CN1258499C - 双连续复合材料 - Google Patents

双连续复合材料 Download PDF

Info

Publication number
CN1258499C
CN1258499C CNB018177867A CN01817786A CN1258499C CN 1258499 C CN1258499 C CN 1258499C CN B018177867 A CNB018177867 A CN B018177867A CN 01817786 A CN01817786 A CN 01817786A CN 1258499 C CN1258499 C CN 1258499C
Authority
CN
China
Prior art keywords
network
metal
porous ceramics
polymeric material
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018177867A
Other languages
English (en)
Other versions
CN1471501A (zh
Inventor
罗德尼·马丁·萨姆布鲁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dytech Corp Ltd
Ditech Networks Inc
Original Assignee
Ditech Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ditech Networks Inc filed Critical Ditech Networks Inc
Publication of CN1471501A publication Critical patent/CN1471501A/zh
Application granted granted Critical
Publication of CN1258499C publication Critical patent/CN1258499C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Liquid Crystal Substances (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Braking Arrangements (AREA)
  • Dental Preparations (AREA)
  • Prostheses (AREA)
  • Ceramic Products (AREA)

Abstract

将孔径在20到800微米之间并且密度为10%到30%理论密度的陶瓷泡沫材料放到预先加热的模具中,并引入熔化的金属或塑料形成双连续复合材料。

Description

双连续复合材料
技术领域
本发明涉及双连续复合材料,更具体地涉及包括两个相互连接的三维网络的主体。在本发明的一个特别方面中,一种网络是陶瓷泡沫材料,另一种是固体材料,该材料一般是金属或塑料。
发明内容
根据本发明的一个方面,本发明提供一种形成包括两个相互连接的三维网络的主体的方法,该方法包括以下步骤:将预先制好的多孔陶瓷网络放入一个模具中,该陶瓷网络包括相互连接的骨架,其密度小于60%理论密度,其大部分孔的孔径在20到2000微米之间;将熔融金属或聚合材料引入到预先制好的多孔陶瓷网络的孔中并使金属或聚合材料在其中固化。
本发明方法优选包括以下步骤:以较低的冷却速率使金属在孔中固化从而使两个网络接触得更为紧密。优选的是,向预先制好的多孔陶瓷中引入熔融的金属或聚合材料直到陶瓷骨架完全充满。
优选的是,通过真空和/或压力将熔融金属或聚合材料引入预先制好的多孔陶瓷中,也可以采用无压金属渗透技术进行铸造。本发明方法可以采用模压铸造。
更优选的是将模具预先加热。
预先制好的多孔陶瓷相优选具有可控的网络度。网络度应当较高以降低金属渗透时生成的压力梯度并使缺陷水平最小化,这种缺陷与冷却时的不同热收缩相关。这样的缺陷可能是皱缩和界面松解。
本发明方法可以包括除去所有或部分固化金属或塑料的后续步骤。
聚合材料或树脂的固化可能会涉及到放热反应。控制后续的冷却以减少结合缺陷出现的可能。可以原位聚合单体。在调整聚合材料性质以优化复合材料性质时可以使用交联试剂。
按照本发明的另一个方面,本发明提供一个主体,该主体包括预先制好的多孔陶瓷网络,该陶瓷网络的大部分孔的孔径在20到2000微米之间,理论密度小于60%,孔中充填固化的金属或塑料。
泡沫陶瓷具有基本上完全相互连接的多孔结构,其密度小于60%、优选小于30%理论密度。密度在10%到30%之间。典型的平均孔径在60-1400微米之间,优选在60-650微米之间。
泡沫陶瓷的密度优选低于30%以保证具有基本上完全相互连接的多孔结构。如果出于强度或渗透性的原因需要更为致密的材料,那么也可以使用更高的密度。
这些更致密的材料,即其密度高于30%理论密度(但是就基于搅拌的泡沫陶瓷技术而言,其最高限是60%),可以在未加工或已烧结的状态下用于较为疏松的材料以便在多孔物质中产生孔隙率梯度。在使用之前,需要烧结这种多孔物质。可以改变这些层的厚度以满足应用的需要。
可以通过凝胶铸造和凝聚铸造等加工技术将未加工状态的较高密度层(甚或是完全致密的)应用于泡沫陶瓷。在使用前需要烧结所形成的物质。
可以方便地调节两相的比例,这样从体积上而言,泡沫陶瓷或金属相都可以构成所形成主体的主要成分。
由于孔隙结构完全互连,所以能够深入渗透泡沫陶瓷的孔。渗透材料可以形成单独的连续的基体,或者只是简单沉积在内壁上。
可以用氧化物或非氧化物的颗粒制造陶瓷泡沫。这些物质要么本身对水很稳定要么有一个对处理条件很稳定的表面涂层。所使用的材料包括氧化铝、锆石、尖晶石、碳化硅、氧化锡、NZP、羟磷灰石、氧化锆、蓝晶石、堇青石等等。
优选的是采用本发明人的早期专利所披露的方法制造上所述的骨架。
特别是,在我们的专利EP0598783B(代理机构卷号:P00914PCT(EP))中,我们描述并要求保护:
“一种制造含有耐火颗粒的多孔耐火物质的方法,该方法包括以下步骤:
a)在液体载体中形成含颗粒的分散体系;
b)向分散体系中引入气体;
c)除去液体载体以制成固体物质,该物质具有因气泡而产生的孔;
d)干燥;并
e)焙烧,
其特征在于该分散体系含有一种可聚合的单体材料。”
在我们的专利申请WO98/15505(代理机构卷号:P01885PCT)中,我们描述并要求保护:
“一种制造含有结合颗粒(如羟磷灰石等)的多孔物质的方法,该方法包括以下步骤:
a)形成含有液体载体,颗粒和一种可聚合单体材料的分散体系;
b)形成该分散体系的泡沫;
c)聚合该泡沫化结构;
d)干燥该结构以除去液体载体并得到一种固体物质,该物质具有因气泡而产生的孔,并
e)焙烧该物质以除去有机粘合剂并得到陶瓷结合体,
其特征在于通过搅动向分散体系中引入小气泡从而形成泡沫并在单体材料聚合之前就产生聚结。
在我们的专利申请GB0009731.1(代理机构卷号:P02810GB)中我们描述并要求保护一种在低压下通过挤压制造陶瓷泡沫的方法。在本发明中通过这种方法制造泡沫陶瓷非常有用。
在此将这些早期申请的全部公开内容作为参考并入本专利。
可以调整陶瓷孔壁的表面性质以增强聚合材料或树脂的渗透性和/或控制聚合材料或树脂与陶瓷的结合。某些试剂也可以调整孔壁表面性质。其方法为:
i)用含有金属有机盐或无机盐的溶液浸渍表面。可以采用不同的浸渍技术如初步湿润、简单浸渍、真空浸渍、浸渍/沉积等,得到无机/金属有机盐的预期表面浓度。可以采用促进剂(即可以促进水合前体硬化的材料)或处理方法以增强磷酸钙的转化。可以通过以下方法提高多孔羟基磷灰石物品中的钙离子表面浓度:用含钙离子的溶液浸渍多孔物质,如果需要的话干燥并加热到一个较高的温度;或将钙盐混合到多孔物质的原始组分中。这种改性可以提高象膦酸酯这样的物质的吸附。这种方法可以作为后处理方法用于预制载体或用于结合到一种产品型材中的颗粒,或
ii)在一定温度下焙烧载体,该温度低于陶瓷完全烧结所需温度,其值取决于载体制造材料的性质。
iii)根据载体材料选择酸或碱(如硝酸、磷酸、苛性碱)处理表面。
可降解的中间载体的使用是非常具有吸引力的,因为它的用途非常多因此可以以不同方式对沉积物进行分层,如:
·交替形成无试剂树脂或聚合物层与含试剂层;
·在不同的树脂或聚合物层之间变换试剂的浓度。
任意适合的金属或合金都可以提供金属相。其实例包括铝、铝合金、铁合金、铜合金、镁合金等。最好所选择的金属或合金具有方便渗透的熔点。金属或合金也应与陶瓷的制造材料相容。金属相可以是一层或两层。聚合物或树脂应该可生物降解。
任何适合的聚合物或树脂都可以提供聚合物或树脂相。实例包括:聚乙烯、丙烯酸酯、甲基丙烯酸酯、聚脂、聚酸酐等。所选择的聚合物或树脂的粘度应方便对预制陶瓷的渗透。同时,聚合物或树脂也应当与陶瓷的制造材料相容。聚合物或树脂相可以是一层或两层以上。
对于塑料材料而言,渗透深度取决于树脂的凝胶时间。渗透深度也取决于待填充主体的外围空间的密封。渗透深度还取决于用于渗透的树脂的粘度。必要时可以用添加剂调整粘度。
完全互连的孔结构使得泡沫陶瓷的孔能够渗透,这样渗透材料形成一个单独的连续基体。整个结构,即泡沫陶瓷和孔中的物质,可以归为双连续基体。这样在例如作为复合材料等使用时,可以将泡沫陶瓷和作为添加剂的渗透材料的性质结合起来。另外,泡沫陶瓷可以作为渗透材料的临时载体,可以通过加热、沥滤和洗涤的方式在适当的时候除去,以满足特定应用的需要。
另外一种方式是将金属浇铸在泡沫陶瓷的外部和内部,然后用酸或苛性碱处理或沥滤除去陶瓷骨架。本发明的预制多孔陶瓷泡沫特别适用于这种情况。一种涡轮叶片是用这种方法制造的产品的一个实例。
在本发明的一个优选方面中,用熔融金属或金属合金渗透泡沫陶瓷以形成双连续金属基体复合物。可以采用真空和/或压力。可以优化选择金属或金属合金以及陶瓷以满足特定应用需要。例如,可以通过模压铸造或本领域技术人员已知的其它工艺用铝合金渗透含泡沫氧化铝的预制多孔陶瓷,得到双连续铝金属基体复合物(MMC)。与陶瓷增强相随机分布的MMC相比,双连续MMC具有许多优点如更高的耐磨性、刚性、增强的导热性和导电性以及好的损伤容限。该物质具有低密度,即约为2.8到3g/cm3
本发明的主体可以有不同用途。一个特殊的实例是用作盘式制动器。在交通应用中制动盘的工作环境要求其材料具有高刚性,好的耐磨性,高的热导率,好的损伤容限和低密度。双连续Al-MMC的物理和机械性能能很好地满足这些要求。
与目前适用的铸铁盘相比,双连续Al-MMC作为制动盘材料的其它优点是:
·很少发出尖音;
·很少出现热胀缩破裂;
·可以局部加固。
可以对多孔陶瓷进行加工成型,使得象氧化铝这样的致密陶瓷或金属衬垫就可以放到因承重而需要较高机械强度的地方。这样的陶瓷或金属衬垫可以暴露在一个或多个泡沫陶瓷的外表面上或封闭在泡沫陶瓷的外壳中。该外壳的厚度一般为1mm到10mm,但并不限于此范围。另外,泡沫陶瓷可以是包含在致密陶瓷或金属内部的衬垫。
这种方法可以用于形成非常有用的产品,如汽车工业中的曲轴、水套、进口管汇、汽化器零件、可变汽车硬质顶盖、车顶;航空元件如螺旋桨叶片;自行车、球拍、赛艇等运动器材的框架;建筑配件如砖、承梁板、顶板瓷砖。
以下列表给出了一些不同工业领域的实例:
建筑工业:
防火门的夹层元件
房屋的覆盖板
油井装置的盖板
防火瓷砖
汽车和交通运输工业
车身镶板
承座外壳
隔热罩
油泵的泵壳
内墙板和门
飞机阀内件面板
石墨化作为飞机的碳/碳制动器闸
汽车驱动轴,变速箱壳,活塞汽缸垫;车辆轨条缓行系统;涡轮叶片和风环;自行车架
其它
通讯业-卫星外壳,
运动设施-高尔夫球杆,网球拍杆,
电力设施-转盘
油罐衬里
军用部件
防火用环氧压力管的附加绕组
生物陶瓷-代用关节
实际上,材料的选择范围十分广泛,如通用的化学制品、石油衍生物、爆炸物等等。泡沫陶瓷网络在刚性基体中容纳这些材料并因此使它们免受机械压力等干扰。渗透的材料也可以是树脂。例如,可以用树脂、聚合物或润滑剂浸渍泡沫陶瓷基体,使它们与陶瓷基体保持紧密接触。渗透材料和陶瓷的选择可以优化使其不管是在轻型结构、磨料形状、自润滑陶瓷支撑,都可以在大范围工业中获得最终的应用。
具体实施方式
为了更好地理解本发明,采用下列实例作为参考进行举例说明。
实施例1
混合含有150g氧化铝粉末、42g含30wt%丙烯酸铵和1.25wt%亚甲基-双-丙烯酰胺的溶液和2g水的浆液。向其中加入6g Versicol KA11并进一步混合5分钟。加入2g Dispex A40并进一步混合形成低粘度泥浆。
将其放入手套箱中,并加入10滴Tergitol TMN10表面活性剂。用机械起泡的方式发泡到设定体积得到所需密度。
加入等量的33%(w/w)过硫酸铵溶液和四甲基乙烯二胺。根据所需凝胶时间,其量在50μl和30μl之间变化,这也影响最终的孔径。凝胶时间越长,孔越大。
在家用微波炉中以小功率干燥之后,从烧杯中移去样品并在空气中干燥48小时。
在1550℃下焙烧样品2小时。
制备三个样品,其标称相对密度分别为10%,20%和25%理论密度。
实施例2
用铝合金(名称为LM6,其组分见表1)渗透具有不同孔径的两个堇青石陶瓷泡沫。由于在渗透前没有测量泡沫的密度,将样品称为1和2,1比2具有更多的孔隙结构。每一个样品的密度大约为20%理论密度。渗透按如下方法进行:将初步制好的陶瓷放入一个模具中,沿该模具的长度方向围绕着4个加热器以保证金属在全部注入前一直是液体。制造这些样品时,不使用第4个加热器(离注入端最远)。
表1 LM6的组分成(最大wt%)
  Al   Si   Cu   Ni   Fe   Mg   Mn   Ti   Zn   Pb   Sn
  平衡点   13   0.1   0.1   0.6   0.1   0.5   0.2   0.1   0.1   0.05
首先将样品切为两半以观察铝在泡沫中的渗透深度和填充质量。将横截面打磨并抛光为1μm的菱形断面进行显微镜分析,并切割大约1cm2的立方体,装入导电胶木,研磨到1200grit并抛光为1μm的菱形断面,用光学显微方法和扫描电子显微方法分析。用MEF3显微镜和宏观及明视场技术进行光学显微分析,而带有EDX的Cambridge InstrumentsStereoscan 360则用于SEM分析。通过这些分析技术可以确定微观结构的质量,特别是标明陶瓷中没有被金属润湿的地方、金属和陶瓷之间界面的质量和孔隙率。最后从样品上切割出一个小的立方体,通过测量其大小和重量计算渗透泡沫的密度。
微观结构见图1和2(放大500倍)。
可以看出Al泡沫填充并固化在陶瓷泡沫中。看上去是灰色颗粒结构的铝完全包围了泡沫。在铝和陶瓷之间的界面上有几个小的不同颜色的颗粒。用SEM进行表征,发现它们是硅、α(AlFeMnSi)或β(AlFeSi)相(组分见表2),尽管还可能存在其它相,但是它们在这些样品中的量太小而难以分析。如果我们认为铝合金可能是通过组成过冷过程固化的,那么预料这些金属间化合物相是在铝熔料排出足够量的次要金属,而且这些金属在边缘聚集形成沉积的时候最后形成的。
表2相的平均组成(Wt.%)
  相   Al   Si   Cu   Ni   Fe   Mg   Mn   Ti   其它
  硅   0.5   98   0.5   0.5   0.5
  (AlFeMnSi)   59   9.8   1.5   1.75   20   6.9
  (AlFeSi)   53   15   1.5   27   2.5
从渗透区域切割出小片并测定相对密度。用测微计测定小立方体的大小(体积),用天平测定重量。然后得到下式:
Figure C0181778600141
对于材料1;
对于材料2;
Figure C0181778600143
结果显示两个样品的密度略有不同。LM6的密度大约为2.65g/cm3,而堇青石的密度为2.5g/cm3

Claims (14)

1、形成包括两个相互连接的三维网络的主体的方法,该方法包括形成含有相互连接的骨架的预先制好的多孔的陶瓷网络,并将该预先制好的多孔陶瓷网络置于一个模具中,将熔融金属或聚合材料引入到该多孔陶瓷网络之中,使金属或聚合材料在其中固化,其中所述多孔陶瓷网络以下述方法形成:
形成包含在液体载体中的陶瓷颗粒以及可聚合单体材料的分散体系;
向该分散体系中引入气体;
使所述可聚合单体材料聚合;
除去液体以制成固体物质,该物质具有因气泡而产生的孔;
干燥;并
焙烧以形成所述预先制好的多孔的陶瓷网络;
并且所述多孔陶瓷网络的密度小于30%理论密度,大多数孔的孔径在20到2000微米之间。
2、根据权利要求1的方法,包括以下步骤:以选定并可控的冷却速率使金属或聚合材料在多孔陶瓷网络的孔中固化从而使两个网络接触得更为紧密。
3、根据权利要求1或2的方法,其中通过真空将熔融金属或聚合材料引入、和/或加压将熔融金属或聚合材料推入预先制好的多孔陶瓷网络中。
4、根据权利要求1的方法,其中所述的模具是预先加热的。
5、根据权利要求1的方法,其中预先制好的多孔陶瓷网络的网络度使得能够减少熔融金属或聚合材料金属进入孔中时生成的压力梯度并使与冷却时不同热收缩相关缺陷水平最小化。
6、根据权利要求1的方法,其中使用无压过程将熔融金属或聚合材料引入多孔陶瓷网络的孔中。
7、根据权利要求1的方法,包括通过模压铸造完成该方法。
8、根据上述任何一项权利要求的方法,其中预先制好的多孔陶瓷网络的密度在10%到30%理论密度之间,典型的平均孔径为60-1400微米。
9、根据权利要求1的方法,包括除去所有或部分固化金属或聚合材料的后续步骤。
10、一种主体,其包括预先制好的多孔陶瓷网络,该陶瓷网络中的大多数孔的孔径为60到1400微米,密度为10%到30%理论密度,孔中充填有固化的金属或硬化的塑料。
11、根据权利要求10的主体,其中所述主体的平均孔径在60-650微米之间。
12、根据权利要求10或11的主体,其中所述固化金属选自于铝、铝合金、铁合金、铜合金、镁合金。
13、根据权利要求10的主体,其密度在2.8到3.0g/cm3之间。
14、根据权利要求10的主体,其成型为盘式制动器的形状。
CNB018177867A 2000-08-22 2001-08-22 双连续复合材料 Expired - Fee Related CN1258499C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0020734.0 2000-08-22
GBGB0020734.0A GB0020734D0 (en) 2000-08-22 2000-08-22 Bicontinuous composites

Publications (2)

Publication Number Publication Date
CN1471501A CN1471501A (zh) 2004-01-28
CN1258499C true CN1258499C (zh) 2006-06-07

Family

ID=9898119

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018177867A Expired - Fee Related CN1258499C (zh) 2000-08-22 2001-08-22 双连续复合材料

Country Status (12)

Country Link
US (1) US7290586B2 (zh)
EP (1) EP1313683B1 (zh)
JP (1) JP2004506590A (zh)
KR (1) KR100845993B1 (zh)
CN (1) CN1258499C (zh)
AT (1) ATE331698T1 (zh)
AU (1) AU2001282303A1 (zh)
BR (1) BR0113482A (zh)
DE (1) DE60121180T2 (zh)
GB (1) GB0020734D0 (zh)
MX (1) MXPA03001547A (zh)
WO (1) WO2002016286A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183909A1 (en) * 2004-01-21 2005-08-25 Rau Charles B.Iii Disc brake rotor assembly and method for producing same
CN1313229C (zh) * 2005-02-01 2007-05-02 济南大学 网络陶瓷骨架增强金属基复合材料的制备方法及其装置
DE102005060203B4 (de) * 2005-12-14 2009-11-12 Gkss-Forschungszentrum Geesthacht Gmbh Biokompatibler Magnesiumwerkstoff, Verfahren zu seiner Herstellung und seiner Verwendung
CN100491494C (zh) * 2006-04-05 2009-05-27 中国科学院金属研究所 泡沫碳化硅/金属双连续相复合摩擦材料构件的制备方法
US8151860B2 (en) * 2007-02-16 2012-04-10 Ecole Polytechnique Federale De Lausanne (Epfl) Porous metal article and method of producing a porous metallic article
DE102008014119B4 (de) * 2008-03-13 2013-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines 3-dimensionalen, polymeres Material aufweisenden Formkörpers, Verfahren zum Herstellen einer Beschichtung aus polymerem Material sowie ein 3-dimensionaler Formkörper
KR101289122B1 (ko) * 2008-03-18 2013-07-23 한국보건산업진흥원 생체분해성 마그네슘계 합금으로 다공성 구조체의 기공이충진된 복합재 임플란트 및 이의 제조방법
DE102008037200B4 (de) * 2008-08-11 2015-07-09 Aap Implantate Ag Verwendung eines Druckgussverfahrens zur Herstellung eines Implantats aus Magnesium sowie Magnesiumlegierung
CN101391297B (zh) * 2008-10-31 2012-11-07 吉林大学 仿生物骨骼结构陶瓷骨架局部增强机械部件耐磨性方法
JP5784005B2 (ja) * 2009-04-22 2015-09-24 ユー アンド アイ コーポレーション 生分解性インプラント及びその製造方法
CN102500748B (zh) * 2011-10-25 2013-10-23 中南大学 一种铝碳化硅复合材料的制备方法
JP2014034729A (ja) * 2012-08-10 2014-02-24 Toyota Motor Corp 複合材料、これを用いた摺動部材、およびこれらの製造方法
CN103074512B (zh) * 2013-01-28 2015-03-11 上海交通大学 镁或镁合金-多孔羟基磷灰石复合材料及其制备方法
CN103710562B (zh) * 2013-12-23 2015-09-30 上海应用技术学院 一种多孔陶瓷/金属双连续相复合材料的制备方法
CN107130133B (zh) * 2017-05-26 2019-02-05 哈尔滨工业大学 一种梯度双连续结构的陶瓷/金属复合材料以及其制备方法和应用
TWI636204B (zh) * 2017-06-29 2018-09-21 秦文隆 Power vehicle brake disc and preparation method thereof
CN109210109B (zh) * 2017-06-30 2021-09-24 秦文隆 动力车辆制动盘及其制备方法
JP7162400B2 (ja) 2018-06-29 2022-10-28 サンーゴバン アブレイシブズ,インコーポレイティド 研磨物品及びその形成方法
CN112423935B (zh) 2018-06-29 2023-07-21 圣戈班磨料磨具有限公司 磨料制品及其形成方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568723A (en) * 1967-06-23 1971-03-09 Du Pont Metal-ceramic composite structures
BE793983A (fr) * 1972-01-14 1973-05-02 Foseco Int Fabrication de nouveaux produits ceramiques poreux
JPS61163224A (ja) * 1985-01-14 1986-07-23 Sumitomo Electric Ind Ltd 複合部材およびその製造方法
JPS63101063A (ja) * 1986-10-16 1988-05-06 Nabeya:Kk 流体透過性製品及びその製造法
EP0268120B1 (fr) 1986-11-03 1990-05-09 Asulab S.A. Matériau composite
US5167271A (en) 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
DE3924267C1 (de) 1989-07-22 1994-12-22 Vaw Ver Aluminium Werke Ag Anordnung zur Verwendung als Schutz gegen Geschosse
US5308669A (en) * 1990-06-25 1994-05-03 Bryan Prucher Ceramically reinforced structural materials and method of making same
JPH04358031A (ja) * 1991-06-04 1992-12-11 Hitachi Chem Co Ltd セラミック繊維織布強化複合材料及びその製造法
DE69207198C5 (de) * 1991-08-12 2007-12-06 Dytech Corp. Ltd., Stannington Poröse gegenstände
US5588477A (en) 1994-09-29 1996-12-31 General Motors Corporation Method of making metal matrix composite
US5571848A (en) * 1995-01-20 1996-11-05 Massachusetts Institute Of Technology, A Ma Corp. Method for producing a microcellular foam
US5664616A (en) * 1996-02-29 1997-09-09 Caterpillar Inc. Process for pressure infiltration casting and fusion bonding of a metal matrix composite component in a metallic article
EP0815989A3 (de) * 1996-07-06 2000-05-10 SAB WABCO BSI Verkehrstechnik Products GmbH Verfahren zur Herstellung von lokal keramikverstärkten, gegossenen Bremsscheiben aus Leichtmetallegierungen
GB2354518B (en) * 1996-10-04 2001-06-13 Dytech Corp Ltd A porous ceramic body composed of bonded particles
JPH11157965A (ja) * 1997-07-25 1999-06-15 Taiheiyo Cement Corp 金属−セラミックス複合材料及びその製造方法
JP2000104146A (ja) * 1998-09-30 2000-04-11 Mazda Motor Corp 複合化部材製造用多孔質予備成形体およびこれを用いた複合化部材並びにこれらの製造方法
US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material

Also Published As

Publication number Publication date
MXPA03001547A (es) 2004-12-13
DE60121180T2 (de) 2007-06-14
GB0020734D0 (en) 2000-10-11
JP2004506590A (ja) 2004-03-04
ATE331698T1 (de) 2006-07-15
US20040094284A1 (en) 2004-05-20
KR20030059111A (ko) 2003-07-07
DE60121180D1 (de) 2006-08-10
CN1471501A (zh) 2004-01-28
BR0113482A (pt) 2003-07-29
EP1313683B1 (en) 2006-06-28
US7290586B2 (en) 2007-11-06
AU2001282303A1 (en) 2002-03-04
KR100845993B1 (ko) 2008-07-11
EP1313683A1 (en) 2003-05-28
WO2002016286A1 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
CN1258499C (zh) 双连续复合材料
Kota et al. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties
KR101915835B1 (ko) 반응결합 탄화규소 부재의 제조방법
CN1082567C (zh) 含有三维内连共基质的金属基质复合体的制备方法及其产品
JPS6141867B2 (zh)
JP2018138512A (ja) 熱硬化性のセラミック組成物およびその調製方法
CN1042490A (zh) 用于制备金属基质复合体的熔模浇注法及其由此方法生产的产品
CN1986490A (zh) 一种高强高韧SiC/Al泡沫材料及其制备方法
CN1300864A (zh) 一种泡沫金属制造方法
US5897943A (en) Metal matrix composite including homogeneously distributed fly ash, binder, and metal
FI91724B (fi) Menetelmä metallimatriisikomposiitin valmistamiseksi negatiivista seosmuottia käyttäen
CN1270936A (zh) 无机模塑制品的制造方法
CA2769075A1 (en) Highly filled particulate composite materials and methods and apparatus for making same
US20220081367A1 (en) Thermoset ceramic compositions, inorganic polymer coatings, inorganic polymer mold tooling, inorganic polymer hydraulic fracking proppants, methods of preparation and applications therefore
CN1042501A (zh) 用分散铸造技术制备金属基质复合体的方法及由该方法制备的产品
CN101892398A (zh) 一种陶瓷/铝合金梯度复合材料的制备方法
JP5168451B2 (ja) 多孔質成形体の製造方法及び多孔質充填成形体の製造方法
KR102197354B1 (ko) 알루미늄 합금 폼 및 이의 제조방법
KR20210053038A (ko) 알루미늄 합금 폼 및 이의 제조방법
JP4026835B2 (ja) 三次元網目構造を備えたセラミック成形体の製造方法
JP4026834B2 (ja) 三次元網目構造を備えたセラミック成形体の製造方法
EP4043125A1 (en) Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same
WO2004035506A1 (en) Hardened/toughened freeze cast ceramics
Azmah Hanim Synthesis of Macro Porous Ceramic Materials
Hanim Synthesis of Macro Porous Ceramic Materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060607

Termination date: 20100822