CN1262692C - 一种硅纳米线及其制备方法 - Google Patents

一种硅纳米线及其制备方法 Download PDF

Info

Publication number
CN1262692C
CN1262692C CN 03155931 CN03155931A CN1262692C CN 1262692 C CN1262692 C CN 1262692C CN 03155931 CN03155931 CN 03155931 CN 03155931 A CN03155931 A CN 03155931A CN 1262692 C CN1262692 C CN 1262692C
Authority
CN
China
Prior art keywords
silicon
sio
electron beam
substrate
silicon nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03155931
Other languages
English (en)
Other versions
CN1590599A (zh
Inventor
许向东
王银川
刘忠范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN 03155931 priority Critical patent/CN1262692C/zh
Publication of CN1590599A publication Critical patent/CN1590599A/zh
Application granted granted Critical
Publication of CN1262692C publication Critical patent/CN1262692C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明公开了一种硅纳米线及其制备方法。本发明的硅纳米线由单晶态硅核以及包裹在外面的非晶氧化物壳层所组成。其制备方法是(1)将纯度为99.99%的Si粉和纯度为99.99%的SiO2粉按照1∶1的重量比例进行配制搅匀,放在超高真空电子束系统的源坩埚中抽真空,备用;(2)选用SiO2/Si作为硅纳米线的生长衬底,并用丙酮和甲醇溶液分别超声清洗5分钟,再用高纯氮气吹干后,放入电子束系统的预真空室中,抽真空;(3)然后把衬底传到本底压强为2×10-10mbar的电子束系统主真空室中,加热到650~750℃,温度稳定后,再用电子束蒸发源坩埚中的Si+SiO2源,使硅以0.02nm/s的速率蒸发出来,并在SiO2/Si(111)或SiO2衬底上沉积生长;(4)主真空室冷却至室温,取出衬底,其表面蓝灰色或黄色薄膜,即为一维硅纳米线。

Description

一种硅纳米线及其制备方法
技术领域
本发明涉及一种纳米材料及其制备方法,特别是一种硅纳米线及其制备方法。
背景技术
一维纳米材料是未来纳电子器件和光电子器件的重要组件,在学术研究和应用开发领域都有良好的前景。硅纳米线是一类重要的一维纳米材料。目前,制备硅纳米线的方法主要有:热蒸发法(thermal evaporation)、化学气相沉积法(CVD)以及激光烧蚀法(laser ablation)等。在这些方法中,硅纳米线的制备一般是在大气压或低真空(本底压强≥10-2mbar)、850℃~1200℃的生长温度条件下进行,这种条件下的生长环境限制了硅纳米线产品质量和性能的进一步改进,而且也给微观生长机制的研究带来许多不确定的因素。
发明内容
本发明的目的是提供一种硅纳米线及其制备方法。
本发明的硅纳米线,由直径为9~13nm的单晶态硅核以及包裹在外面的厚度为5~9nm的非晶氧化物壳层组成。
所述单晶态硅核由面间距分别为0.19nm和0.31nm的(110)和(111)晶面组成。
所述单晶硅核的生长取向主要为[221]。
所述非晶氧化物壳层为氧化硅和二氧化硅壳层。
一种硅纳米线的制备方法,包括:
(1)蒸发用硅源的制备:用纯度为99.99%的硅(Si)粉和纯度为99.99%的二氧化硅(SiO2)粉,按重量比例为1∶1进行配置搅匀,然后用压片机把Si+SiO2粉压成片,放在超高真空电子束系统的源坩埚中抽真空,备用;
(2)硅纳米线生长衬底的准备:选用100~600nm SiO2/Si(111)或SiO2作为硅纳米线的生长衬底,先后用分析纯丙酮和甲醇溶液对生长衬底分别超声清洗5分钟,再用氮气吹干后,放入超高真空电子束系统的预真空室中,抽真空;
(3)硅纳米线的生长:当预真空室的压强达到1×10-7mbar后,把SiO2/Si(111)或SiO2衬底传到超高真空电子束系统的主真空室中,加热到650~750℃,温度稳定后,再用电子束蒸发源坩埚中的Si+SiO2源,使硅蒸发出来,并在SiO2/Si(111)或SiO2衬底上沉积生长;
(4)主真空室冷却至室温后,把衬底从主真空室中取出,在衬底表面均匀的蓝灰色或黄色薄膜,即为一维硅纳米线。
在上述超高真空条件下制备硅纳米线方法中,当预真空室的压强达到1×10-7mbar后,把SiO2/Si(111)或SiO2衬底传到超高真空电子束系统的主真空室中时,主真空室的本底压强为2×10-10mbar。电子束蒸发条件为:电子束的加速电压为7kV;发射电流为220mA;蒸发速率为0.02nm/s;蒸发时间为7~10分钟。硅纳米线在电子束主真空室的生长温度优选为700℃。
本发明方法采用电子束蒸发系统用以产生硅纳米线生长所需的硅源,利用7kV电子束轰击蒸发Si+SiO2源,在700℃的温度下可制备出大面积的硅纳米线。一维纳米材料的制备除了需要有合适的源材料之外,保持适当而均衡的温度也是一维纳米材料能否生长的关键所在。因为,如果生长的环境温度不均匀,较高的温度梯度将会终止一维纳米材料的生长。本发明把恒温控制与电子束蒸发系统相结合,在超高真空的条件下成功制备出大面积的高质量和性能的硅纳米线。本发明开发了电子束蒸发技术的新用途,提供了一种超高真空条件下大规模制备硅纳米线的新方法,利用类似方法很可能得到更多种类、性能独特的一维纳米材料,为一维纳米材料的研究开拓了新的思路,有利于得到纯度更高的一维纳米材料产品,并且对深入研究一维纳米材料的生长机制具有重要意义。
附图说明
图1是实施本发明方法的设备装置示意图
图2是采用不同倍数的扫描电子显微镜检验本发明硅纳米线的显微照片
图3是采用透射电子显微镜检验本发明单根硅纳米线的显微照片
图4是采用高分辨透射电子显微镜检验本发明单根硅纳米线中间晶核的显微照片
图5是采用高分辨透射电子显微镜检验本发明单根硅纳米线结果的显微照片
图6是本发明硅纳米线的X射线衍射图
图7是本发明硅纳米线的X光电子能谱图(XPS Si 2p谱图)
具体实施方式
本发明具体实施过程所需的设备包括全自动超高真空电子束蒸发系统(瑞士BALZERS ULS 400系统,主真空室的本底压强为2×10-10mbar)和电阻式恒温控制系统。设备装置如图1所示,包括超高真空电子束系统(ULS 400)的预真空室1;ULS400系统的主真空室2;样品3;ULS 400系统配置的加热装置4;电阻式可控加热屏套(恒温控制系统)5;蒸发源坩埚(Si+SiO2源)6;电子枪7;膜厚及蒸发速率控制仪8;四极质谱仪9;ULS 400系统温控及样品旋转装置10。
制备硅纳米线的具体方法是:
(1)蒸发用硅源的制备:用纯度为99.99%的硅(Si)粉和纯度为99.99%的二氧化硅(SiO2)粉,按重量比例为1∶1进行配置并搅匀,然后用普通压片机把Si+SiO2粉压成片,放在超高真空电子束系统的源坩埚6中抽真空,备用。
(2)硅线生长衬底的准备:选用100nm SiO2/Si(111)作为硅纳米线的生长衬底,分别用分析纯丙酮和甲醇溶液对生长衬底超声清洗5分钟,再用高纯氮气吹干后,立即放入超高真空电子束系统的预真空室1中,抽真空。
(3)硅线的生长:当预真空室1的压强达到1×10-7mbar后,把SiO2/Si(111)衬底传到主真空室2(本底压强为2×10-10mbar)中,先用电阻式程序可控加热屏套5(恒温控制系统)和ULS 400系统配置的加热装置4共同加热,使生长区域的温度达到700℃,温度稳定后,用电子束蒸发源坩埚6中的Si+SiO2源,使硅蒸发出来,电子束的加速电压为7kV;发射电流为220mA;蒸发速率为0.02nm/s,在SiO2/Si(111)衬底上沉积生长8分钟。
(4)主真空室2冷却至室温,然后,把衬底从主真空室2中取出,发现在衬底的表面有大面积的均匀的蓝灰色薄膜生成,即为一维硅纳米线。
经以下方法分析,可证明采用本发明所述的制备方法可大量制备出一维硅纳米线。
采用本发明所述的制备方法,制备出的一维硅纳米线,经不同倍数的扫描电子显微镜检验,如图2所示,结果表明有大量的一维纳米线生成,其长度为1~4μm,在不同区域里分析都取得类似的图象;单根硅纳米线经透射电子显微镜检验,如图3所示,结果表明其一维硅纳米线由中间的单晶态核芯(直径约10nm),及外面包裹着的非晶氧化物壳层(厚度约5~9nm)所组成;单根硅纳米线的核芯经高分辨透射电子显微镜检验,如图4所示,结果表明中间的单晶态核芯由面间距分别为0.19nm和0.31nm的(110)和(111)晶格面所组成;单根硅纳米线经高分辨透射电子显微镜检验,如图5所示,结果表明该硅纳米线的生长方向与[110]和[111]晶向的夹角分别为19度和54度,这说明该硅纳米线的生长方向是[22 1],图5中右上角的插图是所制备的硅纳米线的电子衍射图,表明了硅纳米线的主要晶面族;如图6所示,所制备的硅纳米线的X射线衍射图,进一步证明硅纳米线的晶面族;如图7所示,所制备的硅纳米线的X光电子能谱图(XPS Si 2p谱图),证明所制备的硅纳米线包含有纯Si核,以及SiO和SiO2氧化物壳层。

Claims (5)

1、一种硅纳米线,由直径为9~13nm的单晶态硅核以及包裹在外面的厚度为5~9nm的一氧化硅和二氧化硅非晶氧化物壳层组成;所述单晶态硅核由面间距分别为0.19nm和0.31nm的(110)和(111)晶面组成,其生长取向主要为[22 1]。
2、一种硅纳米线的制备方法,包括:
(1)蒸发用硅源的制备:将纯度为99.99%的Si粉和纯度为99.99%的SiO2粉按照1∶1的重量比例进行配制搅匀,然后用压片机把Si+SiO2粉压成片,放在超高真空电子束系统的源坩埚中抽真空,备用;
(2)硅纳米线生长衬底的准备:选用100~600nm SiO2/Si(111)或SiO2作为硅纳米线的生长衬底,先后用分析纯丙酮和甲醇溶液对生长衬底分别超声清洗5分钟,再用氮气吹干后,放入超高真空电子束系统的预真空室中,抽真空;
(3)硅纳米线的生长:当预真空室的压强达到1×10-7mbar后,把SiO2/Si(111)或SiO2衬底传到超高真空电子束系统的主真空室中,加热到650~750℃,温度稳定后,再用电子束蒸发源坩埚中的Si+SiO2源,使硅蒸发出来,并在SiO2/Si(111)或SiO2衬底上沉积生长;
(4)主真空室冷却至室温后,把衬底从主真空室中取出,在衬底表面均匀的蓝灰色或黄色薄膜,即为一维硅纳米线。
3、根据权利要求2所述的硅纳米线的制备方法,其特征是:所述当预真空室的压强达到1×10-7mbar后,把SiO2/Si(111)或SiO2衬底传到超高真空电子束系统的主真空室中时,主真空室的本底压强为2×10-10mbar。
4、根据权利要求2或3所述的硅纳米线的制备方法,其特征是:电子束的加速电压为7kV;发射电流为220mA;蒸发速率为0.02nm/s;蒸发时间为7~10分钟。
5、根据权利要求2或3所述的硅纳米线的制备方法,其特征是:所述硅纳米线在电子束主真空室的生长温度为700℃。
CN 03155931 2003-08-27 2003-08-27 一种硅纳米线及其制备方法 Expired - Fee Related CN1262692C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03155931 CN1262692C (zh) 2003-08-27 2003-08-27 一种硅纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03155931 CN1262692C (zh) 2003-08-27 2003-08-27 一种硅纳米线及其制备方法

Publications (2)

Publication Number Publication Date
CN1590599A CN1590599A (zh) 2005-03-09
CN1262692C true CN1262692C (zh) 2006-07-05

Family

ID=34598250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03155931 Expired - Fee Related CN1262692C (zh) 2003-08-27 2003-08-27 一种硅纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN1262692C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780875B2 (en) 2005-01-13 2010-08-24 Cinvention Ag Composite materials containing carbon nanoparticles
CN103943733A (zh) * 2014-03-24 2014-07-23 上海交通大学 一种基于垂直纳米线的led超平行光源的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312034C (zh) * 2005-05-20 2007-04-25 清华大学 单一轴向排布的单晶硅纳米线阵列制备方法
CA2624776C (en) * 2005-11-21 2015-05-12 Nanosys, Inc. Nanowire structures comprising carbon
CN100564257C (zh) * 2008-02-03 2009-12-02 山东大学 一种硅纳米管和纳米线的制备工艺
CN101399167B (zh) * 2008-07-15 2010-04-14 北方工业大学 硅纳米线装配的方法
CN101509123B (zh) * 2009-02-24 2010-09-08 南京大学 一种低温下制备小尺寸氧化铟锡纳米线材料的方法
CN102071397B (zh) * 2011-01-18 2012-07-04 浙江理工大学 一种制备硫化镉纳米线的方法
CN103950932A (zh) * 2014-04-16 2014-07-30 奇瑞汽车股份有限公司 一种高纯度有序半导体硅纳米线的制备方法
CN105798447B (zh) * 2016-04-12 2018-06-29 苏州大学 一种利用纳米互连制备金属纳米线的方法及其应用
CN106587068A (zh) * 2016-12-12 2017-04-26 陕西科技大学 一种利用二氧化锡制备单根Si纳米线的方法
CN115036496B (zh) * 2021-03-05 2024-02-13 中国科学院过程工程研究所 一种硅纳米线基柔性自支撑电极材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780875B2 (en) 2005-01-13 2010-08-24 Cinvention Ag Composite materials containing carbon nanoparticles
CN103943733A (zh) * 2014-03-24 2014-07-23 上海交通大学 一种基于垂直纳米线的led超平行光源的制备方法
CN103943733B (zh) * 2014-03-24 2016-08-17 上海交通大学 一种基于垂直纳米线的led超平行光源的制备方法

Also Published As

Publication number Publication date
CN1590599A (zh) 2005-03-09

Similar Documents

Publication Publication Date Title
CN1262692C (zh) 一种硅纳米线及其制备方法
JP2004511655A (ja) マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法
CN1843932A (zh) 一种氧化铜纳米线阵列定域生长方法
Deng et al. Development of conductive transparent indium tin oxide (ITO) thin films deposited by direct current (DC) magnetron sputtering for photon-STM applications
CN108660416A (zh) 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器
Usui et al. Effect of substrate temperature on the deposition of polytetrafluoroethylene by an ionization‐assisted evaporation method
JPH02255525A (ja) Y系超伝導薄膜の製造方法
Izumi et al. Superconductivity and crystallinity of Ba2Y1Cu3O7− δ thin films prepared by pulsed laser deposition with substrate bias voltage
Zubkins et al. Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures
CN105777800A (zh) 氧化铅薄膜制备有机钙钛矿甲基胺基碘化铅薄膜的方法
Wu et al. Growth of TiO2 nanorods by two-step thermal evaporation
CN105887016B (zh) 一种柔性二氧化钒薄膜的制备方法、产物及应用
US9856578B2 (en) Methods of producing large grain or single crystal films
CN101509123B (zh) 一种低温下制备小尺寸氧化铟锡纳米线材料的方法
CN111392685B (zh) 二维自组装的m1/m2-vo2同质结纳米片及其制备方法
CN1900356A (zh) 强磁场下金刚石薄膜的制备方法
Deschanvres et al. Thin film of ceramic oxides by modified CVD
CN1390977A (zh) 一种常温下制备化合物薄膜的方法
Shao et al. Low-temperature c-axis oriented growth of nanocrystalline ZnO thin films on Si substrates by plasma assisted pulsed laser deposition
CN1275635A (zh) 纳米金刚石粉预处理的大面积金刚石膜材料的生长工艺
Plirdpring et al. Preparation and surface wettability of nanostructure TiO2 films
KR20010103984A (ko) 전이금속박막형상 제어에 의한 탄소나노튜브의 수직 성장방법
Schlesser et al. Organic molecular beam deposition of highly nonlinear optical 4′‐nitrobenzylidene‐3‐acetamino‐4‐methoxy‐aniline
CN109839392A (zh) 一种自支撑薄膜类透射电镜样品及其制备方法
NO347559B1 (en) Process for producing single crystal silver films

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060705

Termination date: 20090928