CN1232608C - 在液-液界面上纳米半导体发光材料的合成方法 - Google Patents

在液-液界面上纳米半导体发光材料的合成方法 Download PDF

Info

Publication number
CN1232608C
CN1232608C CN200410010794.6A CN200410010794A CN1232608C CN 1232608 C CN1232608 C CN 1232608C CN 200410010794 A CN200410010794 A CN 200410010794A CN 1232608 C CN1232608 C CN 1232608C
Authority
CN
China
Prior art keywords
oxide
liquid
carboxylic acid
cadmium
sodium hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200410010794.6A
Other languages
English (en)
Other versions
CN1563265A (zh
Inventor
潘道成
蒋世春
安立佳
姜炳政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute Of Energy Storage Materials & Devices
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN200410010794.6A priority Critical patent/CN1232608C/zh
Publication of CN1563265A publication Critical patent/CN1563265A/zh
Priority to US11/072,322 priority patent/US7582543B2/en
Application granted granted Critical
Publication of CN1232608C publication Critical patent/CN1232608C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/10Compounds of cadmium
    • C09C1/12Cadmium sulfoselenide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/10Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/38Compounds of mercury
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

本发明属于在液-液界面上纳米半导体发光材料的合成方法,采用氧化镉、氧化锌、氧化汞、烷基羧酸、油酸、硫化钠、硒氢化钠或碲氢化钠为原料,在三辛基氧化膦和三辛基膦的存在下,烷基羧酸盐或油酸盐的甲苯溶液与硫化钠、硒氢化钠或碲氢化钠的水溶液在界面反应形成半导体纳米微粒,且稳定的存在于甲苯中,所制备的半导体纳米颗粒在紫外灯能实现波长可调的可见光。

Description

在液-液界面上纳米半导体发光材料的合成方法
技术领域
本发明属于在液-液界面上纳米半导体发光材料的合成方法。
背景技术
纳米半导体材料是近二十年来材料科学研究的热点,由于同传统的体相半导体材料相比,纳米半导体可以产生量子尺寸效应,使得人们可以控制一定的反应条件而制备不同尺寸的纳米粒子,产生不同频率的光发射,从而达到调控发光颜色的目的。另外,由于其纳米尺度的特点,使得纳米半导体材料易于同有机高分子或小分子材料进行复合,通过旋涂等方法制备薄膜发光器件。硫化镉,硒化镉纳米半导体在光电转换中有着十分诱人的应用前景。目前在电致发光及光电池等材料研究领域中,已经取得了突破性的进展。A.P.Alivisatos在Phys.Rev.B,1996,24,17628.报导了硒化镉纳米微粒与MEH-PPV复合体系的光电转换行为,结果表明随着硒化镉纳米微粒浓度的提高,光电转换的效率提高,最大可达12%.M.G.Bawendi在J.Appl.Phys,1998,12,7965.报导了壳/核结构硒化镉/硫化镉纳米微粒与PPV制成的双层器件,以PPV为空穴传输材料,纳米微粒发光层的量子效率可达0.1%,寿命50-100小时。到目前为止,可以采取许多种方法合成硫化镉等II-VI族纳米微粒,其中主要包括反相微乳液,金属有机化学,水溶液等方法。反相微乳液方法可以制备尺寸分布均匀的硫化镉纳米微粒,但是由于其表面及内部的缺陷较多,只能得到较弱的红色发光,且发光效率较低。金属有机化学方法的合成条件苛刻,要求无氧无水的反应操作,且反应所用试剂毒性较大,价格昂贵。水溶液的方法合成的纳米半导体纳米微粒也存在尺寸分布宽,以及缺陷发光的缺点。
发明内容
本发明的目的是提供一种在液-液界面上纳米半导体发光材料的合成方法。
本发明利用界面合成方法的优势,前体化合物一定链长的烷基羧酸盐或油酸盐的甲苯溶液与硫化钠、硒氢化钠或碲氢化钠的水溶液反应,使半导体纳米微粒在界面成核与生长,同时被三辛基氧化膦和三辛基膦包覆,生成的半导体纳米微粒能稳定的存在,并且能产生较强的可见发光。这一方面克服了传统有机相合成条件苛刻,与水相合成的纳米半导体粒子尺寸分布宽且有缺陷发光的困难,另一方面又有效地控制了半导体纳米微粒的尺寸。
本发明的合成技术路线是采用第二副族氧化物中的氧化锌、氧化隔或氧化汞与碳链长为2~18的烷基羧酸或油酸为原料合成前体化合物烷基羧酸盐或油酸盐,氧化物和酸的摩尔比为1~5∶5~1,在150~300℃反应5~30分钟,冷却至20~100℃;后加入甲苯作溶剂;加入三辛基氧化膦和三辛基膦,两者摩尔比为10~1∶1~10,三辛基氧化膦和三辛基膦与氧化锌、氧化隔或氧化汞的摩尔比为10~1∶1~10;最后加入0.05mM~1M的硫化钠、硒氢化钠或碲氢化钠的水溶液,硫化钠、硒氢化钠或碲氢化钠与氧化锌、氧化隔或氧化汞的摩尔比为10~1∶1~10;在2~100℃条件下反应0.5~10h,得到含有半导体纳米微粒的黄色透明溶胶,该溶胶在紫外灯的照射下可发出波长可调的可见光。
本发明整个材料的制备过程具有反应条件温和,方法简便易行的特点,且制备周期短,因而易于实现工业化。
具体实施方式
实施例1:
含有硫化镉纳米微粒溶胶的制备:
将0.127g(1毫摩尔)氧化镉与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的硫化钠水溶液在90℃条件下反应3小时,得到含有硫化镉纳米微粒的黄色透明溶胶。该溶胶具有硫化镉纳米微粒的典型激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的蓝光.
实施例2:
将0.127g(1毫摩尔)氧化镉与0.500g乙酸在220℃下反应十分钟,冷却到90℃形成前体化合物乙酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的硫化钠水溶液在90℃条件下反应3小时,可得到含有硫化镉纳米微粒的黄色透明溶胶。该溶胶具有硫化镉纳米微粒的典型激子吸收峰。
实施例3:
将0.127g(1毫摩尔)氧化镉与0.500g硬脂酸在220℃下反应十分钟,冷却到90℃形成前体化合物硬脂酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml0.05M的硫化钠水溶液在90℃条件下反应3小时,可得到含有硫化镉纳米微粒的黄色透明溶胶。该溶胶具有硫化镉纳米微粒的典型激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的蓝光.
实施例4:
将0.127g(1毫摩尔)氧化镉与0.500g十二烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十二烷基羧酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的硫化钠水溶液在90℃条件下反应3小时,可得到含有硫化镉纳米微粒的黄色透明溶胶。该溶胶具有硫化镉纳米微粒的典型激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的蓝光.
实施例5:
含有硒化镉纳米微粒溶胶的制备:
将0.127g(1毫摩尔)氧化镉与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的硒氢化钠水溶液在90℃条件下反应3小时,可得到含有硒化镉纳米微粒的红色透明溶胶。该溶胶具有硒化镉纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的绿光.
实施例6:
含有碲化镉纳米微粒溶胶的制备:
将0.127g(1毫摩尔)氧化镉与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸镉,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的碲氢化钠水溶液在90℃条件下反应3小时,可得到含有硒化镉纳米微粒的红色透明溶胶。该溶胶具有硒化镉纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的红光.
实施例7:
含有硒化锌纳米微粒溶胶的制备:
将0.08g(1毫摩尔)氧化锌与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸锌,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的硒氢化钠水溶液在90℃条件下反应3小时,可得到含有硒化锌纳米微粒的黄色透明溶胶。该溶胶具有硒化锌纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的蓝光.
实施例8:
含有碲化汞纳米微粒溶胶的制备:
将0.216g(1毫摩尔)氧化汞与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸汞,在上述体系中加入10ml甲苯与3.866g三辛基氧化膦和3.7g三辛基膦,然后加入10ml 0.05M的碲氢化钠水溶液在90℃条件下反应3小时,可得到含有碲化汞纳米微粒的红色透明溶胶。该溶胶具有硒化锌纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的红光.
实施例9:
十二烷基硫醇包覆的硒化镉纳米微粒溶胶的制备:
将0.127g氧化镉(1毫摩尔)与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸镉,在上述体系中加入10ml甲苯、1.2ml十二烷基硫醇与0.546g的相转移催化剂四辛基溴化铵以及3.7g三辛基膦,然后加入10ml 0.05M的硒氢化钠水溶液在90℃条件下反应3小时,可得到十二烷基硫醇包覆的硒化镉纳米微粒的红色溶胶。该溶胶具有硒化锌纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的绿光.
实施例10:
巯基乙醇包覆的硒化镉纳米微粒溶胶的制备:
将0.127g(1毫摩尔)氧化镉与0.500g十四烷基羧酸在220℃下反应十分钟,冷却到90℃形成前体化合物十四烷基羧酸镉,在上述体系中加入10ml甲苯、0.6ml巯基乙醇,然后加入10ml 0.05M的硒氢化钠水溶液在90℃条件下反应3小时,可得到巯基乙醇包覆的硒化镉纳米微粒的红色溶胶。该溶胶能稳定的分散在水中,具有硒化锌纳米微粒的典型的激子吸收峰,可产生量子尺寸效应,在紫外灯的照射下可发出较强的绿光。

Claims (2)

1.一种在液-液界面上纳米半导体发光材料的合成方法,采用第二副族氧化物中的氧化锌、氧化隔或氧化汞与碳链长为2~18的烷基羧酸或油酸为原料合成前体化合物烷基羧酸盐或油酸盐,氧化物和酸的摩尔比为1~5∶5~1,在150~300℃反应5~30分钟,冷却至20~100℃;后加入甲苯作溶剂;然后加入三辛基氧化膦和三辛基膦,两者的摩尔比为10~1∶1~10,三辛基氧化膦和三辛基膦与氧化锌、氧化隔或氧化汞的摩尔比为10~1∶1~10;最后加入0.05mM~1M的硫化钠、硒氢化钠或碲氢化钠的水溶液,硫化钠、硒氢化钠或碲氢化钠与氧化锌、氧化隔或氧化汞的摩尔比为10~1∶1~10;在20~100℃条件下反应0.5~10h,得到含有半导体纳米微粒的黄色透明溶胶。
2.如权利要求1所述的在液-液界面上纳米半导体发光材料的合成方法,其特征在于所述碳链长度为2-18个碳的烷基羧酸为乙酸、十二烷基羧酸、十四烷基羧酸或硬脂酸。
CN200410010794.6A 2004-04-06 2004-04-06 在液-液界面上纳米半导体发光材料的合成方法 Expired - Fee Related CN1232608C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200410010794.6A CN1232608C (zh) 2004-04-06 2004-04-06 在液-液界面上纳米半导体发光材料的合成方法
US11/072,322 US7582543B2 (en) 2004-04-06 2005-03-07 Liquid-liquid interfacial synthetic method for nanosemiconductor luminous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200410010794.6A CN1232608C (zh) 2004-04-06 2004-04-06 在液-液界面上纳米半导体发光材料的合成方法

Publications (2)

Publication Number Publication Date
CN1563265A CN1563265A (zh) 2005-01-12
CN1232608C true CN1232608C (zh) 2005-12-21

Family

ID=34477900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410010794.6A Expired - Fee Related CN1232608C (zh) 2004-04-06 2004-04-06 在液-液界面上纳米半导体发光材料的合成方法

Country Status (2)

Country Link
US (1) US7582543B2 (zh)
CN (1) CN1232608C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012448B2 (en) * 2009-07-13 2011-09-06 University Of Southern California Synthesis of metal chalcogenide nanocrystals using organodichalcogenide reagents
CN102583262A (zh) * 2012-01-04 2012-07-18 吉林大学 一种无膦的制备油溶性半导体纳米晶的方法
CN112897574A (zh) * 2019-12-03 2021-06-04 中国科学院深圳先进技术研究院 纳米颗粒硫化镉材料的制备方法与结构
CN116162458B (zh) * 2021-11-24 2024-01-12 四川大学 一种幻数团簇/量子点的形成路径调控方法及利用该方法制备幻数团簇和量子点的应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770085A (en) * 1991-06-12 1998-06-23 Idaho Research Foundation, Inc. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts
US6855202B2 (en) * 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US6576291B2 (en) * 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US7147712B2 (en) * 2001-10-02 2006-12-12 Invitrogen Corporation Method of semiconductor nanoparticle synthesis
JP4113361B2 (ja) * 2002-02-05 2008-07-09 日立ソフトウエアエンジニアリング株式会社 複層半導体ナノ粒子の製造方法
US7273904B2 (en) * 2002-10-03 2007-09-25 The Board Of Trustees Of The University Of Arkansas Nanocrystals in ligand boxes exhibiting enhanced chemical, photochemical, and thermal stability, and methods of making the same
US7470840B2 (en) * 2003-01-08 2008-12-30 University Of Massachusetts Liquid-liquid interfacial nanoparticle assemblies
US7181266B2 (en) * 2003-03-04 2007-02-20 Massachusetts Institute Of Technology Materials and methods for near-infrared and infrared lymph node mapping
WO2005016824A2 (en) * 2003-05-05 2005-02-24 The Research Foundation Of State University Of Newyork Synthesis of nanoparticles by an emulsion-gas contacting process
CA2550153A1 (en) * 2003-12-12 2005-07-28 Quantum Dot Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
CA2491144C (en) * 2003-12-30 2013-06-11 National Research Council Of Canada Method of synthesizing colloidal nanocrystals
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US7182894B2 (en) * 2004-03-12 2007-02-27 Council Of Scientific & Industrial Research Process for the preparation of free standing membranes
CA2506388A1 (en) * 2004-05-05 2005-11-05 Tieneke Emily Dykstra Surface modification of nanocrystals using multidentate polymer ligands
US7465352B2 (en) * 2004-07-23 2008-12-16 University Of Florida Research Foundation, Inc. One-pot synthesis of high-quality metal chalcogenide nanocrystals without precursor injection
US7405002B2 (en) * 2004-08-04 2008-07-29 Agency For Science, Technology And Research Coated water-soluble nanoparticles comprising semiconductor core and silica coating
US20060240590A1 (en) * 2004-11-09 2006-10-26 The Research Foundation Of State University Of New York Controlled synthesis of nanowires, nanodiscs, and nanostructured materials using liquid crystalline templates
CN1325577C (zh) * 2004-12-03 2007-07-11 中国科学院长春应用化学研究所 合成有机包覆剂包覆的二氧化钛纳米粒子的方法

Also Published As

Publication number Publication date
CN1563265A (zh) 2005-01-12
US20050221516A1 (en) 2005-10-06
US7582543B2 (en) 2009-09-01

Similar Documents

Publication Publication Date Title
Hu et al. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications
Wang et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes
KR100841186B1 (ko) 다층 쉘 구조의 나노결정 및 그의 제조방법
US8963119B2 (en) Semiconductor nanocrystal, method of manufacture thereof and articles including the same
JP2021525814A (ja) 青色発光ZnSe1−xTex合金ナノ結晶の合成方法
Chen et al. Hydrothermal synthesis of highly fluorescent Ag–In–S/ZnS core/shell quantum dots for white light-emitting diodes
JP2023183420A (ja) 成形物品およびナノ構造成形物品
CN110982530B (zh) 一种近红外量子点及其制备方法和应用
CN113122231A (zh) 一种量子点及其制备方法与量子点发光二极管
CN107502335B (zh) 高荧光效率核壳结构无镉量子点及其制备方法和用途
CN1317737C (zh) 合成硒化镉和硒化镉硫化镉核壳结构量子点的方法
CN1693208A (zh) 水溶性CdSe/CdS 核/壳型量子点的制备方法
CN1232608C (zh) 在液-液界面上纳米半导体发光材料的合成方法
JP2020522397A (ja) 量子ドット及び量子ドットの製造方法
Liu et al. Highly luminescent hybrid SiO2‐coated CdTe quantum dots: synthesis and properties
CN1169906C (zh) 有机/无机纳米硫化镉杂化发光材料的合成方法
US11060026B2 (en) Electronic device including quantum dots
Wang et al. A novel strategy for boosting the photoluminescence quantum efficiency of CdSe nanocrystals at room temperature
US20100270504A1 (en) Photoluminescent metal nanoclusters
Lahariya et al. Synthesis, structural properties, and applications of cadmium sulfide quantum dots
CN111909698A (zh) 一种铜掺杂合金量子点及其制备方法、量子点光电器件
CN112397656B (zh) 复合材料及其制备方法和量子点发光二极管
CN112824479B (zh) 量子点核、核壳型量子点、其制备方法、量子点发光器件及量子点组合物
CN115627166B (zh) 一种量子点及其制备方法和电致发光器件
KR100907469B1 (ko) 백색발광 황화카드뮴 나노입자 조성물의 제조방법,그로부터 제조된 백색발광 황화카드뮴 나노입자 조성물 및이를 사용하여 제작된 백색발광소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171206

Address after: Changzhou City, Jiangsu province Hehai road 213000 No. 9

Patentee after: Changzhou Institute of Energy Storage Materials & Devices

Address before: 130022 Changchun people's street, Jilin, No. 5625

Patentee before: Changchun Institue of Applied Chemistry, Chinese Academy of Sciences

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051221

Termination date: 20190406