CN1211502C - 不锈钢表面防氢渗透层的制备方法 - Google Patents

不锈钢表面防氢渗透层的制备方法 Download PDF

Info

Publication number
CN1211502C
CN1211502C CN 02137373 CN02137373A CN1211502C CN 1211502 C CN1211502 C CN 1211502C CN 02137373 CN02137373 CN 02137373 CN 02137373 A CN02137373 A CN 02137373A CN 1211502 C CN1211502 C CN 1211502C
Authority
CN
China
Prior art keywords
stainless steel
oxidation
rete
hydrogen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 02137373
Other languages
English (en)
Other versions
CN1415783A (zh
Inventor
李凌峰
沈嘉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN 02137373 priority Critical patent/CN1211502C/zh
Publication of CN1415783A publication Critical patent/CN1415783A/zh
Application granted granted Critical
Publication of CN1211502C publication Critical patent/CN1211502C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明述及一种不锈钢表面防氢渗透层的制备方法,特别是不锈钢表面原位生长AL2O3膜层的制备方法。本发明方法的特征是先采用固体粉末在不锈钢表面进行渗铝,然后对渗铝层进行原位氧化制得Al2O3膜层。氧化处理可采用高温气体热处理氧化法,或者采用电化学阳极氧化法。本发明制得的Al2O3膜层具有结合力强、稳定性好、致密度高、且具有很低的氢渗透率等许多优良性能,适宜作核聚变反应堆工程中的不锈钢包壳管材料。

Description

不锈钢表面防氢渗透层的制备方法
技术领域
本发明涉及一种不锈钢表面防氢渗透层的制备方法,不锈钢表面原位生长Al2O3膜层,属金属表面镀膜工艺技术领域。
技术背景
众所周知,氢同位素氘和氚作为核聚变堆的燃料,它们在服役过程中会通过不锈钢包壳管材料的渗透泄露而对环境产生的放射性污染及物料流失是当前有关行业急需解决的重要问题。研制抗氢(氘和氚)渗透性能优良的材料是核聚变堆研究发展中的重要课题。国内外从二十世纪七十年代始研究防氢(氘和氚)渗透材料,从目前发展趋势看,研究者们不是研究如何提高结构材料本身的防氢同位素渗透的能力,而主要是研究如何在结构材料表面形成有效的氢同位素氘和氚渗透阻挡层。由于氢(氘和氚)在金属中和陶瓷中的扩散机制完全不同,氢在陶瓷中有很低的本征渗透率,如氢在氧化铝陶瓷中理论渗透率要比在金属中的渗透率低6-7个数量级,因此许多研究者们都致力于如何在金属结构材料表面形成稳定可靠的陶瓷层。尽管有多种方法可在不锈钢表面形成陶瓷膜层,如一般常用的方法是物理、化学气相沉积法,用这种方法可在不锈钢基体上镀一层非金属表面膜。但是,利用这种方法制备的膜层在高温环境下与基体的结合力较差,热循环性能低,容易剥落,并且生成的膜层不太均匀。另外,考虑到反应堆实际工况,燃料包壳管一般为细长管结构并工作在600-800℃的高温下,气相沉积方法难以在细管内壁形成好的陶瓷膜,特别是能抵抗各应力作用下长期服役稳定的膜层。若陶瓷镀层为TiC或TiN+TiC,则在高温条件下,膜层容易发生氧化,这就会导致膜层的完整性和氚阻挡层遭到破坏,性能退化。
发明内容
本发明的目的是创造一种在不锈钢表面原位生长Al2O3膜层的制备方法它不同于物理、化学沉积法,使生长所得到的Al2O3膜层具有牢固结合力不易剥落,稳定性高、致密度高,且有很低的氢渗透率。本发明的另一个目的是提供一种采用固体粉末渗铝加氧化处理的方法,在不锈钢表面渗铝,先形成富铝层再进一步采用氧化处理以生成Al2O3膜层。
本发明的特征是,在不锈钢表面先采用渗铝剂进行渗铝,所述的渗铝剂的组成成分及含量为:
  Fe-Al粉                                        77-79wt%;
  Al2O3粉                                      20wt%;
  活化剂NH4Cl                                   1-3wt%;
其中,Fe-Al粉的粒度为80目,Fe-Al粉中Fe占45wt%,Al占50wt%,杂质5wt%;随后再进行加热氧化处理而制得Al2O3膜层。氧化处理采用气体热处理氧化法,其热处理温度为900℃;或者采用电化学阳极氧化法。
渗铝过程在900℃高温下进行,渗铝时间为2小时,可获得渗铝层的厚度为60μm。不锈钢表面渗铝后,接着进一步进行氧化处理。
若采用气体热处理氧化法,可在温度900℃,真空度4×10-2Torr时,通入纯氧气,保温2小时,使不锈钢表面的渗铝层进行氧化而生成厚度为0.3μmAl2O3膜层。
若采用电化学阳极氧化法,则使用铂金作为阴极,将渗有铝的不锈钢作为阳极,在磷酸酸性电解质水溶液中进行电化学反应,该酸性溶液是由2%重量H3PO4配制而得的水溶液,在50-100V电压下,通电20-30分钟,温度为20℃,得到厚度为0.3μm的Al2O3膜层。
采用本发明方法,操作简单,制造成本低,且不受尺寸的限制;所制得的Al2O3膜层具有良好的防氢渗透能力。本方法与过去传统方法相比其所制得的Al2O3膜层的表观渗透铝可降低1000倍左右。另外,本发明方法所制得的Al2O3膜层具有结合力强,稳定性好,致密度高的优点。
Hemmfactor为表征膜层相对金属基体阻挡氢渗透能力大小的参量。这是考核膜层抗氢渗透能力的主要指标。H参量数值越高,则说明膜层的抗氢渗透能力越强。下面是几种不同膜层在500℃环境下的H参量,列表如下:
    材料     H参量     备注
    Al2O3膜层     1300     申请者制备
    Cr2O3膜及TiN膜层     300-800     CVD方法制备
    HR-1SS+TiN膜层     450     HTCVD方法制备
    HR-1SS+Cr2O3膜层     492     HTCVD方法制备
    TiC+TiN膜层     586     镀膜
从上表列出数据可见,本发明方法所制备的Al2O3膜层具有最大的抗氢渗透能力。
具体实施方式
现将本发明的具体实施例叙述于后。
实施例一:
渗铝样品为直径为8mm,厚度为3mm的圆柱状00Cr17Ni14Mo2或1Cr18Ni9Ti的不锈钢,其成分如下表所示。
             表一:00Cr17Ni14Mo2和1Cr18Ni9Ti基体材料化学成分(wt%)
  化学成分   C   Mn   P   S   Ni   Cr   Ti   Si  Mo
  00Cr17Ni14Mo2   0.03   1.28   0.04   0.05   14.48   16.91   0.02   0.08  2.09
  1Cr18Ni9Ti   0.05   1.25   0.03   0.014   9.55   17.8   0.46   0.5
渗铝剂组成成分与含量为:
  Fe-Al粉                                                77-79wt%;
  Al2O3粉                                              20wt%;
  活化剂NH4Cl                                           1-3wt%;
其中,Fe-Al粉的粒度为80目,Fe-Al粉中Fe占45wt%,Al占50wt%,杂质5wt%;Fe-Al粉要用电炉冶炼,渗铝前,Fe-Al粉经过真空烘干处理,渗铝样品经过砂纸打磨并用丙酮清洗除油。将样品装入料罐中,将渗铝剂充满样品并压紧,最后用耐火泥密封好,待耐火泥干燥后,料罐在SX-4-10型箱式电阻炉中加热升温,渗铝温度900℃,渗铝时间为2小时,这样,可以在不锈钢表面制得均匀、致密且与基体结合良好、厚度为60μm的渗铝层。
将渗过铝的不锈钢样品进行原位氧化,使其生成Al2O3防氢渗透层。这里可采用气体热处理氧化法来进行处理。其具体步骤入下:将渗过铝的不锈钢样品清洗干净,装入石英管,然后放入真空加热炉里,启动机械泵,抽真空,将石英管中的空气抽取干净,然后往加热炉里通入氧气,再抽真空,这样循环几次,直至加热炉中的气氛完全是氧气,然后抽取直至炉中真空度为4×10-2Torr,关闭机械泵,然后开始加热,当温度达到900℃时,保温2个小时,然后切断电源,随炉冷却,即可生成厚度为0.3μm的Al2O3防氢渗透膜层。
实施例二:
该实施例中,第一步在不锈钢表面渗铝得工艺过程与上述实施例一中完全相同,其第二步即对渗铝层原位氧化,则采用电化学阳极氧化法进行处理。其具体工艺步骤如下:用烧杯装入用2wt%H3PO4溶液配制成酸性电解质水溶液500ml,使用铂金作为阴极,将渗有铝的不锈钢样品作为阳极;将烧杯放入水浴器里,温度调至20℃;然后通电,保持电压为50-100V,让其反应时间为20-30分钟,即可生成厚度为0.3μm的Al2O3防氢渗透膜层。
电化学氧化的反应过程为:
              
              
              
在以上两个实施例中,渗铝剂中Fe-Al粉的粒度为:50-80目;粒度太细,则渗透不均匀,难以在不锈钢表面形成均匀致密的渗铝层;粒度太粗,则渗透不进去,难以与基体良好结合。

Claims (3)

1.一种不锈钢表面防氢渗透层的制备方法,是在不锈钢表面原位生长Al2O3膜层,其特征在于,先采用渗铝剂进行渗铝,所述的渗铝剂的组成成分及含量为:
Fe-Al粉                                             77-79wt%;
Al2O3粉                                            20wt%;
活化剂NH4Cl                                       1-3wt%;
其中,Fe-Al粉的粒度为80目,Fe-Al粉中Fe占45wt%,Al占50%wt,杂质5wt%;然后对渗铝层进行原位氧化制得Al2O3膜层,氧化处理采用气体热处理氧化法,其热处理温度为900℃;或者采用电化学阳极氧化法。
2.根据权利要求1所述的一种不锈钢表面防氢渗透层的制备方法,其特征在于,渗铝过程是在900℃温度下进行,经历时间为2小时;氧化处理采用气体热氧化法:在900℃高温下,真空度为4×10-2Torr时,通入纯氧气,保温2个小时,随炉冷却,使不锈钢表面的渗铝层进行氧化生成Al2O3膜层。
3.根据权利要求1所述的方法,其特征在于,渗铝过程是在900℃温度下进行,经历时间为2小时;氧化处理采用电化学阳极氧化:使用铂金作为阴极,将渗过铝的不锈钢样品作为阳极,在2wt%磷酸酸性电解质水溶液中进行电化学反应,在电压为50-100V,温度为20℃下,通电20-30分钟。
CN 02137373 2002-10-10 2002-10-10 不锈钢表面防氢渗透层的制备方法 Expired - Fee Related CN1211502C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02137373 CN1211502C (zh) 2002-10-10 2002-10-10 不锈钢表面防氢渗透层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02137373 CN1211502C (zh) 2002-10-10 2002-10-10 不锈钢表面防氢渗透层的制备方法

Publications (2)

Publication Number Publication Date
CN1415783A CN1415783A (zh) 2003-05-07
CN1211502C true CN1211502C (zh) 2005-07-20

Family

ID=4748973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02137373 Expired - Fee Related CN1211502C (zh) 2002-10-10 2002-10-10 不锈钢表面防氢渗透层的制备方法

Country Status (1)

Country Link
CN (1) CN1211502C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642973B (zh) * 2008-08-08 2012-12-12 比亚迪股份有限公司 一种不锈钢复合材料及不锈钢复合材料的制备方法
CN102534468B (zh) * 2012-02-29 2014-08-13 西安石油大学 一种低温渗铝石油管线用钢表面原位陶瓷层的制备工艺
CN103014614B (zh) * 2012-12-19 2015-04-15 天津津滨石化设备有限公司 用于换热管内外壁防腐的渗箱层埋式扩散渗铝方法
CN103305787B (zh) * 2013-06-25 2015-09-16 北京科技大学 一种在不锈钢基体上制备阻氢及其同位素渗透层的方法
CN104232970B (zh) * 2014-08-26 2017-08-01 盐城市鑫洋电热材料有限公司 一种FeAl泡沫金属的制备方法
CN104232971B (zh) * 2014-08-26 2017-08-01 盐城市鑫洋电热材料有限公司 一种NiCrA1泡沫金属的制备方法
CN105154775B (zh) * 2015-07-24 2018-05-04 中国科学院等离子体物理研究所 一种聚变堆用可低温生成α-Al2O3阻氢渗透层的钢基结构材料
CN105838852B (zh) * 2016-05-09 2017-12-22 上海大学 铝合金压铸模具的表面氧化处理方法
CN106048519B (zh) * 2016-07-22 2019-11-12 四川大学 一种聚变堆氚增殖包层用Fe-Al/Al2O3阻氚涂层及其制备方法
CN107641794A (zh) * 2017-09-30 2018-01-30 铜山县利国钢铁有限公司 一种稳定耐腐蚀不锈钢件
CN107641785B (zh) * 2017-10-12 2020-06-09 河北工业大学 一种球墨铸铁表面耐磨涂层制备方法
CN110257764A (zh) * 2019-07-16 2019-09-20 合肥工业大学 一种316l不锈钢表面铝硅共渗氧化物复合阻氚涂层的制备方法
CN110218969A (zh) * 2019-07-16 2019-09-10 合肥工业大学 一种316l不锈钢表面y2o3改性铝化物阻氚涂层的制备方法

Also Published As

Publication number Publication date
CN1415783A (zh) 2003-05-07

Similar Documents

Publication Publication Date Title
CN1211502C (zh) 不锈钢表面防氢渗透层的制备方法
CN104894595B (zh) 一种高催化活性的非晶金属氧化物析氢电极及其制备方法
CN101257118A (zh) 一种燃料电池用双极板及其表面碳铬薄膜制备方法
CN112144008B (zh) 一种通过预氧化提高氧化物弥散强化钢耐高温液态金属腐蚀性能的方法
CN101134679A (zh) 一种氢化锆表面防氢渗透层的制备方法
CN103966615B (zh) 一种1200℃完全抗氧化的二元微量活性元素掺杂的PtNiAl粘结层及其制备方法
KR20090018396A (ko) 피복관 내면에 산화물피막층이 형성된 고속로용 핵연료봉및 그 제조 방법
CN106609353B (zh) 气体脉冲反应溅射法制备Al2O3阻氚涂层的方法
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
CN1285873C (zh) 对石墨坩埚具表面高温复合阻碳涂层进行致密化的方法
CN109037708A (zh) 一种表面改性的20Cr钢双极板材料及其制备方法
CN214422533U (zh) 一种氢化锆复合阻氢涂层结构
CN109772657B (zh) 一种质子交换膜燃料电池不锈钢双极板的表面处理方法
CN114086111B (zh) 一种抗高温氧化铱铪复合材料及其制备方法
CN111146486A (zh) 一种具有双层涂层的固体氧化物燃料电池金属连接体及其制备方法
CN113684511B (zh) 一种高温自修复涂层的电化学制备方法及其产品
CN114715884B (zh) Z轴导热增强的石墨烯导热膜的构建方法、石墨烯导热膜及其应用
CN114086179B (zh) 一种铜基体表面金刚石耐磨涂层的制备方法
CN112695282B (zh) 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用
CN114959737B (zh) 一种质子交换膜电解水制氢用钛双极板的制备方法
CN105132982B (zh) 一种铀及其合金表面陶瓷涂层的制备方法
CN115679263B (zh) 一种核反应堆用耐蚀涂层、包壳材料及其制备方法
CN113024279A (zh) 一种氢化锆复合阻氢涂层结构及其制备方法
CN114231892B (zh) 一种金属钛表面的改性方法
CN114272920B (zh) 一种有机污染物降解用复合氧化物涂层电极及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee