JP2004511655A - マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法 - Google Patents

マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法 Download PDF

Info

Publication number
JP2004511655A
JP2004511655A JP2002534578A JP2002534578A JP2004511655A JP 2004511655 A JP2004511655 A JP 2004511655A JP 2002534578 A JP2002534578 A JP 2002534578A JP 2002534578 A JP2002534578 A JP 2002534578A JP 2004511655 A JP2004511655 A JP 2004511655A
Authority
JP
Japan
Prior art keywords
target
substrate
thin film
ion beam
indium tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002534578A
Other languages
English (en)
Inventor
スティーブン・キム
ディール・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasmion Corp
Original Assignee
Plasmion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasmion Corp filed Critical Plasmion Corp
Publication of JP2004511655A publication Critical patent/JP2004511655A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本発明は基板上にインジウムスズ酸化物薄膜を作製する方法であり、不活性ガスと低電子親和性元素との混合物を一次スパッタイオンビーム源としてターゲットの近傍に導入する工程と、ターゲットと基板との間に酸素ガスを準備する工程と、ターゲットに電気エネルギーを加えて混合物をイオン化させる工程と、イオン化により生成した電子を基板に対向するターゲットの表面の近傍に閉じ込める工程と、負に帯電したイオンをターゲットから分裂させる工程と、そして基板上にインジウムスズ酸化物薄膜を形成する工程とから成る。

Description

【0001】
(技術分野)
本発明は薄膜の作製方法に関し、さらに詳しくはマグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法に関する。本発明は広範囲の応用に適用可能であるが、高導電性のみならず高い光透過率を有するインジウムスズ酸化物膜を低温で作製する場合に好適である。
【0002】
(背景技術)
インジウムスズ酸化物(ITO)薄膜は、可視光域における高い透過性と高導電性というユニークな特徴を有し、太陽電池、液晶ディスプレイ(LCD)、そしてフラットパネルデバイス等のオプトエレクトロニクスデバイスに広く使われている。ITO薄膜の抵抗は、スズのドーピング量と酸素欠陥濃度に依存する。また、その高い光透過率は、3.5eVという高い固有のバンドギャップエネルギーに由来する。ITO薄膜は、通常、セラミックのターゲットを用いるマグネトロンスパッタリングあるいは制御された酸素雰囲気で電子ビーム蒸着することにより堆積される。ここで、電子ビーム蒸着の場合、基板を加熱しながらあるいは300〜400℃の温度で後アニールされる。
【0003】
LCDやフラットパネルディスプレイのカラーフィルタ用に用いる場合には、基板の処理温度は250℃以下に制限される。なぜなら、ITOは熱に弱いポリマー基板の上に堆積されているからである。そのため、熱によるダメージを防ぐために、基板の温度は150℃以下にする必要がある。したがって、ITO薄膜を導電性電極として有するオプトエレクトロニクスデバイスの製造においては、低温での堆積技術は重要なプロセスである。
【0004】
従来、ITO薄膜は、スプレー塗布やスクリーン塗布、あるいは無電解メッキを用いて低温で有機基板の上に形成されていた。これらの技術においては、目標組成、基板(又は処理)温度、酸素分圧、そして堆積速度等のプロセスパラメータを、ITO薄膜が高い光透過率と低抵抗を有するように制御する必要がある。しかし、これらの膜はすべて、高抵抗あるいは低光透過率のいずれかになる傾向がある。市販のITO膜の抵抗と光透過率は、それぞれ、2×10−4Ωcmより高く、87%(ガラス上で)より低い。したがって、まだ、高い導電性と高い光透過率を有するITO薄膜の作製方法を開発する必要がある。
【0005】
(発明の開示)
したがって、本発明は、マグネトロンネガティブスパッタを用いるインジウムスズ酸化物薄膜の作製方法に関するものであり、その方法は従来技術の限界及び欠点に基く1以上の問題点を実質的に除去したものである。
【0006】
本発明の目的は、高導電性と高光透過率を備えたインジウムスズ薄膜を低温で形成する方法を提供することである。
【0007】
本発明のさらなる特徴と利点は以下の説明により示され、そして一部は説明から明らかであろう、あるいは本発明の実施により理解されるであろう。本発明の目的及び他の利点は、添付の図面のみならず説明及びクレームにおいて特定された構成により実現及び達成されるであろう。
【0008】
(その解決方法)
これら及び他の利点を達成するため及び本発明の目的に基き、具体化され広く記載されたものであり、基板上にインジウムスズ酸化物薄膜を作製する本発明の方法は、不活性ガスと低電子親和性元素との混合物を、一次スパッタイオンビーム源としてターゲットに近接するように導入する工程と、ターゲットと基板との間に酸素ガスを準備する工程と、混合物をイオン化させるためにターゲットに電気エネルギーを加える工程と、イオン化により生成した電子を、基板に対向するターゲットの表面の近傍に閉じ込める工程と、負に帯電したイオンをターゲットから分裂(disintegrating)させる工程と、基板上にインジウムスズ酸化物薄膜を形成する工程と、から成る。
【0009】
本発明の別の態様によれば、スパッタ装置を用いてインジウムスズ酸化物を作製する方法であって、その方法は、基板をアセトン、エタノール、そして蒸留水で連続してクリーニングし、その基板を乾燥する工程と、基板を反応チャンバの中に配置する工程と、ターゲットと基板との間でスパッタ作用が起こる反応チャンバを排気する工程と、ここで、反応チャンバは第1と第2の表面とを有し、アルゴンとセシウムとの混合物を1次スパッタイオンビーム源として、少なくとも1個の貫通孔を有するターゲットの第2の表面に導入する工程と、混合物をターゲットの貫通孔を通って第2の表面から第1の表面へ拡散させる工程と、ターゲットと基板との間に酸素ガスを準備する工程と、反応チャンバを一定の反応圧力に維持する工程と、ターゲットに電気エネルギーを加えて上記混合物をイオン化させる工程と、イオン化により生成した電子を、基板に対向するターゲットの第1の表面の近傍に閉じ込める工程と、負に帯電したイオンをターゲットから分裂させる工程と、基板上にインジウムスズ酸化物薄膜を形成する工程と、から成る。
【0010】
上述の全体的な説明及び以下の詳細な説明のいずれも典型的及び説明的なものであり、クレームされた発明についてのさらなる説明を提供するものであることを理解されたい。
【0011】
(発明を実施するための最良の形態)
実施例が添付の図面に記載されている本発明の好ましい形態を参照して詳細に説明する。
【0012】
本出願は、2000年10月13日に出願され仮出願番号60/239915を付与された名称が「マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法」である仮出願の利益を享受できるものであり、出典を示し明細書の一部とすることができる。
【0013】
本発明では、基板を加熱することなく、高い光透過率及び高い導電性を有する多結晶のITO薄膜が得られる。そのプロセスは、米国特許出願番号09/568665号に開示されたマグネトロンネガティブイオンスパッタリングに類似するものであり、出典を示し明細書の一部とすることができる。
【0014】
本発明においては、ターゲットをスパッタするための一次イオンとして、アルゴンイオン(Ar)に加え、セシウムイオン(Cs)も用いることができる。このプロセスでは、アルゴンイオンをセシウムイオンと同じ供給ラインにより同時に導入する。これは、反応性スパッタリングプロセスに通常用意されている酸素とセシウムイオンが反応するのを防ぐためである。セシウムイオンを第1の衝撃イオン源として用いると、金属ターゲットから反対電荷のイオンを高収率で生成可能なことが測定されている。これは、スパッタリングのターゲットの表面をセシウムでコーティングすると、セシウムの低電子親和性により、ターゲット材料からの負電荷イオンをスパッタするのに必要な仕事関数を減らすことができるからである。低電子親和力の他の元素、例えば、ルビジウムやカリウムは仕事関数を下げることができるが、その点に関してはあらゆる非放射性元素の中で最も有効である。したがって、表面イオン化プロセスにより、負電荷のスパッタイオン比率を高く(20%以上)することができる。スパッタされた負電荷の二次イオンは、ターゲットと基板との間のポテンシャル差に応じて基板に加速されて基板上に堆積する。負電荷イオンは、ターゲットと基板の間のポテンシャル差に概ね等しいイオンビームエネルギーを有している。イオンビームエネルギーは、高い反応圧力とともに減少する。したがって、反応圧力を調整することにより、イオンビームエネルギーを所望のエネルギー値に制御することができる。
【0015】
図1は、本発明の実施例を実行するためのマグネトロンネガティブイオンスパッタ装置の一例である。図1に示すように、そのシステムには、マグネトロンスパッタ装置10、セシウム導入装置20、そしてアルゴン源30が含まれる。
【0016】
さらに詳しくは、マグネトロンスパッタ装置10は、スパッタユニットセシウム配給チャンバ11、永久磁石12、スパッタ本体13、ピンホールを有するターゲット14、そしてスパッタ外側シールド15を有している。ドーナツ型のスパッタユニットセシウム配給チャンバ11は、セシウムを均一にターゲット14に配給する。ターゲット14の下に配置されている永久磁石12は、スパッタリングプロセスの間中、電子をターゲットの上に閉じ込めるように(すなわち、高濃度のプラズマを発生させる)磁場を発生させる。スパッタユニットセシウム配給チャンバ11を収容するスパッタ本体13は、金属、好ましくは銅から成っている。セシウムイオンは、ピンホールを通過してターゲットの表面14に拡散する。システムにおいて、基板はターゲット14に対向している。スパッタ外側シールド15は、スパッタユニットセシウム配給チャンバ11の接地用シールドとして機能し、ターゲットを基板に露出させる。
【0017】
セシウム導入システム20は、セシウムのアンプルを受け入れ可能なポート1を有している。セシウムは酸素と非常に反応し易いので、ポート1は、セシウムが大気と接触することなくセシウムを受け入れ可能であることが好ましい。セシウムは、ポート1と溜め6との間に配設された遮断弁2を通って溜め6に運ばれる。セシウム溜め6を排気可能に付属ポート3を設けることができる。これにより、閉じ込められたセシウム原子を酸素フリーの雰囲気に保持することができる。弁4と5は、排気とセシウムの移動を促進する。セシウム8は、液体状態で溜め6に保持される。ヒータ7は、セシウム8を輸送可能とするために溜め6を加熱することができる。計量バルブ9は、配給チャンバ11の中に流れ込むセシウム8の量を制御する。絶縁部10は、加熱されたセシウム8と配給チャンバ11内の接地セシウムとの間の電気及び温度の絶縁・断熱を行う。
【0018】
セシウム配給装置20は、以下のように操作する。セシウムを含む封止されたアンプルを、まずポート1に繋ぐ。弁2と4を閉じる一方、弁5は開放し、セシウムのラインを排気、あるいはポンプダウンする。ポンプダウンが終了すると、弁5を閉じ、セシウムのアンプルのシールを壊す。次いで、弁4を開き、溜め6をポンプダウンする。溜め6のポンプダウンが終了すると、弁2を開き、セシウムを溜め6に導入する。ヒータ7により、溜め6の中のセシウム8の温度を制御する。計量弁9は、配給チャンバ11に供給されるセシウムの量を制御するのに使用される。
【0019】
上述のように、セシウムは酸素と非常に反応し易く、容易に汚染される。スパッタ装置の本体13の内側の面である内面からターゲットにセシウムを供給することは、セシウムが周囲に露出する機会が減り汚染されにくくなるという利点を有する。
【0020】
さらに、アルゴン源30が本発明のスパッタ装置に設けられている。アルゴン源30は、セシウム導入装置20の端部に接続している。したがって、アルゴンとセシウムは同じ供給ラインを通して配給チャンバ11に導入され、それによりセシウムが酸素により汚染されるのを防止することができる。
【0021】
本発明のITO薄膜の作製方法を、以下により詳細に説明する。
本発明のターゲット14は、例えば、直径1インチで、90重量%In−10重量%SnOを含むターゲットを用いることができる。基板はガラスであり、例えばコーニング7059ガラスである。基板は、アセトン、エタノール、蒸留水で順次洗浄し、窒素ガスで乾燥し、そして8cmの距離を介してターゲットの上に配置し、次いで10rpmで回転する。
【0022】
堆積に先立ち、反応チャンバを約1×10−7Torrで排気する。セシウム配給装置20とアルゴン溜め30を通過させ、セシウムイオンとアルゴンイオンとを混合物として、基板19に対向するターゲットの表面近傍に同時に供給する。他の不活性ガス、例えば、キセノン(Xe)とヘリウム(He)をアルゴンの代わりに使用することができる。その後、純粋な酸素ガスをニードルバルブを通して反応チャンバ内へ導入する。反応圧力は約1×10−4Torrに維持する。
【0023】
25eVから1000eVの範囲のイオンビームエネルギー(例えば、直流電圧)をターゲット14に加える。基板は接地され、あるいはターゲット14からの負電荷イオンを引き付けるために正にバイアスされている。基板が接地されると、基板とターゲットの間のポテンシャル差は加えられたイオンビームエネルギーと同じになり、ターゲットからの負電荷イオンはポテンシャル差と概ね同じ運動エネルギーを有する。上述のように、磁石12は、セシウム配給チャンバ11の形状(すなわち環状)に対応して、イオン化プロセスで発生した電子をターゲット14の外側表面の上の通路に閉じ込めるような磁場を発生させる。放出プラズマ18は、電子、アルゴンイオン、そして中性アルゴンを含んでいる。ターゲット14は放出プラズマ18に対し負のポテンシャルを有しているので、アルゴンイオンとセシウムイオンは、ターゲット14方向に加速される。アルゴンイオンとセシウムイオンの動きは矢印17で示す。アルゴンイオンとセシウムイオンがターゲット14に衝突する結果、電子、スパッタされた中性粒子、そしてスパッタされた負電荷イオンが矢印19で示すようにターゲットから放出される。ターゲット14から放出されたイオンは、基板の上に堆積し薄膜を形成する。本発明ではターゲットの上にはセシウムのコーティング層があるので、ターゲット表面から二次イオンビームを高収率で発生させることができ、それによりスパッタリングプロセスを効率化することができる。
【0024】
本発明のスパッタリングプロセスは、低温プロセスであり、以下の機構による。エネルギーの高い二次イオンが基板に衝突した時、その運動エネルギーは、基板表面の非常に局所的な領域で熱エネルギーとして、あるいは増大した吸着原子の移動度として放出される。このさらなる熱エネルギー及び増大した吸着原子の移動度は、室温(約25℃)から100℃の範囲の低温での多結晶成長をもたらす。
【0025】
ITO薄膜の結晶性、抵抗、光透過率、そして表面モホロジーに対する二次イオンビームの影響を検討するため、イオンビームエネルギーを25eVから1000eVに変化させた。堆積時間は膜厚が約60nmとなるように調整し、厚さは表面粗さ計で測定した。ガラス基板は意図的に加熱しなかったが、基板温度は、熱電対(K型)で測定し約70℃である。これはCs+イオン源のヒータ部材からの放射及びイオンビーム衝突による放射加熱によるものである。基板の温度は基板を冷却することにより室温に維持することができる。上記の条件下で異なるイオンビームエネルギーを用いてガラス基板上に種々のITO薄膜を形成した後、ITO薄膜の物理特性を種々の方法で測定した。
【0026】
図2Aから2Dは、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のインジウムスズ酸化物(ITO)薄膜のX線回折(XRD)スペクトルである。図2Aから2Dに示すように、XRDスペクトルの鋭いピークはすべてのITO薄膜がルチル構造の多結晶であることを示している。膜のグレインは(112)、(211)、(110)、そして(222)面に配向している。(112)面はすべての膜において顕著である。また、XRDスペクトルは薄膜の結晶化には最適なイオンビームエネルギーがあることを示している。図2Bは、50eVのイオンビームエネルギーを加えたとき、ITO膜の結晶性が最も良くなることを示している。一般に、イオンビームエネルギーを大きくすると、基板上のスパッタされた原子の表面移動度も大きくなる。高い吸着原子の移動度が結晶性を高くする。しかし、イオンビームエネルギーが大き過ぎると、例えば、図2Cと2Dの場合のように75eVと100eVでは、結晶相が減り、低い表面移動度によるアモルファス化が進行する。
【0027】
図3は、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のITO薄膜のダブルビーム紫外−可視−近赤外吸光分光分析スペクトルであり、可視光域の光透過率を測定したものである。スペクトルは、200〜900nm領域におけるITO膜の光透過率を示している。50eVのイオンビームエネルギー(黒四角で示す。)で作製されたITO薄膜は全波長域において、50eV以外のイオンビームエネルギーで作製された膜に比べ高い光透過率(90%以上)を有していた。25eVのイオンビームエネルギー(黒丸で示す。)で作製されたITO薄膜は光透過率が低く、これは吸着原子の低い表面移動度による非晶性の微細構造に起因するものである。また、75eVより高いイオンビームエネルギーで作製されたITO膜も光透過率が低い。これは高エネルギー粒子による激しい衝突による粗い表面モホロジーや不良な微細構造に起因するものである。
【0028】
図4A、4B、そして5は、高イオンビームエネルギーで作製されたITO薄膜が、低イオンビームエネルギーで作製された膜よりも反射率、屈折率(n)、そして吸光係数がかなり大きいことを示している。
【0029】
図6は、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のITO薄膜のキャリア濃度の変化を示している。ファン・デル・ポー法を用いたホール効果測定によりキャリア濃度を測定した。イオンビームエネルギーが増加すると、キャリア濃度は減少する。ITO膜の荷電キャリアは酸素欠陥により形成されるので、キャリア濃度の減少は堆積中に酸素欠陥の消滅によるものである。スパッタされた二次イオンが基板に衝突すると、その運動エネルギーはガラス基板上の酸素原子に移動する。その結果、酸素原子は酸素欠陥に拡散し、それにより酸素欠陥が減少する。
【0030】
図7は、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のITO薄膜のキャリア移動度の変化を示している。ファン・デル・ポー法を用いたホール効果測定によりキャリア移動度を測定した。図7に示すように、キャリア移動度はイオンビームエネルギーの増加に比例して増加している。
【0031】
図8A〜8Eは、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のITO薄膜の原子間力顕微鏡(AFM)による像である。イオンビームエネルギーの変化に伴うITO膜の表面モホロジーの変化がAFM像に示されている。イオンビームエネルギー50eVで堆積させたITO膜は、他の条件のものより大きなグレインを有し多結晶薄膜の特徴を示している。イオンビームエネルギーを増加させると、グレインの平均サイズは小さくなった。また、高いイオンビームエネルギー領域で堆積させたITO膜は、低イオンビームエネルギーで堆積させた膜に比べ表面がかなり粗くなる傾向がある。ITO膜の表面モホロジーはTFT−LCDへの適用においては非常に重要である。なぜなら、表面が粗いと荷電キャリアの散乱が起こり電導度が低下するからである。さらに、表面が粗いと散乱損失により光透過率が低下する。
【0032】
図9は、本発明において、種々のイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置で作製した種々のITO薄膜の抵抗の変化を示している。ITO薄膜の抵抗は4端子法で測定した。図9に示すように、イオンビームエネルギー50eVで作製したITO薄膜の抵抗は10−4Ω・cmのオーダである。50eVより高いエネルギーで抵抗が増加するのは、グレインの大きさが小さいことと、高イオンビームエネルギー衝突による表面損傷によるものである。この結果は、XRD及びAFMの測定結果と非常に良く一致している。したがって、グレインの大きさを効果的に増加させるためには、低運動エネルギー比率となるように二次イオンビームエネルギーを正確に制御する必要がある。
【0033】
本発明では、ガラス基板上の多結晶ITO薄膜を、基板を加熱することなくネガティブイオンスパッタ源により作製した。また、結晶性、抵抗、光透過率、そして表面モホロジーに対するイオンビームエネルギーの影響について開示した。上述のように、ITO膜の結晶性、透過率、そして電気特性は二次イオンビームエネルギーにより制御される。したがって、本発明のマグネトロンネガティブイオンスパッタ源を用いるITO薄膜の作製方法は、オプトエレクトロニクスデバイスに好適な特性、例えば低抵抗のみならず高透過率、を有するITO薄膜を作製することができる。さらに、その方法は低温プロセスであるので、有機物の基板あるいは温度の影響を受け易い基板の上にもITO膜を形成することができる。
【0034】
本発明の精神及び範囲から逸脱しない範囲で、本発明に係るネガティブイオンスパッタ源を用いるインジウムスズ酸化物の作製方法に関し種々の変形及び変更が可能なことは当業者には明らかである。したがって、添付のクレーム及びそれに等価なものの範囲内であれば、本発明の変形及び変更は本発明の範囲内に含まれるものである。
【図面の簡単な説明】
【図1】本発明の実施例を実施するためのマグネトロンネガティブイオンスパッタ装置を示す模式図である。
【図2】図2Aから2Dは、本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のインジウムスズ酸化物(ITO)薄膜のX線回折(XRD)スペクトルである。
【図3】本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜の紫外・可視・近赤外吸光分光分析スペクトルであり、可視光域における光透過率を測定したものである。
【図4】図4Aと4Bは、本発明において、異なるイオンビームエネルギーを用いてITO薄膜マグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜の屈折率(n)スペクトルと反射スペクトルである。
【図5】本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜の吸光係数(k)のスペクトルである。
【図6】本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜の荷電キャリア濃度の変化を示す。
【図7】本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜のキャリア移動度の変化を示す。
【図8】図8Aから8Eは、本発明において、異なるイオンビームエネルギーを用いてマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜について、原子間力顕微鏡(AFM)によりスキャンして得た像である。
【図9】本発明において、異なるイオンビームエネルギーを用いるマグネトロンネガティブイオンスパッタ装置により形成された種々のITO薄膜の抵抗の変化を示す。

Claims (21)

  1. 基板上にインジウムスズ酸化物薄膜を作製する方法であって、
    不活性ガスと低電子親和性元素との混合物を、一次スパッタイオンビーム源としてターゲットの近傍に導入する工程と、
    ターゲットと基板との間に酸素ガスを準備する工程と、
    混合物をイオン化させるためにターゲットに電気エネルギーを加える工程と、
    イオン化により生成した電子を、基板に対向するターゲットの表面の近傍に閉じ込める工程と、
    負に帯電したイオンをターゲットから分裂させる工程と、
    基板上にインジウムスズ酸化物薄膜を形成する工程と、からなるインジウムスズ酸化物薄膜の作製方法。
  2. 上記負に帯電したイオンは、In、Sn、O、O を含む請求項1記載の作製方法。
  3. 混合物を用意する工程に先立って、反応チャンバを排気する工程をさらに含む請求項1記載の作製方法。
  4. 上記インジウムスズ酸化物薄膜は、10−4Ωcmのオーダの抵抗と、少なくとも90%の光透過率を有する請求項1記載の作製方法。
  5. 上記低電子親和性元素は、セシウム、ルビジウム、そしてカリウムの内の少なくとも1種を含む請求項3記載の作製方法。
  6. 上記基板は、接地され、あるいはターゲットに対し正にバイアスされている請求項1記載の作製方法。
  7. 上記負に帯電したイオンは、基板とターゲットの間のポテンシャルの差に概ね等しいイオンビームエネルギーを有している請求項1記載の作製方法。
  8. 上記イオンビームエネルギーは、反応圧力の増加とともに減少する請求項7記載の作製方法。
  9. 上記基板は、約25℃〜100℃の温度に維持されている請求項1記載の作製方法。
  10. 上記基板はガラスから成る請求項1記載の作製方法。
  11. 上記ターゲットは少なくとも1個の貫通孔を有しており、上記混合物が上記貫通孔を通り基板に対向するターゲットの表面に拡散する請求項1記載の作製方法。
  12. 上記ターゲットに加えられる電気エネルギーは25〜1000eVの範囲にある請求項1記載の作製方法。
  13. スパッタ装置を用いるインジウムスズ酸化物薄膜の作製方法であって、
    基板をクリーニングする工程と、
    上記基板を反応チャンバの中に配置する工程と、
    上記反応チャンバを排気する工程と、ここで、反応チャンバでは第1と第2の表面とを有するターゲットと基板との間でスパッタ反応が起こり、
    アルゴンとセシウムとの混合物を1次スパッタイオンビーム源として、少なくとも1個の貫通孔を有するターゲットの第2の表面に導入する工程と、
    上記混合物をターゲットの貫通孔を通って第2の表面から第1の表面へ拡散させる工程と、
    上記ターゲットと基板との間に酸素ガスを準備する工程と、
    上記反応チャンバを一定の反応圧力に維持する工程と、
    上記ターゲットに電気エネルギーを加えて上記混合物をイオン化させる工程と、
    イオン化により生成した電子を、基板に対向するターゲットの第1の表面の近傍に閉じ込める工程と、
    負に帯電したイオンをターゲットから分裂させる工程と、
    基板上にインジウムスズ酸化物薄膜を形成する工程と、からなるインジウムスズ酸化物薄膜の作製方法。
  14. 上記負に帯電したイオンは、In、Sn、O、O を含む請求項13記載の作製方法。
  15. 上記基板は、接地され、あるいはターゲットに対し正にバイアスされている請求項13記載の作製方法。
  16. 上記基板は、約25℃〜100℃の温度に維持されている請求項13記載の作製方法。
  17. 上記基板はガラスから成る請求項13記載の作製方法。
  18. 上記負に帯電したイオンは、基板とターゲットとの間のポテンシャルの差に概ね等しい運動エネルギーを有している請求項13記載の作製方法。
  19. 上記イオンビームエネルギーは反応圧力の増加とともに減少する請求項18記載の作製方法。
  20. 上記ターゲットに加えられる電気エネルギーは25〜1000eVの範囲にある請求項13記載の作製方法。
  21. 上記インジウムスズ酸化物薄膜は、10−4Ωcmのオーダの抵抗と、少なくとも90%の光透過率を有する請求項13記載の作製方法。
JP2002534578A 2000-10-13 2001-10-12 マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法 Pending JP2004511655A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23991500P 2000-10-13 2000-10-13
US09/742,331 US6383345B1 (en) 2000-10-13 2000-12-22 Method of forming indium tin oxide thin film using magnetron negative ion sputter source
PCT/US2001/032076 WO2002031215A2 (en) 2000-10-13 2001-10-12 Method of forming indium tin oxide film

Publications (1)

Publication Number Publication Date
JP2004511655A true JP2004511655A (ja) 2004-04-15

Family

ID=26932990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534578A Pending JP2004511655A (ja) 2000-10-13 2001-10-12 マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法

Country Status (6)

Country Link
US (1) US6383345B1 (ja)
JP (1) JP2004511655A (ja)
KR (1) KR20020048372A (ja)
AU (1) AU1172102A (ja)
TW (1) TW539752B (ja)
WO (1) WO2002031215A2 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955794B2 (en) 1999-12-15 2005-10-18 Plasmasol Corporation Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
US6923890B2 (en) * 1999-12-15 2005-08-02 Plasmasol Corporation Chemical processing using non-thermal discharge plasma
US7094322B1 (en) 1999-12-15 2006-08-22 Plasmasol Corporation Wall Township Use of self-sustained atmospheric pressure plasma for the scattering and absorption of electromagnetic radiation
US7192553B2 (en) * 1999-12-15 2007-03-20 Plasmasol Corporation In situ sterilization and decontamination system using a non-thermal plasma discharge
US6818193B2 (en) * 1999-12-15 2004-11-16 Plasmasol Corporation Segmented electrode capillary discharge, non-thermal plasma apparatus and process for promoting chemical reactions
US7029636B2 (en) * 1999-12-15 2006-04-18 Plasmasol Corporation Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air
EP1430501A2 (en) 2001-07-02 2004-06-23 Plasmasol Corporation A novel electrode for use with atmospheric pressure plasma emitter apparatus and method for using the same
US20040050684A1 (en) * 2001-11-02 2004-03-18 Plasmasol Corporation System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species
US20030106788A1 (en) * 2001-11-02 2003-06-12 Sergei Babko-Malyi Non-thermal plasma slit discharge apparatus
US20030141187A1 (en) * 2002-01-30 2003-07-31 Plasmion Corporation Cesium vapor emitter and method of fabrication the same
US20040118452A1 (en) * 2002-01-30 2004-06-24 Plasmion Corporation Apparatus and method for emitting cesium vapor
KR20030065810A (ko) * 2002-02-01 2003-08-09 필터레이 화이버 옵틱스 인코퍼레이티드 광학박막 제조 장치 및 방법
US20040045810A1 (en) * 2002-09-05 2004-03-11 Plasmion Corporation Apparatus and method of forming thin film from negatively charged sputtered ions
US7029529B2 (en) * 2002-09-19 2006-04-18 Applied Materials, Inc. Method and apparatus for metallization of large area substrates
US20040099525A1 (en) * 2002-11-21 2004-05-27 Plasmion Corporation Method of forming oxide thin films using negative sputter ion beam source
US20040129557A1 (en) * 2002-11-21 2004-07-08 Plasmion Corporation Method of forming non-oxide thin films using negative sputter ion beam source
KR20050073855A (ko) * 2004-01-12 2005-07-18 삼성전자주식회사 플렉셔블 디스플레이 및 그 제조 방법
CA2553806A1 (en) * 2004-01-22 2005-08-04 Plasmasol Corporation Modular sterilization system
EP1789176A2 (en) * 2004-01-22 2007-05-30 Plasmasol Corporation Capillary-in-ring electrode gas discharge generator for producing a weakly ionized gas and method for using the same
US20070048176A1 (en) * 2005-08-31 2007-03-01 Plasmasol Corporation Sterilizing and recharging apparatus for batteries, battery packs and battery powered devices
US8845866B2 (en) * 2005-12-22 2014-09-30 General Electric Company Optoelectronic devices having electrode films and methods and system for manufacturing the same
KR101052036B1 (ko) * 2006-05-27 2011-07-26 한국수력원자력 주식회사 고온 내 부식성 향상을 위한 세라믹 코팅 및 이온빔 믹싱장치 및 이를 이용한 박막의 계면을 개질하는 방법
DE102007009615A1 (de) 2007-02-26 2008-08-28 Leybold Optics Gmbh Anlage und Verfahren zur Vakuumbehandlung von bandförmigen Substraten
US20090139567A1 (en) * 2007-11-29 2009-06-04 Philip Chihchau Liu Conformal protective coating for solar panel
US11155493B2 (en) 2010-01-16 2021-10-26 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US9862640B2 (en) 2010-01-16 2018-01-09 Cardinal Cg Company Tin oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US10000965B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductive coating technology
RU2558063C2 (ru) 2010-01-16 2015-07-27 КАРДИНАЛ СиДжи КОМПАНИ Высококачественные низкоэмиссионные покрытия, низкоэмиссионные стеклопакеты и способы их изготовления
US10000411B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductivity and low emissivity coating technology
US10060180B2 (en) 2010-01-16 2018-08-28 Cardinal Cg Company Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology
CN103938164B (zh) * 2013-01-22 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 Ito薄膜溅射工艺方法及ito薄膜溅射设备
US9570209B2 (en) * 2013-02-12 2017-02-14 Lg Chem, Ltd. Conductive layer and preparation method for conductive layer
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same
CN111441019A (zh) * 2019-12-17 2020-07-24 麦福枝 一种在玻璃、陶瓷上制备具有氮化硅结合层杀菌膜的制造方法
RU2765222C1 (ru) * 2020-12-30 2022-01-26 Тхе Баттериес Сп. з о.о. Способ формирования пленки LiCoO2 и устройство для его реализации
CN113025988A (zh) * 2021-02-26 2021-06-25 陕西科技大学 一种氧化铟锡薄膜热处理及其评价方法
CN115029665B (zh) * 2022-06-14 2023-08-25 浙江水晶光电科技股份有限公司 一种化合物薄膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416517A (en) * 1980-12-22 1983-11-22 Corning Glass Works Electrochromic devices including a mica layer electrolyte
US5637353A (en) * 1990-09-27 1997-06-10 Monsanto Company Abrasion wear resistant coated substrate product
US5433901A (en) * 1993-02-11 1995-07-18 Vesuvius Crucible Company Method of manufacturing an ITO sintered body
JPH11279756A (ja) * 1998-03-26 1999-10-12 Okura Ind Co Ltd 透明導電膜の形成方法

Also Published As

Publication number Publication date
US6383345B1 (en) 2002-05-07
WO2002031215A9 (en) 2004-05-06
KR20020048372A (ko) 2002-06-22
AU1172102A (en) 2002-04-22
WO2002031215A3 (en) 2002-07-04
WO2002031215A2 (en) 2002-04-18
TW539752B (en) 2003-07-01

Similar Documents

Publication Publication Date Title
JP2004511655A (ja) マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法
US4170662A (en) Plasma plating
Wu et al. Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing
Bhagwat et al. Use of the magnetron-sputtering technique for the control of the properties of indium tin oxide thin films
Kim et al. Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering
US6153271A (en) Electron beam evaporation of transparent indium tin oxide
KR100336621B1 (ko) 고분자 기판 위의 인듐산화물 또는 인듐주석산화물 박막증착 방법
JP2003158307A (ja) 超伝導材料の製造方法
Meng et al. The effect of the ion beam energy on the properties of indium tin oxide thin films prepared by ion beam assisted deposition
Wen et al. Room temperature deposition of very thin and flexible crystalline ITO thin film using 3-D facing-magnetron sputtering plasma source
Honda et al. Oxygen content of indium tin oxide films fabricated by reactive sputtering
Kim et al. Effect of ion beam energy on the electrical, optical, and structural properties of indium tin oxide thin films prepared by direct metal ion beam deposition technique
EP1573081A2 (en) Silver selenide film stoichiometry and morphology control in sputter deposition
Kim Low temperature deposition of ITO on organic films by using negative ion assisted dual magnetron sputtering system
JPH058527B2 (ja)
Bae et al. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system
Kim Deposition of indium tin oxide films on polycarbonate substrates by direct metal ion beam deposition
KR930005825B1 (ko) 고분자 투명도전성 필름제조방법
Rao et al. Tantalum oxide films prepared by unbalanced reactive magnetron sputtering
Scheffel et al. Plasma-assisted deposition of indium tin oxide thin films by sublimation using an anodic vacuum arc discharge
CN112941479B (zh) 一种二氧化锡/银/二氧化锡透明导电膜调整银层厚度的方法及应用
Sundaram et al. Deposition and annealing studies of indium tin oxide films
JPH0273963A (ja) 低温基体への薄膜形成方法
Hojo et al. Effect of annealing with Ar plasma irradiation for transparent conductive Nb-doped TiO2 films on glass substrate
He et al. Properties of ITO thin films prepared by APS-assisted EB evaporation