 上海克琴化工科技有限公司 一种钌金属催化剂的制备及其在开环易位聚合反应中的应用
CN116947695A (zh) * 2023-09-19 2023-10-27 上海如鲲新材料股份有限公司 一种1,3,6-己烷三腈的制备方法和应用
CN116947695B (zh) * 2023-09-19 2023-12-26 上海如鲲新材料股份有限公司 一种1,3,6-己烷三腈的制备方法和应用

Also Published As

Publication number Publication date
JP2000297063A (ja) 2000-10-24
TW476753B (en) 2002-02-21
EP1031553B1 (de) 2003-01-08
ES2190912T3 (es) 2003-09-01
CA2298943A1 (en) 2000-08-22
DE19907519A1 (de) 2000-08-31
DE50001027D1 (de) 2003-02-13
US6506944B1 (en) 2003-01-14
EP1031553A1 (de) 2000-08-30
MXPA00001573A (es) 2002-03-08
CN1183061C (zh) 2005-01-05
MY121529A (en) 2006-01-28

Similar Documents

Publication Publication Date Title
CN1183061C (zh) 取代烯烃的制备
CN1134448C (zh) 钌或锇复分解催化剂的合成
JP4531253B2 (ja) N−複素環式カルベン配位子を含むルテニウムのアルキリデン錯体;オレフィンメタセシス用の高活性選択性触媒としての使用
US6500975B1 (en) Cationic ruthenium complexes, their production and their use
US20040127350A1 (en) Ruthenium complexes as (pre)catalysts for metathesis reactions
US20030149274A1 (en) Homobimetallic and heterobimetallic alkylidene complexes of ruthenium containing N-heterocyclic carbene ligands
US20140288319A1 (en) Cross-metathesis reaction of functionalized and substituted olefins using group 8 transition metal carbene complexes as metathesis catalysts
JP5248322B2 (ja) 環状オレフィンの製造方法
Siano et al. Activity and stereoselectivity of Ru-based catalyst bearing a fluorinated imidazolinium ligand
JP4550413B2 (ja) 新規遷移金属錯体及び遷移金属−触媒反応におけるその使用
Itoh et al. Stoichiometric and catalytic dimerization of conjugated dienes with (C5R5) Ru (diene)+
Hauser et al. Cationic tungsten oxo alkylidene N-heterocyclic carbene complexes via hydrolysis of cationic alkylidyne progenitors
US20180065914A1 (en) Ruthenium polymerisation catalysts
CN1832953A (zh) 作为均相氢化催化剂的取代的二茂铁基二膦
EP1604964B1 (en) Zero-valence transition metal complex and method of synthesizing organometallic compound from the same as starting material
JP4118508B2 (ja) ルテニウム錯体の製造
KR20030022888A (ko) 카르베노이드를 함유하는 루테늄 착물
JP2001029794A (ja) ルテニウムメタセシス触媒およびそれを用いたメタセシス反応によるオレフィン反応生成物を製造する方法
JP6384363B2 (ja) 含フッ素オレフィンの製造方法
CN1348458A (zh) 齐聚催化剂
Dixneuf et al. Ruthenium indenylidene catalysts for alkene metathesis
FR2983475A1 (fr) Procede de metathese d'olefines lineaires alpha utilisant un complexe du ruthenium comportant un carbene n-heterocyclique dissymetrique
JP3942122B2 (ja) ルテニウムメタセシス触媒およびそれを用いたメタセ シス反応によるオレフィン反応生成物を製造する方法
DRĂGUŢAN et al. Synthetic approach to ruthenium vinylidene complexes and their applications in metathesis catalysis
WO2008102157A1 (en) Catalytic method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050105

Termination date: 20160222

CF01 Termination of patent right due to non-payment of annual fee