CN1253925A - 半导体陶瓷及用其制造的器件 - Google Patents

半导体陶瓷及用其制造的器件 Download PDF

Info

Publication number
CN1253925A
CN1253925A CN99124802A CN99124802A CN1253925A CN 1253925 A CN1253925 A CN 1253925A CN 99124802 A CN99124802 A CN 99124802A CN 99124802 A CN99124802 A CN 99124802A CN 1253925 A CN1253925 A CN 1253925A
Authority
CN
China
Prior art keywords
mole
semiconductive ceramic
titanate
resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99124802A
Other languages
English (en)
Other versions
CN1093847C (zh
Inventor
並河康训
冈本哲和
広田俊春
山元敬之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1253925A publication Critical patent/CN1253925A/zh
Application granted granted Critical
Publication of CN1093847C publication Critical patent/CN1093847C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • C04B35/4684Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase containing lead compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)
  • Networks Using Active Elements (AREA)

Abstract

一种半导体陶瓷,它包含钛酸钡、钛酸铅、钛酸锶和钛酸钙作为主要组分,以氧化钐作为主要组分中的半导体形成剂,该陶瓷的晶粒平均直径为7—12μm。所述半导体陶瓷在室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃,而且电阻变动率较小。

Description

半导体陶瓷及用其制造的器件
本发明涉及半导体陶瓷。更具体地,本发明涉及具有正电阻温度特性的半导体陶瓷,以及用该材料制造的半导体陶瓷器件。
迄今,具有正电阻温度特性、在居礼点以上电阻突然增大(以下称为PTC特性)的半导体器件是用来保护线路避免过载电流,以及用作彩色电视机的去磁部件。一般用主要由钛酸钡构成的半导体陶瓷来制造这种半导体陶瓷器件,因为它的电阻率低并且耐电压高。
但是,常规钛酸钡型半导体陶瓷的问题是,当电阻率进一步降低时,其耐电压降低。因此,公开了一种具有改进的耐电压的半导体陶瓷,其中以Pb和Sr取代了钛酸钡中的一部分Ba,并掺入了钛酸钙。
日本未审查专利申请公开3-54165描述了一种用作正特性热敏电阻,具有各种改进性能的钛酸钡型半导体陶瓷组合物。上述组合物包含45-87%摩尔的BaTiO3、3-20%摩尔的PbTiO3、5-20%摩尔的SrTiO3以及5-15%摩尔的CaTiO3作为主要组分,这各种主要组分是分别由液相方法制备的;以主要组分为基准,还包含0.2-0.5%摩尔的半导体形成剂、0.02-0.08%摩尔的Mn、以及0-0.45%摩尔的SiO2作为添加剂。
上述陶瓷组合物在室温下的电阻率为3-10Ω·cm,耐电压为10-200V/mm。在上述未审查专利的实施例中,Sb、Y和La被称作半导体形成剂。
日本未审查专利申请公开3-88770描述了一种用作正特性热敏电阻的钛酸钡型半导体陶瓷组合物。该组合物包含45-85%摩尔的BaTiO3、1-20%摩尔的PbTiO3、1-20%摩尔的SrTiO3、和5-20%摩尔的CaTiO3作为主要组分,这些主要组分是分别通过草酸法制备的;以主要组分为基准,还包含0.1-0.3%摩尔的半导体形成剂、0.006-0.025%摩尔的Mn、和0.1-1%摩尔的SiO2作为添加剂。
上述陶瓷组合物在室温下的电阻率不大于8Ω·cm(4-8Ω·cm),电阻温度系数α10-100不小于9%/℃,耐电压不低于60V/mm。在该未审查专利的实施例中,La,Sb和Nb被称作半导体形成剂。
但是,上述专利中公开的半导体陶瓷具有以下问题:
1.当使用La、Sb或Nb作为半导体形成剂时,虽然室温下的电阻率可以降低,但电阻的变动率增大。
2.当使用Y作为半导体形成剂时,室温下的电阻率不能降低。
3.室温下的电阻率变成大于3.5Ω·cm,即电阻率不能充分降低。
因此,本发明的目的之一是提供一种半导体陶瓷,它在室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃,而且电阻变动率减小。
本发明的另一目的是提供一种使用上述半导体陶瓷制造的半导体陶瓷器件,所述陶瓷在室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃,而且电阻变动率减小。
为此目的,本发明的一个方面提供了一种半导体陶瓷,它包含钛酸钡、钛酸铅、钛酸锶和钛酸钙作为主要组分,以氧化钐作为半导体形成剂,而且该半导体陶瓷中晶粒的平均直径为7-12μm。
具有上述组分和晶粒平均直径的半导体陶瓷,在室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃,而且电阻变动率减小。
所述半导体陶瓷组合物较好含有30-97%摩尔的钛酸钡、1-50%摩尔的钛酸铅、1-30%摩尔的钛酸锶、和1-25%摩尔的钛酸钙作为主要组分,以上各组分的总和为100%摩尔。此外,以100摩尔主要组分为基准,较好还包含0.1-0.3摩尔元素Sm的含钐化合物、0.01-0.03摩尔元素Mn的含锰化合物、和0-2.0摩尔元素Si的含硅化合物作为添加剂。
上述主要组分的组合物可进一步降低室温下的电阻率。
本发明的另一方面是一种半导体器件,该器件具有上述半导体陶瓷及形成在其两个主表面上的电极。
利用上述结构,所述半导体陶瓷器件在室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃,而且电阻变动率减小。
图1是本发明半导体陶瓷器件的示意透视图。
本发明的半导体陶瓷包括钛酸钡、钛酸铅、钛酸锶、和钛酸钙作为主要组分,并包含氧化钐作为半导体形成剂,即氧化钐是掺杂剂。该半导体陶瓷的晶粒平均直径为7-12μm。
本发明的半导体陶瓷器件具有上述半导体陶瓷及形成在其上的电极。
用于半导体陶瓷的钛酸钡的合成方法在本发明中并无限制。例如,这方法可以是固相反应,或是液相反应,即溶液反应。
主要组分较好是30-97%摩尔钛酸钡、1-50%摩尔钛酸铅、1-30%摩尔钛酸锶、和1-25%摩尔钛酸钙,总量为100%摩尔。上述的组合物可进一步降低室温下的电阻率。
氧化钐的较好含量是主要组分的0.1-0.3%摩尔元素Sm,这样的含量可使电阻温度系数α变高。
如果需要,可在上述半导体陶瓷中加入氧化锰、氧化硅和/或类似材料作为烧结剂。
本发明的半导体陶瓷器件在形状上并无限制;但是,一般制成圆盘形。使用所述半导体陶瓷器件的电子组件,可以是带有连接于电极的引线的半导体陶瓷与树脂模塑在一起,也可以是装在带有引线的外壳内的半导体陶瓷。
下面参照实施例详细说明本发明。实施例1
以下说明本发明的半导体陶瓷的制造方法和半导体陶瓷器件的制造方法。图1是半导体陶瓷器件的示意透视图。
首先分别制备用作主要组分的BaCO3、TiO2、PbO、SrCO3和CaCO3,半导体形成剂Sm2O3,以及其它添加剂MnCO3(用以改进电阻温度系数的附加剂)和SiO2(一种烧结剂)作为起始原料,然后将这些材料按预定的比例混合再进行湿混合,得到一种混合物。再将所得的混合物沥水,干燥,在1150℃煅烧,得到硬料块。将所得的硬料块粉碎后,加入粘合剂造粒得到粒状产物。将粒状产物用单轴压机模塑成形为厚度为0.5mm,直径为11.0mm的圆盘,然后在1350℃的氮气氛中烧结。随后通过在1150℃的再氧化处理,得到本发明的半导体陶瓷。
摄取所得半导体陶瓷的一个表面的SEM照片,用截面法测定晶粒的平均直径。
然后如图1所示,在半导体陶瓷3的两个主表面烘焙粘结In-Ga电极5,得到半导体陶瓷器件1。
测定所得半导体陶瓷器件在室温下的电阻率(Ω·cm),耐电压(V/mm),以及电阻温度系数(α10-100)。电阻温度系数的测量方法如下。
                 α10-100=[ln(ρ21)/(T2-T1)]×100(%/℃)其中ρ1是室温下电阻率ρ25的10倍,T1是电阻率为ρ1时的温度,ρ2是室温下电阻率ρ25的100倍,T2是电阻率为ρ2时的温度。测量结果如表1所示。表1中半导体形成剂和添加剂的含量(摩尔%)是以主要组分为基准的。表1中的“*”号表示该值是在本发明的范围之外。
                                   表1
 样品编号                                 成份                     特性
主要组分 半导体形成剂     添加剂 室温下的电阻率   耐电压   电阻温度系数 晶粒直径
 BaTiO3(摩尔%)  PbTiO3(摩尔%)  SrTiO3(摩尔%)  CaTiO3(摩尔%)  Sm2O3(摩尔%)   MnO2(摩尔%)   SiO2(摩尔%)   ρ25(Ω·cm) (V/mm)     α(%/℃) (μm)
 *1   60.0   10.0   15.0   15.0   0.2   0.02     1.0     4.4     100     9.8   5.5
 *2   60.0   10.0   15.0   15.0   0.2   0.02     1.0     4.0     90     10.0   6.4
  3   60.0   10.0   15.0   15.0   0.2   0.02     1.0     3.5     85     9.9   7.0
  4   60.0   10.0   15.0   15.0   0.2   0.02     1.0     3.3     80     10.4   8.1
  5   60.0   10.0   15.0   15.0   0.2   0.02     1.0     2.3     70     10.5   9.5
  6   60.0   10.0   15.0   15.0   0.2   0.02     1.0     2.0     60     10.6   10.6
  7   60.0   10.0   15.0   15.0   0.2   0.02     1.0     1.7     55     10.9   11.9
 *8   60.0   10.0   15.0   15.0   0.2   0.02     1.0     1.4     45     11.6   13.7
  9   55.0   10.0   15.0   20.0   0.2   0.02     1.0     2.4     70     10.9   8.2
 10   55.0   10.0   20.0   15.0   0.2   0.02     1.0     2.5     70     10.9   8.6
 11   55.0   15.0   15.0   15.0   0.2   0.02     1.0     2.3     75     11.0   8.2
 12   65.0   5.0   15.0   15.0   0.2   0.02     1.0     2.0     65     10.0   10.6
 13   65.0   10.0   10.0   15.0   0.2   0.02     1.0     2.1     65     10.1   10.8
 14   65.0   10.0   15.0   10.0   0.2   0.02     1.0     2.1     65     10.1   10.6
 15   60.0   10.0   15.0   15.0   0.1   0.02     1.0     3.1     85     11.9   11.0
 16   60.0   10.0   15.0   15.0   0.3   0.02     1.0     2.3     65     9.3   8.6
 17   60.0   10.0   15.0   15.0   0.2   0.01     1.0     1.6     60     9.2   10.2
 18   60.0   10.0   15.0   15.0   0.2   0.03     1.0     3.1     85     12.0   8.8
记号*表示该值在本发明范围之外
由表1可见,当晶粒平均直径为7-12μm时,室温下的电阻率不大于3.5Ω·cm,耐电压不低于50V/mm,电阻温度系数α10-100不小于9%/℃。
晶粒平均直径限定在7-12μm时的理由如下:当晶粒平均直径不大于7时,如样品1和2所示,室温下的电阻率不低于3.5Ω·cm,这是不合要求的。相反,当晶粒平均直径不小于12μm时,如样品8所示,耐电压不大于50V/mm,这是不合要求的。实施例2
按实施例1进行测试,不同之处是用La2O3、Y2O3、Sb2O3和Nb2O3代替实施例1中的起始原料Sm2O3。此外,分析了电阻值的变动。结果如表2所示。
                                       表2
样品编号                                               成份                      特性
                   主要组分     半导体形成剂     添加剂 室温下的电阻率 耐电压   电阻温度系数  晶粒直径  电阻值变动率
  BaTiO3(摩尔%)   PbTiO3(摩尔%)  SrTiO3(摩尔%  CaTiO3(摩尔%) 氧化物种类  添加量(摩尔%)  MnO2(摩尔%)   SiO2(摩尔%)   ρ25(Ω·cm) (V/mm)    α(%/℃) (μm) (CV%)
 21   60.0   10.0   15.0   15.0  Sm2O3   0.20   0.02    1.0    2.8   70.0   10.5   9.5   3.2
*22   60.0   10.0   15.0   15.0  La2O3   0.20   0.02    1.0    2.1   65.0   10.0   10.0   6.3
*23   60.0   10.0   15.0   15.0  Y2O3   0.25   0.02    1.0    4.0   80.0   12.0   8.0   3.1
*24   60.0   10.0   15.0   15.0  Sb2O3   0.20   0.02    1.0    2.0   60.0   9.5   8.8   6.5
*25   60.0   10.0   15.0   15.0  Nb2O3   0.20   0.02    1.0    2.2   60.0   9.5   9.0   6.2
记号*表示该值在本发明范围之外
由表2可见,当使用Sm2O3作为半导体形成剂时(样品21时),电阻的变动小于除Y2O3以外的其它半导体形成剂(样品22、24和25)。当使用Y2O3作为半导体形成剂时(样品23),虽然可抑制电阻的变动率,但因为室温下的电阻率不小于3.5Ω·cm,所以是不足取的。

Claims (3)

1.一种半导体陶瓷,该陶瓷包含钛酸钡、钛酸铅、钛酸锶和钛酸钙作为主要组分,并以氧化钐作为半导体形成剂,且该半导体陶瓷的晶粒平均直径为7-12μm。
2.如权利要求1所述的半导体陶瓷,其特征在于其主要组分包含30-97%摩尔的钛酸钡、1-50%摩尔的钛酸铅、1-30%摩尔的钛酸锶、和1-25%摩尔的钛酸钙,各组分的总量为100%摩尔;而以100摩尔主要组分为基准,所述的半导体陶瓷还包含以下的添加剂:0.1-0.3摩尔元素Sm的含钐化合物,0.01-0.03摩尔元素的Mn的含锰化合物,和0-2.0摩尔元素Si的含硅化合物。
3.一种半导体陶瓷器件,它具有权利要求1或2所述的半导体陶瓷及形成在其两个主表面上的电极。
CN99124802A 1998-11-11 1999-11-10 半导体陶瓷及用其制造的器件 Expired - Lifetime CN1093847C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP320572/1998 1998-11-11
JP320572/98 1998-11-11
JP10320572A JP2000143338A (ja) 1998-11-11 1998-11-11 半導体セラミックおよびそれを用いた半導体セラミック素子

Publications (2)

Publication Number Publication Date
CN1253925A true CN1253925A (zh) 2000-05-24
CN1093847C CN1093847C (zh) 2002-11-06

Family

ID=18122940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99124802A Expired - Lifetime CN1093847C (zh) 1998-11-11 1999-11-10 半导体陶瓷及用其制造的器件

Country Status (7)

Country Link
US (1) US6362521B1 (zh)
EP (1) EP1000912A3 (zh)
JP (1) JP2000143338A (zh)
KR (1) KR100321913B1 (zh)
CN (1) CN1093847C (zh)
NO (1) NO318792B1 (zh)
TW (1) TW541291B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894642A (zh) * 2010-06-29 2010-11-24 湖北华工高理电子有限公司 一种正温度系数热敏电阻的制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130957A (ja) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd 半導体磁器、半導体磁器の製造方法およびサーミスタ
JP3855611B2 (ja) 2000-07-21 2006-12-13 株式会社村田製作所 半導体セラミック及び正特性サーミスタ
JP3554786B2 (ja) * 2000-12-05 2004-08-18 株式会社村田製作所 半導体セラミック、消磁用正特性サーミスタ、消磁回路、および半導体セラミックの製造方法
JP4779466B2 (ja) * 2005-06-30 2011-09-28 株式会社村田製作所 チタン酸バリウム系半導体磁器組成物
JP5222781B2 (ja) * 2009-04-28 2013-06-26 ニチコン株式会社 正特性サーミスタ磁器組成物
CN102649641B (zh) * 2012-05-15 2013-10-02 丹东国通电子元件有限公司 变频空调启动器陶瓷ptc热敏电阻及制造方法
TW201434134A (zh) 2013-02-27 2014-09-01 Everlight Electronics Co Ltd 發光裝置、背光模組及照明模組
CN111971759B (zh) 2018-04-17 2023-05-02 京瓷Avx元器件公司 用于高温应用的变阻器
CN111747740B (zh) * 2020-06-28 2022-06-10 安徽容知日新科技股份有限公司 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594616A (en) 1968-06-19 1971-07-20 Matsushita Electric Ind Co Ltd Ceramic capacitor comprising semiconductive barium titanate body and silver alloy electrodes containing minor amounts of lead oxide and bismuth oxide
JPS581483B2 (ja) 1974-02-18 1983-01-11 株式会社村田製作所 チタンサンバリウムケイハンドウタイジキ
US4808315A (en) * 1986-04-28 1989-02-28 Asahi Kasei Kogyo Kabushiki Kaisha Porous hollow fiber membrane and a method for the removal of a virus by using the same
US5112433A (en) * 1988-12-09 1992-05-12 Battelle Memorial Institute Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size
US5246916A (en) * 1989-03-22 1993-09-21 Sri International Method of forming shaped superconductor materials by electrophoretic deposition of superconductor particulate coated with fusible binder
JPH075363B2 (ja) * 1989-07-20 1995-01-25 日本鋼管株式会社 Ptc磁器組成物及びその製造方法
US5082811A (en) * 1990-02-28 1992-01-21 E. I. Du Pont De Nemours And Company Ceramic dielectric compositions and method for enhancing dielectric properties
US5314651A (en) 1992-05-29 1994-05-24 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
JP2885599B2 (ja) 1993-03-24 1999-04-26 セントラル硝子株式会社 チタン酸バリウム系粉体組成物及びこれを用いた半導体磁器組成物の製造法
DE69632659T2 (de) * 1995-03-24 2005-06-09 Tdk Corp. Vielschichtvaristor
TW321776B (zh) * 1995-07-21 1997-12-01 Tdk Electronics Co Ltd
JP3319314B2 (ja) * 1996-11-20 2002-08-26 株式会社村田製作所 チタン酸バリウム系半導体磁器組成物
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
JP2000095562A (ja) 1998-07-24 2000-04-04 Murata Mfg Co Ltd 正特性サ―ミスタ用原料組成物、正特性サ―ミスタ用磁器、および正特性サ―ミスタ用磁器の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894642A (zh) * 2010-06-29 2010-11-24 湖北华工高理电子有限公司 一种正温度系数热敏电阻的制造方法

Also Published As

Publication number Publication date
US6362521B1 (en) 2002-03-26
NO318792B1 (no) 2005-05-09
CN1093847C (zh) 2002-11-06
JP2000143338A (ja) 2000-05-23
EP1000912A3 (en) 2000-07-19
EP1000912A2 (en) 2000-05-17
NO995488D0 (no) 1999-11-10
TW541291B (en) 2003-07-11
NO995488L (no) 2000-05-12
KR20000034969A (ko) 2000-06-26
KR100321913B1 (ko) 2002-01-26

Similar Documents

Publication Publication Date Title
JPS6328324B2 (zh)
JP2000095562A (ja) 正特性サ―ミスタ用原料組成物、正特性サ―ミスタ用磁器、および正特性サ―ミスタ用磁器の製造方法
EP0261419B1 (en) Semiconductive ceramic composition
CN1093847C (zh) 半导体陶瓷及用其制造的器件
KR940001654B1 (ko) 반도전성 세라믹 조성물
KR100289666B1 (ko) 반도체 세라믹 및 이로부터 제조되는 전자부품
JP5881169B2 (ja) 半導体磁器組成物の製造方法
JP5988388B2 (ja) 半導体磁器組成物およびその製造方法
KR100312605B1 (ko) 반도체 세라믹 및 반도체 세라믹 전자 소자
CA1154835A (en) High k plzt ceramic capacitor and method for making
JP3257046B2 (ja) 圧電磁器
JP3232667B2 (ja) 圧電磁器
JP3257129B2 (ja) 圧電磁器
JPH0761896B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JP3273468B2 (ja) チタン酸バリウム系半導体磁器組成物
JPH0734415B2 (ja) 粒界絶縁型半導体磁器組成物
JP2697112B2 (ja) 還元再酸化型半導体磁器素子の製造方法
JP2540029B2 (ja) 半導体磁器組成物
JP4800956B2 (ja) チタン酸バリウム系半導体磁器組成物
JP2000016866A (ja) チタン酸バリウム系半導体材料の製造方法
JPH0761897B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH07108812B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH0761898B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH0761894B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法
JPH0761895B2 (ja) 粒界絶縁型半導体磁器組成物及びその製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20021106