CN115036496B - 一种硅纳米线基柔性自支撑电极材料及其制备方法 - Google Patents

一种硅纳米线基柔性自支撑电极材料及其制备方法 Download PDF

Info

Publication number
CN115036496B
CN115036496B CN202110246206.2A CN202110246206A CN115036496B CN 115036496 B CN115036496 B CN 115036496B CN 202110246206 A CN202110246206 A CN 202110246206A CN 115036496 B CN115036496 B CN 115036496B
Authority
CN
China
Prior art keywords
silicon
electrode material
silicon nanowire
supporting electrode
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110246206.2A
Other languages
English (en)
Other versions
CN115036496A (zh
Inventor
王志
陆继军
刘俊昊
钱国余
公旭中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN202110246206.2A priority Critical patent/CN115036496B/zh
Publication of CN115036496A publication Critical patent/CN115036496A/zh
Application granted granted Critical
Publication of CN115036496B publication Critical patent/CN115036496B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种硅纳米线基柔性自支撑电极材料及其制备方法。本发明以切割废硅粉为硅源,柔性碳纤维布为基底,通过高温快速电致热冲击过程在基底上原位生长硅纳米线。所述的制备方法包括以下步骤:将切割废硅粉制成均匀分散的悬浊液;将柔性碳纤维布浸泡悬浊液中;碳纤维布干燥后进行电致热冲击,在柔性碳纤维布上原位生长硅纳米线。所得产品作为自支撑电极材料用于锂离子电池负极时,具有高容量和优异的循环稳定性。本发明硅纳米线高负载的柔性自支撑电极材料可以解决传统金属为集流体生长硅纳米线时低负载、纯度低的问题,并且本发明的制备过程短程、绿色、成本低,用于制备高能量密度锂离子电池负极材料具有广阔的前景。

Description

一种硅纳米线基柔性自支撑电极材料及其制备方法
技术领域
本发明属于锂离子电池技术领域,公开了一种硅纳米线基柔性自支撑电极材料及其制备方法。
背景技术
电动汽车、电子及储能领域的快速发展对高能量密度锂离子电池的要求越来越高。正负极活性材料比容量是决定锂离子电池能量密度的重要因素。传统石墨负极的应用已经接近其理论容量,但仍难以满足高能量密度电池体系对负极材料的需求。硅因其高的理论比容量(3579mAh/g)、合适的嵌锂电位以及地球丰度,被认为是最具前景的下一代高能量密度锂离子电池负极材料。但目前硅材料的应用面临着两个主要的问题,一是嵌脱锂过程巨大的体积变化(~300%);二是低的电导性。为克服上述两个棘手的问题,硅基复合材料被引入,尤其是硅纳米线基复合结构。因其:(1)硅纳米线能够提供快速的电子和离子传递途径;(2)小直径的硅纳米线能够适应较大的体积变化;(3)相邻硅纳米线构造的空隙空间,允许电解质快速渗透和储存;(4)硅纳米线具有高的比体积,可以提供较高的材料利用率[C.K.Chan,H.Peng,G.Liu,et al.High-performance lithium battery anodes usingsilicon nanowires.Nature Nanotechnology,2008,3(1):31]。
目前在基底上生长硅纳米线主要以不锈钢、镍箔和铜片做基底,其表面积小制备的硅纳米线负载低,严重制约了其在锂离子电池负极中的应用。此外,自支撑硅纳米线电极的制备方法主要有化学气相沉积、溶液法和电化学沉积[G.Zhou,L.Xu,G.W.Hu,L.Q.Mai,Y.Cui.Nanowires for Electrochemical Energy Storage.Chem.Rev.2019,119,11042-11109]。例如:Cui等人以不锈钢做基底采用化学气相沉积的方法制备硅纳米线,其面负载量仅0.3mg/cm2[L.B.Hu,Y.Cui,et al.Si nanoparticle-decorated Si nanowirenetworks for Li-ion battery anodes.Chem.Commun.,2011,47,367-369],Chan等人以铜为基底、苯基硅烷为硅源使用锡作为催化剂湿化学合成硅纳米线,其面负载量有约1.26mg/cm2[I.S.Aminu,H.Geaney,S.Imtiaz,et al.A Copper Silicide Nanofoam CurrentCollector for Directly Grown Si Nanowire Networks and their Application asLithium-Ion Anodes.Adv.Funct.Mater.2020,30,2003278],Zhang等人在CaCl2熔盐中,使用含镍的二氧化硅电解数小时制备获得硅纳米线,耗时长、过程难控制、且制备的硅纳米线不纯[J.Zhang,S.Fang,et al.Preparation of high-purity straight siliconnanowires by molten salt electrolysis.Journal of Energy Chemistry 2020,40,171-179]。以上这些硅纳米线的制备方法,通常复杂、使用金属催化剂,制备过程伴有毒性、成本高,且大制备的硅纳米线负载量通常小于1.5mg/cm2
本发明提供了一种硅纳米线基柔性自支撑电极材料及其制备方法,制备方法简单、绿色、使用廉价的原材料,易于大规模制备,并且硅纳米线在大表面的柔性碳纤维上进行生长,其复合材料具有高的面负载量(大于2mg/cm2),良好的电导性、易于加工和规模化应用;此外,硅纳米线基柔性自支撑复合材料可拓展应用于轻薄化、柔性化和可穿戴的电子设备。
发明内容
为解决以下两个问题:(1)硅材料用于锂离子电池时嵌脱锂过程巨大的体积变化及低的电导性;(2)自支撑硅纳米线电极的硅负载量低、制备方法复杂、多伴有毒性物质、成本高,且大都是在刚性基底进行生长,运输或使用过程中易损坏。本发明提供了一种硅纳米线基柔性自支撑电极材料及其制备方法,包括以下步骤:
(1)将干燥的切割废硅粉按一定固液比分散于溶剂中,形成悬浊液A;
(2)将一定尺寸的碳布置于悬浊液A中并搅拌,使废硅粉均匀的负载于碳布上,取出样品干燥待用;
(3)将步骤(2)获得的负载了废硅粉的碳布进行电致热冲击,使硅纳米线在碳纤维上原位生长,制备硅纳米线基柔性自支撑电极材料;
进一步地,步骤(1)中所用的切割废硅粉为光伏产业晶体硅切割过程产生的废硅泥经过干燥获得,为片状微米级粉末,纯度大于98.5%;
进一步地,步骤(1)中的液固比为0.1%~50%;
进一步地,步骤(1)中的溶剂为下述的一种或多种组合,去离子水、乙醇、乙二醇、甲醇、丙三醇、异丙醇、正丁醇、N-N二甲基甲酰胺;
进一步地,步骤(2)中的碳布选自下述中的一种或其中任意两种及以上的复合布,纳米碳纤维膜、垂直石墨烯复合纳米碳纤维膜、碳布、垂直石墨烯复合碳布、碳毡、垂直石墨烯复合碳毡、垂直石墨烯复合碳纸、三维石墨烯复合纤维膜;
进一步地,步骤(3)中的热冲击温度为1300~1800℃,时间500毫秒~3秒;
进一步地,步骤(3)中的在碳纤维上原位生长硅纳米线,是以切割废硅粉为硅源,通过电致热冲击过程生长于碳纤维的表面。
本发明的有益效果是:一方面以光伏产业晶硅切割过程产生的废硅粉及碳布为原材料制备硅纳米线,过程绿色、低成本,且生长硅纳米线的碳布具有优良的柔韧性,克服了传统制备硅纳米线电极硅含量低和大都是在刚性基底上进行生长,易损坏和不利于加工的缺陷的问题;另一方面制备的硅纳米线基柔性材料可解决硅材料用于锂离子电池时,嵌脱锂过程发生的巨大体积变化和差的电导性问题,使其具有高的性能和优异的稳定性;为高能量密度锂离子电池负极材料的应用提供了广阔的前景。此外,高性能柔性自支撑材料可拓展应用于轻薄化、柔性化和可穿戴的电子设备。
附图说明
图1是本发明具体实施例1提供的切割废硅粉SEM图片。
图2是本发明具体实施例1提供的碳布上原位生长的硅纳米线TEM图片。
图3是本发明具体实施例1提供的硅纳米线-碳布复合材料SEM及EDS图片。
图4是本发明具体实施例1提供的硅纳米线-碳布柔性电极材料实物图。
图5是本发明具体实施例1提供的硅纳米线-碳布复合柔性自支撑电极材料循环性能及库伦效率图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明并不限于以下实施例。
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
将干燥的切割废硅粉以固液比1%,超声分散于去离子水中,形成悬浊液A;随后将约4cm2的碳布置于悬浊液A中搅拌2h,使废硅粉均匀的负载于碳布上,取出碳布样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的碳布进行电致热冲击,在500毫秒的时间内使碳布温度升温至约1300℃并快速冷却至室温(小于1秒),使硅纳米线在炭布纤维上原位生长,最终获得硅纳米线-碳布复合柔性自支撑电极材料,如图4所示,经过180°反复弯折仍保持完好。并且硅纳米线的负载大于1mg/cm2,显著优于当前报道的0.18-0.4mg/cm2水平。
扫描电子显微镜(JSM-7800)和透射电子显微镜(JEM-2100F)用来测试上述条件下的切割废硅粉、碳布上原位生长的硅纳米线和硅纳米线-碳布复合柔性电极材料。其测试结果分别如图1~3所示。
将实施例1中制备的硅纳米线-碳布复合柔性电极材料,直接用于锂离子电池负极材料,以金属锂片为对电极、Celgard2325为隔膜、1mol/L LiPF6(溶剂为体积比为1:1的碳酸乙烯酯和碳酸二甲酯混合液)作为电解液,CR2032型纽扣电池壳,在氩气保护的手套箱中组装成纽扣电池进行组装。充放电测试,测试程序为500mA/g,电压充放电区间0.01~3V,充放电循环性能如图5所示。
实施例2
将干燥的切割废硅粉以固液比0.5%,超声分散于乙醇中,形成悬浊液A;随后将约4cm2的垂直生长石墨烯碳布置于悬浊液A中搅拌2h,使废硅粉均匀的负载于垂直生长石墨烯的碳布上,取出碳布样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的垂直生长石墨烯的碳布进行电致热冲击,在500毫秒的时间内使其温度升温至约1500℃并快速冷却至室温(小于1秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-垂直生长石墨烯的碳布复合柔性自支撑电极材料。
实施例3
将干燥的切割废硅粉以固液比3%,超声分散于甲醇中,形成悬浊液A;随后将约4cm2的碳毡置于悬浊液A中搅拌2h,使废硅粉均匀的负载于碳毡上,取出碳毡样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的碳毡进行电致热冲击,在500毫秒的时间内使其温度升温至1600℃并快速冷却至室温(约1秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-碳毡复合柔性自支撑电极材料。
实施例4
将干燥的切割废硅粉以固液比5%,超声分散于乙二醇中,形成悬浊液A;随后将约4cm2的垂直生长石墨烯的碳毡置于悬浊液A中搅拌2h,使废硅粉均匀的负载于垂直生长石墨烯的碳毡上,取出垂直生长石墨烯的碳毡样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的垂直生长石墨烯的碳毡进行电致热冲击,在500毫秒的时间内使其温度升温至1700℃并快速冷却至室温(约3秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-垂直生长石墨烯的碳毡复合柔性自支撑电极材料,其面负载量大于2mg/cm2
实施例5
将干燥的切割废硅粉以固液比10%,超声分散于N-N二甲基甲酰胺中,形成悬浊液A;随后将约4cm2的纳米碳纤维膜置于悬浊液A中搅拌2h,使废硅粉均匀的负载于纳米碳纤维膜上,取出纳米碳纤维膜样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的纳米碳纤维膜进行电致热冲击,在500毫秒的时间内使其温度升温至1800℃并快速冷却至室温(约3秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-纳米碳纤维膜复合柔性自支撑电极材料。
实施例6
将干燥的切割废硅粉以固液比20%,超声分散于丙三醇中,形成悬浊液A;随后将约4cm2的垂直生长石墨烯的纳米碳纤维膜置于悬浊液A中搅拌2h,使废硅粉均匀的负载于垂直生长石墨烯的纳米碳纤维膜上,取出垂直生长石墨烯的纳米碳纤维膜样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的垂直生长石墨烯的纳米碳纤维膜进行电致热冲击,在500毫秒的时间内使其温度升温至1600℃并快速冷却至室温(约2秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-垂直生长石墨烯的纳米碳纤维膜复合柔性自支撑电极材料。
实施例7
将干燥的切割废硅粉以固液比30%,超声分散于异丙醇中,形成悬浊液A;随后将约4cm2的垂直石墨烯复合碳纸置于悬浊液A中搅拌2h,使废硅粉均匀的负载于垂直石墨烯复合碳纸上,取出垂直石墨烯复合碳纸样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的垂直石墨烯复合碳纸进行电致热冲击,在500毫秒的时间内使其温度升温至1600℃并快速冷却至室温(约2秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-垂直石墨烯复合碳纸复合柔性自支撑电极材料。
实施例8
将干燥的切割废硅粉以固液比50%,超声分散于正丁醇中,形成悬浊液A;随后将约4cm2的三维石墨烯复合纤维膜置于悬浊液A中搅拌2h,使废硅粉均匀的负载于三维石墨烯复合纤维膜上,取出三维石墨烯复合纤维膜样品在鼓风干燥箱中60℃干燥待用;最后,将获得的负载了废硅粉的三维石墨烯复合纤维膜进行电致热冲击,在500毫秒的时间内使其温度升温至1600℃并快速冷却至室温(约2秒),使硅纳米线在碳纤维上原位生长,最终获得硅纳米线-三维石墨烯复合纤维膜复合柔性自支撑电极材料。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (5)

1.一种硅纳米线基柔性自支撑电极材料的制备方法,其特征在于,包括以下步骤:
(1)将干燥的切割废硅粉按一定固液比分散于溶剂中,形成悬浊液A;
(2)将一定尺寸的碳纤维布置于悬浊液A中并搅拌,使废硅粉均匀地负载于碳纤维布上,取出样品干燥待用;
(3)将步骤(2)获得的负载了废硅粉的碳纤维布进行电致热冲击,在500毫秒的时间内使负载了废硅粉的碳纤维布升温至1300~1800℃,并快速冷却至室温,所述快速冷却的时间为3秒、2秒、1秒或小于1秒,使硅纳米线在碳纤维布上原位生长,制备硅纳米线基柔性自支撑电极材料。
2.如权利要求1所述的一种硅纳米线基柔性自支撑电极材料的制备方法,其特征在于:所述步骤(1)中所用的切割废硅粉为光伏产业晶体硅切割过程产生的废硅泥经过干燥获得,为片状微米级粉末,纯度大于98.5%。
3.如权利要求1所述的一种硅纳米线基柔性自支撑电极材料的制备方法,其特征在于:所述步骤(1)中的固液比为0.1%~50%。
4.如权利要求1所述的一种硅纳米线基柔性自支撑电极材料的制备方法,其特征在于:所述步骤(1)中的溶剂为下述的一种或多种组合,去离子水、乙醇、乙二醇、甲醇、丙三醇、异丙醇、正丁醇、N-N二甲基甲酰胺、N-甲基吡咯烷酮。
5.一种硅纳米线基柔性自支撑电极材料,其特征在于,根据权利要求1-4任意一项所述的制备方法得到。
CN202110246206.2A 2021-03-05 2021-03-05 一种硅纳米线基柔性自支撑电极材料及其制备方法 Active CN115036496B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110246206.2A CN115036496B (zh) 2021-03-05 2021-03-05 一种硅纳米线基柔性自支撑电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110246206.2A CN115036496B (zh) 2021-03-05 2021-03-05 一种硅纳米线基柔性自支撑电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115036496A CN115036496A (zh) 2022-09-09
CN115036496B true CN115036496B (zh) 2024-02-13

Family

ID=83118232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110246206.2A Active CN115036496B (zh) 2021-03-05 2021-03-05 一种硅纳米线基柔性自支撑电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115036496B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590599A (zh) * 2003-08-27 2005-03-09 北京大学 一种硅纳米线及其制备方法
JP2013258324A (ja) * 2012-06-13 2013-12-26 Tanaka Electronics Ind Co Ltd 半導体装置接続用アルミニウム合金細線
CN103502182A (zh) * 2011-03-30 2014-01-08 东京窑业株式会社 用于含锂化合物的热处理容器及其制造方法
CN105271235A (zh) * 2015-10-15 2016-01-27 中国科学院过程工程研究所 一种硅纳米线材料及其制备方法
CN111717921A (zh) * 2020-06-29 2020-09-29 中国科学院过程工程研究所 一种SiOx纳米线及其制备方法和作为锂离子电池负极的应用
CN111799449A (zh) * 2019-04-05 2020-10-20 Hpk有限公司 复合负极材料的制备方法及用于锂二次电池的复合负极材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590599A (zh) * 2003-08-27 2005-03-09 北京大学 一种硅纳米线及其制备方法
CN103502182A (zh) * 2011-03-30 2014-01-08 东京窑业株式会社 用于含锂化合物的热处理容器及其制造方法
JP2013258324A (ja) * 2012-06-13 2013-12-26 Tanaka Electronics Ind Co Ltd 半導体装置接続用アルミニウム合金細線
CN105271235A (zh) * 2015-10-15 2016-01-27 中国科学院过程工程研究所 一种硅纳米线材料及其制备方法
CN111799449A (zh) * 2019-04-05 2020-10-20 Hpk有限公司 复合负极材料的制备方法及用于锂二次电池的复合负极材料
CN111717921A (zh) * 2020-06-29 2020-09-29 中国科学院过程工程研究所 一种SiOx纳米线及其制备方法和作为锂离子电池负极的应用

Also Published As

Publication number Publication date
CN115036496A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US20200028150A1 (en) Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery
Su et al. Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries
Zhao et al. Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity
Long et al. Synthesis of a nanowire self-assembled hierarchical ZnCo 2 O 4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
Bai et al. A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries
Zhang et al. Synthesis of CuO nanowire arrays as high-performance electrode for lithium ion batteries
Cai et al. Interconnected α-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries
JP6104258B2 (ja) 電池用活物質
Wang et al. Synthesis of Li 4 Ti 5 O 12 fibers as a high-rate electrode material for lithium-ion batteries
Wang et al. Carbon-coated SnO2@ carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries
Chen et al. Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries
Seng et al. The effects of FEC (fluoroethylene carbonate) electrolyte additive on the lithium storage properties of NiO (nickel oxide) nanocuboids
Xu et al. In-situ preparation of LixSn-Li2O–LiF/reduced graphene oxide composite anode material with large capacity and high initial Coulombic efficiency
Zhang et al. Si@ Cu composite anode material prepared by magnetron sputtering for high-capacity lithium-ion batteries
CN107180944A (zh) 一种金属磷化物纳米粒子的制备方法及其应用
CN108321397B (zh) 自支撑膜及其制备方法和锂硫电池
Dong et al. In-situ Li+ insertion induced lithiophilic expansion graphite for dendrite-free lithium metal anode
KR20180092150A (ko) 황 코팅된 폴리도파민 개질 그래핀 산화물 복합체, 이를 이용한 리튬-황 이차전지, 및 이의 제조방법
CN111554917B (zh) 一种纳米黑磷烯在镁离子电池负极材料中的应用
Liu et al. Synthesis of FeO-nanowires/NiCo2O4-nanosheets core/shell heterostructure as free-standing electrode with enhanced lithium storage properties
Yu et al. Lithiophilic ZnO confined in microscale carbon cubes as a stable host for lithium metal anodes
Abnavi et al. SnO2 nanowires on carbon nanotube film as a high performance anode material for flexible Li-ion batteries
CN115036496B (zh) 一种硅纳米线基柔性自支撑电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant