CN1212910C - 铌粉末及固体电解电容器 - Google Patents

铌粉末及固体电解电容器 Download PDF

Info

Publication number
CN1212910C
CN1212910C CNB038006871A CN03800687A CN1212910C CN 1212910 C CN1212910 C CN 1212910C CN B038006871 A CNB038006871 A CN B038006871A CN 03800687 A CN03800687 A CN 03800687A CN 1212910 C CN1212910 C CN 1212910C
Authority
CN
China
Prior art keywords
niobium
1ppm
niobium powder
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038006871A
Other languages
English (en)
Other versions
CN1533312A (zh
Inventor
佐藤信之
江波户修
斋藤敢
桐原理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Publication of CN1533312A publication Critical patent/CN1533312A/zh
Application granted granted Critical
Publication of CN1212910C publication Critical patent/CN1212910C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种固体电解电容器,通过在铌粉末中添加微量成分,制造使固体电解电容器的漏电流减小、使静电容量提高、静电容量大、损耗系数小的电解电容器。具体解决措施如下:将含有1ppm以上、600ppm以下的氢;1ppm以上、200ppm以下的碳或1ppm以上、50ppm以下的镍;其余量实质上是铌的铌粉末的原料制成烧结体,并将此烧结体制成固体电解电容器(10)内部的阳极。

Description

铌粉末及固体电解电容器
技术领域
本发明涉及铌粉末组成以及使用这种粉末制成的固体电解电容器。
背景技术
近年来铌作为具有高静电容量的固体电解电容器的阳极倍受关注。图1中示意地表示固体电解电容器的纵向剖面图。固体电解电容器10由铌11、氧化铌12、固体电解质13、石墨14、银15层叠而构成。该固体电解电容器10的制造工艺如下:将铌粉末在约1000~1400℃烧结,制成多孔性烧结体后,进行化成处理,使得在铌11的表面形成氧化铌。接着,形成固体电解质13、石墨14、银15。接着,将阳极18(外部端子)连接于铌11,将阴极19(外部端子)通过导电性粘结剂16连接于银15,最后,加装树脂模17,经过老炼工艺而制成。
以往,如特开昭64-73009号公报及特开平6-25701号公报中所记载的那样,要求用于固体电解电容器的铌粉末是高纯度的。一般认为纯度越高越好。特开昭64-73009号公报中没有给出有关纯度的具体数值。特开平6-25701号公报中的记载为:氧不超过100ppm或者不超过5000ppm;非氧化物杂质的总和不超过200ppm或者不超过5000ppm。但没有记载有关具体的非氧化物杂质名称及含量。
另一方面,特开2000-226607号公报中指出,如果在铌粉末中添加特定元素,就会提高所制成的阳极的容量。即,其记载为:“添加从氮、磷、硼、硫、硅、氟、钇、镁等公知的元素中选择的一种以上的参杂剂。这些元素在铌粉末的烧结过程中起抑制剂作用,从而起到提高阳极容量的作用,还具有改善化成氧化膜的膜质的效果。这些元素以氩气或氢气为载气,以单体或由氢还原的化合物的形式添加。添加量通常为对铌1000ppm以下”。但没有定量给出添加物的种类、量及其具体效果。
发明内容
本发明的目的是,通过在铌粉末中适量添加氢、碳、或镍,提供一种适用于制造漏电流小而静电容量大的固体电解电容器的铌粉末、以及使用这种铌粉末的固体电解电容器。
以往,没有完全公开的关于在铌粉末中添加氢、碳、或镍的记载。本发明者们发现了通过在铌粉末中适量添加氢、碳、或镍,就能够达到上述目的,并完成了本发明。即,本发明的第1个发明为一种铌粉末,其特征是:含有1ppm以上、600ppm以下的氢,其余量实质上是铌。氢的含量不到1ppm时,漏电流大、而且静电容量不够大,因此规定1ppm以上;在1~600ppm的范围内时,漏电流小、静电容量出现最大值;氢的含量超过600ppm时,反而漏电流增加、静电容量减小,因此,以600ppm为上限。
本发明的第2个发明为一种铌粉末,其特征是:含有1ppm以上、200ppm以下的碳,其余量实质上是铌。碳的含量不到1ppm时,漏电流大、静电容量不够大;而碳的含量超过200ppm时,反而漏电流增加、静电容量减小,因此以200ppm为上限。
本发明的第3个发明为一种铌粉末,其特征是:含有1ppm以上、50ppm以下的镍,其余量实质上是铌。镍的含量不到1ppm时,漏电流大、静电容量不够大;而镍的含量超过50ppm时,反而漏电流增加、静电容量减小,因此以50ppm为上限。
本发明的第4个发明为一种铌粉末,其特征是:含有从氢:1ppm以上、600ppm以下、碳:1ppm以上、200ppm以下、镍:1ppm以上、50ppm以下之中所选择的2种以上,其余量实质上是铌。
还有,本发明的第5个发明是提供一种固体电解电容器,其特征是:将以上述含有1ppm以上、600ppm以下的氢的铌粉末、含有1ppm以上、200ppm以下的碳的铌粉末、含有1ppm以上、50ppm以下的镍的铌粉末;或含有从氢:1ppm以上、600ppm以下、碳:1ppm以上、200ppm以下、镍:1ppm以上、50ppm以下之中所选择的2种以上,其余量实质上是铌为特征的铌粉末之中的任何一种作为原料的烧结体制成电容器内部的阳极。
以往公知的铌粉末其1次粒子的平均粒径小,例如不到50nm(0.050μm)或50~150nm(0.050~0.150μm),如果将这样细微的铌粉末烧结、制成阳极,则存在用作烧结体的粒子过小的缺点,在化成处理工艺中,铌将成为氧化铌而损失掉,导致未氧化的铌的量减少。因而,电极面积减小,不能获得超高容量的电容器。此处,在本发明的第1~第3个发明中,理想的是,1次粒子的平均粒径为0.150μm以上、2μm以下。如果铌粉末粒子过大,在制造烧结体时就难以进行烧结。另外,1次粒子是指在SEM显微镜下观察,能够作为单体粒子看到的、没有凝聚的粒子。平均粒径是指在粒度分布图中个数累积达50%时的粒径。
附图说明
图1是固体电解电容器的剖面示意图。
具体实施方式
以下对本发明的具体实施方式进行说明。
采用铌粉末、根据以下所述方法制作固体电解电容器,并测量其漏电流和静电容量。将用于阳极的φ0.5mm的铌线材埋入0.2g的铌粉末中并压制成型,制成颗粒。压制时的压强为50~150MN/m2,压制体的体积密度为2800~3200kg/m3。将制成的颗料在炉内压强1×10-3以下、温度1000~1400℃烧成。将烧成后的样品浸泡在0.8质量%的磷酸水溶液中,加6小时20V的电压,使得在颗料表面生成化成被膜。此后,用40质量%的硫酸水溶液测量铌电容器的漏电流和静电容量。在测量电压14V测定5分钟后漏电流的电流值。在偏置电压为1.5V的条件下测量静电容量。
固体电解电容器用铌粉末的制造方法包括由镁、钠、或氢将五氯化铌还原、由钠将氟化铌还原、由碳或铝将氧化铌还原等等。
以下,列举实施例并对本发明的具体实施例进行说明。
(实施例1~3、比较例1~2)
由氢还原五氯化铌而制成铌粉末。将这种铌粉末置于氢气氛围中、在1100℃的温度下、改变时间进行加热处理,并调整氢向铌粉末的导入量。采用热传导式气体分析仪,测量氢的量。此后,制作如上所述的电容器、测量电容器的漏电流和静电容量的值。结果如表1所示,氢含量在1ppm~600ppm的范围内时,漏电流小、静电容量大;在此上下限之外的结果则不理想。
(实施例4~5、比较例3~4)
通过氧化铌的铝还原制成铌粉末。使添加到这种铌粉末的萘的添加量进行各种变化、在1100℃的温度下、按规定的时间进行加热处理,并调整碳向铌粉末的导入量。用燃烧红外吸收分析仪来测量碳的量。此后,制作如上所述的电容器、测量电容器的漏电流和静电容量的值。结果如表2所示,碳含量在1ppm~200ppm的范围内时,漏电流小、静电容量大;如果不到1ppm或超过200ppm,则漏电流增大、静电容量减小。
(实施例6~7、比较例5~6)
由铝还原氧化铌而制成铌粉末。使添加到这种铌粉末的羰基镍的添加量进行各种变化、在1100℃的温度下、按规定的时间进行加热处理,并调整镍向铌粉末的导入量。用等离子体激发质量分析仪测量镍的量。此后,制作如上所述的电容器、测量电容器的漏电流和静电容量的值。结果如表3所示,镍含量在1ppm~50ppm的范围内时,漏电流小、静电容量大,结果好;在此范围之外则性能变差。
工业实用性
本发明根据在铌粉末中按规定量添加特定的成分,能够获得漏电流小且静电容量大的固体电解电容器。
表1
  氢含有率(ppm)   漏电流(μA/μF)    静电容量(μFV/g)     1次粒子的平均粒径(μm)
比较例1     0.5   0.015     70,500     0.5
实施例1     5   0.0088     75,000     0.7
实施例2     200   0.0083     76,000     0.5
实施例3     550   0.0087     75,500     0.6
比较例2     700   0.018     69,000     0.6
表2
  碳含有率(ppm)   漏电流(μA/μF)    静电容量(μFV/g)     1次粒子的平均粒径(μm)
比较例3     0.5   0.015     70,500     0.3
实施例4     3   0.0080     77,000     0.4
实施例5     180   0.0087     78,000     0.4
比较例4     250   0.020     73,500     0.4
表3
镍含有率(ppm)   漏电流(μA/μF)   静电容量(μFV/g)     1次粒子的平均粒径(μm)
比较例5     0.5   0.012     70,000     0.4
实施例6     2   0.0088     75,000     0.4
实施例7     40   0.0086     75,000     0.4
比较例6     60   0.028     65,500     0.5

Claims (3)

1.一种铌粉末,其特征在于,含有1ppm以上、600ppm以下的氢,其余量实质上是铌。
2.一种铌粉末,其特征在于,含有氢:1ppm以上、600ppm以下,进而含有碳:1ppm以上、200ppm以下和/或镍:1ppm以上、50ppm以下,其余量实质上是铌。
3.一种固体电解电容器,其特征在于,将以权利要求1或2中所述的铌粉末为原料的烧结体制成电容器内部的阳极。
CNB038006871A 2002-01-21 2003-01-21 铌粉末及固体电解电容器 Expired - Fee Related CN1212910C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002011824A JP2003213301A (ja) 2002-01-21 2002-01-21 ニオブ粉末及び固体電解コンデンサ
JP11824/2002 2002-01-21

Publications (2)

Publication Number Publication Date
CN1533312A CN1533312A (zh) 2004-09-29
CN1212910C true CN1212910C (zh) 2005-08-03

Family

ID=27606022

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038006871A Expired - Fee Related CN1212910C (zh) 2002-01-21 2003-01-21 铌粉末及固体电解电容器

Country Status (7)

Country Link
US (1) US20040244531A1 (zh)
EP (1) EP1502680A4 (zh)
JP (1) JP2003213301A (zh)
KR (1) KR20040079403A (zh)
CN (1) CN1212910C (zh)
TW (1) TWI266661B (zh)
WO (1) WO2003061881A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL370639A1 (en) * 2002-01-24 2005-05-30 H.C.Starck Inc. Capacitor-grade lead wires with increased tensile strength and hardness
CN107924763B (zh) * 2015-08-12 2020-04-17 株式会社村田制作所 电容器及其制造方法、基板和电容器集合基板
CN106868370A (zh) * 2017-02-09 2017-06-20 武汉华智科创高新技术有限公司 一种抗氧化的铌合金粉末配方

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1471183A (fr) * 1965-12-31 1967-03-03 Kuhlmann Ets Procédé pour l'obtention de poudres métalliques ou composites par réduction directe des halogénures correspondants
EP0532658B1 (en) * 1990-06-06 1997-09-10 Cabot Corporation Tantalum or niobium base alloys
WO2000049633A1 (fr) * 1999-02-16 2000-08-24 Showa Denko K.K. Poudre de niobium, element fritte a base de niobium, condensateur renfermant cet element et procede de fabrication de ce condensateur
CN100381234C (zh) * 1999-03-19 2008-04-16 卡伯特公司 通过研磨制备铌和其它金属粉末
DE19953946A1 (de) * 1999-11-09 2001-05-10 Starck H C Gmbh Co Kg Kondensatorpulver
US6423110B1 (en) * 1999-12-08 2002-07-23 Showa Denko K.K. Powder composition for capacitor and sintered body using the composition, and capacitor using the sintered body
DE10030387A1 (de) * 2000-06-21 2002-01-03 Starck H C Gmbh Co Kg Kondensatorpulver

Also Published As

Publication number Publication date
US20040244531A1 (en) 2004-12-09
TWI266661B (en) 2006-11-21
EP1502680A1 (en) 2005-02-02
CN1533312A (zh) 2004-09-29
WO2003061881A1 (fr) 2003-07-31
KR20040079403A (ko) 2004-09-14
JP2003213301A (ja) 2003-07-30
EP1502680A4 (en) 2007-04-04
TW200302144A (en) 2003-08-01

Similar Documents

Publication Publication Date Title
US6521013B1 (en) Niobium sintered body for capacitor and replace with process for producing same
KR100829277B1 (ko) 탄탈 분말 및 그것을 이용한 고체전해콘덴서
WO1994025971A1 (en) A process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
US20040016978A1 (en) Electrolytic capacitor and a fabrication method therefor
McLean et al. Tantalum solid electrolytic capacitors
CN1498144A (zh) 用于电解电容器基底的钽和氮化钽粉末混合物
EP1266386B1 (en) Anode comprising niobium oxide powder and method of forming it
KR100751267B1 (ko) 니오브 소결체, 그 제조방법, 및 그것을 사용한 콘덴서
JP2000091165A (ja) 焼結タンタルペレットおよび焼結ニオブペレットの窒素ド―ピング方法
CN1930647B (zh) 固体电解电容器及其用途
CN1212910C (zh) 铌粉末及固体电解电容器
US6824586B2 (en) Powder for capacitor, sintered body thereof and capacitor using the sintered body
US20030007313A1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
US6755884B2 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
RU2269835C2 (ru) Ниобий для изготовления конденсатора и конденсатор, изготовленный с использованием спеченного ниобиевого продукта
Schwartz et al. Niobium solid electrolytic capacitors
CN1614726A (zh) 固体电解电容器的制造方法
US6593532B1 (en) Electrode lead wires
KR100284622B1 (ko) 망간건전지
KR20050036967A (ko) 니오븀합금분말, 고체전해콘덴서용 아노드 및 고체전해콘덴서
JP3503971B2 (ja) コンデンサ素子の製造方法
JP2003342603A (ja) ニオブ粉末及び固体電解コンデンサ
EP1529583A1 (en) Niobium powder, anode for solid electrolytic capacitor and solid electrolytic capacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee