CN118005400A - 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法 - Google Patents

一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法 Download PDF

Info

Publication number
CN118005400A
CN118005400A CN202410151111.6A CN202410151111A CN118005400A CN 118005400 A CN118005400 A CN 118005400A CN 202410151111 A CN202410151111 A CN 202410151111A CN 118005400 A CN118005400 A CN 118005400A
Authority
CN
China
Prior art keywords
carbide
powder
solid solution
high carbon
solution ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410151111.6A
Other languages
English (en)
Other versions
CN118005400B (zh
Inventor
陈磊
孔庆易
王玉金
霍思嘉
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202410151111.6A priority Critical patent/CN118005400B/zh
Priority claimed from CN202410151111.6A external-priority patent/CN118005400B/zh
Publication of CN118005400A publication Critical patent/CN118005400A/zh
Application granted granted Critical
Publication of CN118005400B publication Critical patent/CN118005400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,它属于特种陶瓷材料技术领域。本发明的目的是要解决现有高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷粉体普遍存在致密度低、杂质多或工艺流程复杂且可控程度低,冷焊和易出现的氧污染的问题。方法:一、称取所需粉体;二、混合;三、烧结。本发明工艺流程简单、生产效率高,能够在较大范围内实现非化学计量比多组元碳化物固溶体陶瓷的碳空位含量精准调控。本发明制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的相对密度>97%,室温硬度为25~35GPa,模量为400~500GPa,断裂韧性为3~5MPa·m1/2

Description

一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷 的制备方法
技术领域
本发明属于特种陶瓷材料技术领域,具体涉及一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法。
背景技术
过渡金属碳化物陶瓷材料具有高熔点、高硬度、化学稳定性好等优异性质,因此被认为在极端环境中具有广阔的应用前景。而过渡金属碳化物通常是非化学计量的,部分过渡金属碳化物的碳空位甚至可以达到50%。对多组元碳化物固溶体陶瓷的研究表明,碳含量的变化会显著影响多组元碳化物陶瓷的物相、结构、烧结活性、力学性能和热学性能。碳含量的降低可以促进多组元碳化物陶瓷的原子扩散和单相的形成,有利于降低烧结温度并提升材料的致密度。此外,碳含量对多组元碳化物陶瓷的力学性能也会产生显著影响,适量的碳空位存在能够提升多组元碳化物陶瓷的力学性能。而目前的报道中,高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷普遍存在致密度低、杂质多或工艺流程复杂且可控程度低的问题。因此,提供一种新型的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法是十分必要的。
发明内容
本发明的目的是要解决现有高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷粉体普遍存在致密度低、杂质多或工艺流程复杂且可控程度低,冷焊和易出现的氧污染的问题,而提供一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法。
一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、称取所需粉体:
①、称取碳化铌、碳化钽和碳化铪粉体中的一种或按照等摩尔比称取碳化铌、碳化钽和碳化铪粉体中的两种或三种,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、碳化钛与步骤一①中称取的金属碳化物粉末的摩尔比为其中0.5<x<1.0,n为步骤一①和步骤一②中称取的金属碳化物的种类数之和,1≤n≤3,n为整数;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在氩气气氛或真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中进行烧结,得到高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷。
所述的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的化学式为(TiZrM)Cx,(TiZrM1M2)Cx,(TiZrM1M2M3)Cx,其中0.5<x<1.0,M为Nb、Ta和Hf中的一种;M1M2为Nb、Ta和Hf中两种;M1M2M3为Nb、Ta和Hf。
本发明包含以下有益效果:
一、本发明首次提出一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,通过高能球磨方法将过渡金属碳化物粉体与氢化物粉体充分混合形成高烧结活性的碳化物与氢化物复合粉体,然后采用固相烧结的方式,通过反应烧结得到高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;高能球磨能够使碳化物与氢化物充分混合,保证了元素分布的均匀性,并通过破碎颗粒提升烧结活性,能够有效的提升材料的致密度,降低烧结温度;选用氢化物粉体调控碳含量能够有效的避免氧污染,解决金属粉体在高能球磨过程中易出现的氧化和冷焊问题,同时能够实现碳空位含量的可调可控,拓宽了材料的设计空间;
二、应用本发明制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷能够有效减少游离碳和残留氧,降低烧结制备温度,提高材料致密度和细化晶粒;
三、本发明工艺流程简单,极大的降低了高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷材料的生产成本,并显著提升了生产制备过程中的可控性,降低了氧污染的可能性,氧含量低于0.3%,保障了高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的纯度。本发明制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的相对密度>97%,室温硬度为25~35GPa,模量为400~500GPa,断裂韧性为3~5MPa·m1/2
本发明可获得一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷。
附图说明
图1为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的XRD图谱;
图2为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的SEM图;
图3为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的元素面分布检测时的原位SEM图;
图4为图3中的Ti元素分布图;
图5为图3中的Zr元素分布图;
图6为图3中的Nb元素分布图。
具体实施方式
以下实施例目的为进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
具体实施方式一:本实施方式一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,是按以下步骤完成的:
一、称取所需粉体:
①、称取碳化铌、碳化钽和碳化铪粉体中的一种或按照等摩尔比称取碳化铌、碳化钽和碳化铪粉体中的两种或三种,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、碳化钛与步骤一①中称取的金属碳化物粉末的摩尔比为其中0.5<x<1.0,n为步骤一①和步骤一②中称取的金属碳化物的种类数之和,1≤n≤3,n为整数;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在氩气气氛或真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中进行烧结,得到高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一①中所述的碳化铌、碳化钽和碳化铪粉体的化学式分别为NbC、TaC和HfC,纯度均>99.0wt.%。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一②中所述的碳化钛、碳化锆、氢化钛和氢化锆粉体的化学式为TiC、ZrC、TiH2和ZrH2,纯度均>99.0wt.%。其它步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中所述的高能球磨的球料比为(10~50):1,高能球磨的转速100r/min~700r/min,高能球磨的时间为5h~40h,球磨罐和磨球的材质均为硬质合金。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤三中所述的烧结的方法为放电等离子烧结。其它步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤三中所述的放电等离子烧结的工艺为:从室温升温至1800~2400℃,在1800~2400℃下保温1min~30min,随后冷却至室温,升温的速率为10℃/min~200℃/min,降温的速率为50℃/min~200℃/min,烧结过程中保持压力为10~100MPa。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三中所述的烧结的方法为热压烧结。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤三中所述的热压烧结的工艺为:从室温升温至1800~2400℃,在1800~2400℃下保温1min~120min,随后冷却至室温,升温速率为5℃/min~30℃/min,降温速率为5℃/min~50℃/min,烧结过程中保持压力为10MPa~100MPa。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤三中烧结的过程中需持续通入惰性气体形成保护气氛或保持真空状态;所述的惰性气体为氩气、氦气或氪气;所述的真空状态为<20Pa。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤三中所述的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的化学式为(TiZrM)Cx,(TiZrM1M2)Cx,(TiZrM1M2M3)Cx,其中0.5<x<1.0,M为Nb、Ta和Hf中的一种;M1M2为Nb、Ta和Hf中两种;M1M2M3为Nb、Ta和Hf。其它步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNb)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、称取碳化铌,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌的摩尔比为3:3:7:7:10;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为10:1,球磨机的转速300r/min,球磨的时间为5h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在氩气保护下进行放电等离子烧结,得到化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至2200℃,在2200℃下保温10min,随后冷却至室温,升温速率为50℃/min,降温速率为100℃/min,烧结过程中保持压力为30MPa。
实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,晶粒尺寸为18.3μm,致密度为99.6%,硬度可达到33.3GPa,三点弯曲强度为470MPa,弹性模量为430GPa,断裂韧性为3.82MPa·m1/2
图1为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的XRD图谱;
从图1可知,实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷为单一物相,没有任何杂质及其第二相的存在,证明采用该技术方案可获得单相的(TiZrNb)C0.8的非化学计量比多组元碳化物陶瓷材料。
图2为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的SEM图;
从图2可知,实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的致密度高,晶粒尺寸分布相对均匀,无异常长大现象。
图3为实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的元素面分布检测时的原位SEM图;
图4为图3中的Ti元素分布图;
图5为图3中的Zr元素分布图;
图6为图3中的Nb元素分布图。
图3~图6表明,实施例一制备的化学式为(TiZrNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷中Ti、Zr和Nb金属元素分布均匀,无明显的元素偏聚,再次证明采用该技术方案可获得单相的(TiZrNb)C0.8的非化学计量比多组元碳化物陶瓷材料。
实施例二:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNb)C0.6的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、称取碳化铌,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌的摩尔比为3:3:2:2:5;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为30:1,球磨机的转速700r/min,球磨的时间为20h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在氩气保护下进行放电等离子烧结,得到化学式为(TiZrNb)C0.6的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至2200℃,在2200℃下保温5min,随后冷却至室温,升温速率为100℃/min,降温速率为200℃/min,烧结过程中保持压力为70MPa。
实施例二制备的化学式为(TiZrNb)C0.6的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.4%,硬度可达到31.7GPa,三点弯曲强度为430MPa,弹性模量为400GPa,断裂韧性为3.92MPa·m1/2
实施例三:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、称取碳化铌,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌的摩尔比为3:3:17:17:20;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为50:1,球磨机的转速500r/min,球磨的时间为40h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行放电等离子烧结,得到化学式为(TiZrNb)C0.9的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至2400℃,在2400℃下保温30min,随后冷却至室温,升温速率为150℃/min,降温速率为50℃/min,烧结过程中保持压力为100MPa。
实施例三制备的化学式为(TiZrNb)C0.9的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.8%,硬度可达到34.7GPa,三点弯曲强度为490MPa,弹性模量为489GPa,断裂韧性为4.72MPa·m1/2
实施例四:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNbTa)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、按照等摩尔比称取碳化铌和碳化钽,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化钽的摩尔比为2:2:3:3:5:5;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化钽粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为30:1,球磨机的转速200r/min,球磨的时间为10h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行放电等离子烧结,得到化学式为(TiZrNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至2100℃,在2100℃下保温25min,随后冷却至室温,升温速率为50℃/min,降温速率为100℃/min,烧结过程中保持压力为75MPa。
实施例四制备的化学式为(TiZrNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.2%,硬度可达到34.1GPa,三点弯曲强度为477MPa,弹性模量为451GPa,断裂韧性为4.89MPa·m1/2
实施例五:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNbTa)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、按照等摩尔比称取碳化铌和碳化钽,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化钽的摩尔比为2:2:3:3:5:5;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化钽粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为30:1,球磨机的转速200r/min,球磨的时间为10h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行热压烧结,得到化学式为(TiZrNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的热压烧结的工艺为:从室温升温至2200℃,在2200℃下保温1h,随后冷却至室温,升温速率为5℃/min,降温速率为50℃/min,烧结过程中保持压力为75MPa。
实施例五制备的化学式为(TiZrNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.3%,硬度可达到34.6GPa,三点弯曲强度为467MPa,弹性模量为448GPa,断裂韧性为4.92MPa·m1/2
实施例六:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrHfNbTa)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、按照等摩尔比称取碳化铌、碳化钽和碳化铪,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌、碳化钽和碳化铪的摩尔比为1:1:1:1:2:2:2;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌、碳化钽和碳化铪粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为20:1,球磨机的转速450r/min,球磨的时间为25h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行热压烧结,得到化学式为(TiZrHfNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的热压烧结的工艺为:从室温升温至1800℃,在1800℃下保温2h,随后冷却至室温,升温速率为20℃/min,降温速率为20℃/min,烧结过程中保持压力为30MPa。
实施例六制备的化学式为(TiZrHfNbTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.9%,硬度可达到28.6GPa,三点弯曲强度为427MPa,弹性模量为418GPa,断裂韧性为3.42MPa·m1/2
实施例七:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrHfTa)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、按照等摩尔比称取碳化钽和碳化铪,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化钽和碳化铪的摩尔比为2:2:3:3:5:5;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化钽和碳化铪粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为35:1,球磨机的转速350r/min,球磨的时间为10h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行热压烧结,得到化学式为(TiZrHfTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的热压烧结的工艺为:从室温升温至2000℃,在2000℃温度下保温30min,随后冷却至室温,升温速率为30℃/min,降温速率为10℃/min,烧结过程中保持压力为50MPa。
实施例七制备的化学式为(TiZrHfTa)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为98.9%,硬度可达到30.6GPa,三点弯曲强度为461MPa,弹性模量为433GPa,断裂韧性为3.71MPa·m1/2
实施例八:一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrHfNb)C0.8的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、按照等摩尔比称取碳化铌和碳化铪,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化铪的摩尔比为2:2:3:3:5:5;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆、碳化铌和碳化铪粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为35:1,球磨机的转速350r/min,球磨的时间为10h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行热压烧结,得到化学式为(TiZrHfNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的热压烧结的工艺为:从室温升温至1900℃,在1900℃温度下保温10min,随后冷却至室温,升温速率为20℃/min,降温速率为40℃/min,烧结过程中保持压力为75MPa。
实施例八制备的化学式为(TiZrHfNb)C0.8的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷各金属元素分布均匀,致密度为99.7%,硬度可达到33.4GPa,三点弯曲强度为438MPa,弹性模量为459GPa,断裂韧性为4.49MPa·m1/2
对比例1:一种非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
①、称取碳化铌,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌的摩尔比为3:3:17:17:20;
步骤一所述的氢化钛、氢化锆、碳化钛、碳化锆和碳化铌粉体纯度均>99.0wt.%;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
步骤二所述的高能球磨的工艺参数为:球料比为50:1,球磨机的转速500r/min,球磨的时间为40h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中,在真空条件下进行放电等离子烧结,得到化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至1600℃,在1600℃下保温30min,随后冷却至室温,升温速率为150℃/min,降温速率为50℃/min,烧结过程中保持压力为100MPa。
对对比例1制备的化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷进行表征,发现存在部分金属元素分布不均匀的现象,其致密度仅为95.8%,硬度为27.8GPa,三点弯曲强度为324MPa,断裂韧性为3.41MPa·m1/2。通过对比可以发现本发明技术方案制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的致密度和力学性能具有显著优势。
对比例2:一种非化学计量比多组元碳化物固溶体陶瓷的制备方法,具体是按以下步骤完成的:
一、设计化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷,称取所需粉体:
按照摩尔比为10:10:10:27称取金属钛、金属锆、金属铌和石墨粉体;步骤一所述的金属钛、金属锆、金属铌和石墨粉体纯度均>98.0wt.%;
二、混合:
将步骤一中称取的金属粉体与石墨粉体进行初步混合,再在真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体;
步骤二所述的高能球磨的工艺参数为:球料比为50:1,球磨机的转速500r/min,球磨的时间为40h,球磨罐和磨球的材质均为硬质合金;
三、烧结:
将步骤二得到的混合粉体置于模具中,在真空条件下进行放电等离子烧结,得到化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷;
步骤三中所述的放电等离子烧结的工艺为:从室温升温至2400℃,在2400℃下保温30min,随后冷却至室温,升温速率为150℃/min,降温速率为50℃/min,烧结过程中保持压力为100MPa。
对对比例2制备的化学式为(TiZrNb)C0.9的非化学计量比多组元碳化物固溶体陶瓷进行表征,发现存在部分氧化物杂质存在,其致密度为98.8%,硬度为29.1GPa,三点弯曲强度为351MPa,断裂韧性为3.38MPa·m1/2。通过对比可以发现本发明技术方案制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷在致密度、力学性能以及防止氧杂质引入方面具有显著优势。

Claims (10)

1.一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于所述制备方法具体是按以下步骤完成的:
一、称取所需粉体:
①、称取碳化铌、碳化钽和碳化铪粉体中的一种或按照等摩尔比称取碳化铌、碳化钽和碳化铪粉体中的两种或三种,得到金属碳化物粉末;
②、称取碳化钛、碳化锆、氢化钛和氢化锆粉体,其中氢化钛和氢化锆粉体摩尔数相等,碳化钛和碳化锆粉体摩尔数相等,得到混合粉体Ⅰ;
步骤一②中所述的氢化钛、碳化钛与步骤一①中称取的金属碳化物粉末的摩尔比为其中0.5<x<1.0,n为步骤一①和步骤一②中称取的金属碳化物的种类数之和,1≤n≤3,n为整数;
二、混合:
将步骤一①中称取的金属碳化物粉末与步骤一②中称取的混合粉体Ⅰ进行初步混合,再在氩气气氛或真空环境中进行高能球磨,使粉体得到充分均匀混合,并对粉体进行破碎,降低粉体粒径以提高其固溶和烧结活性,得到混合粉体Ⅱ;
三、烧结:
将步骤二得到的混合粉体Ⅱ置于模具中进行烧结,得到高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷。
2.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤一①中所述的碳化铌、碳化钽和碳化铪粉体的纯度均>99.0wt.%。
3.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤一②中所述的碳化钛、碳化锆、氢化钛和氢化锆粉体的纯度均>99.0wt.%。
4.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤二中所述的高能球磨的球料比为(10~50):1,高能球磨的转速100r/min~700r/min,高能球磨的时间为5h~40h,球磨罐和磨球的材质均为硬质合金。
5.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中所述的烧结的方法为放电等离子烧结。
6.根据权利要求5所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中所述的放电等离子烧结的工艺为:从室温升温至1800~2400℃,在1800~2400℃下保温1min~30min,随后冷却至室温,升温的速率为10℃/min~200℃/min,降温的速率为50℃/min~200℃/min,烧结过程中保持压力为10~100MPa。
7.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中所述的烧结的方法为热压烧结。
8.根据权利要求7所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中所述的热压烧结的工艺为:从室温升温至1800~2400℃,在1800~2400℃下保温1min~120min,随后冷却至室温,升温速率为5℃/min~30℃/min,降温速率为5℃/min~50℃/min,烧结过程中保持压力为10MPa~100MPa。
9.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中烧结的过程中需持续通入惰性气体形成保护气氛或保持真空状态;所述的惰性气体为氩气、氦气或氪气;所述的真空状态为<20Pa。
10.根据权利要求1所述的一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,其特征在于步骤三中所述的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的化学式为(TiZrM)Cx,(TiZrM1M2)Cx,(TiZrM1M2M3)Cx,其中0.5<x<1.0,M为Nb、Ta和Hf中的一种;M1M2为Nb、Ta和Hf中两种;M1M2M3为Nb、Ta和Hf。
CN202410151111.6A 2024-02-02 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法 Active CN118005400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410151111.6A CN118005400B (zh) 2024-02-02 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410151111.6A CN118005400B (zh) 2024-02-02 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN118005400A true CN118005400A (zh) 2024-05-10
CN118005400B CN118005400B (zh) 2024-10-29

Family

ID=

Similar Documents

Publication Publication Date Title
CN110093548B (zh) 一种含稀土Gd的超细晶高强韧高熵合金及其制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN109487141B (zh) 一种板状碳化物固溶体增韧混晶Ti(C,N)基金属陶瓷的制备方法
CN109796209B (zh) 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN113373363B (zh) 难熔高熵复合材料及其制备方法
CN113930696B (zh) 一种轻质富钛Ti-Zr-Nb-Al系难熔高熵合金基复合材料的制备方法
CN112063869B (zh) 一种氢辅粉末冶金钛基复合材料的制备方法
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN110079722A (zh) 一种含B的难熔高熵合金TiZrNbMoTa及其粉末冶金制备方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
CN115093233A (zh) 一种适合于工业化宏量生产的高纯超细过渡金属碳氮化物高熵陶瓷粉体的制备方法
CN114535576B (zh) 一种含Al难熔高熵合金及其制备方法
CN114799155B (zh) 陶瓷颗粒强化难熔高熵合金的制备方法
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN112723888B (zh) 高熵陶瓷材料及其制备方法
CN118005400B (zh) 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法
Zavareh et al. TiC–TiB2 composites: A review of processing, properties and applications
CN118005400A (zh) 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法
CN116375477A (zh) 一种高硬度、抗氧化的高熵陶瓷及其制备方法
CN114262229B (zh) 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
CN110483057A (zh) 一种掺杂钽元素的四硼化钨材料及其制备方法与应用
EP4056540B1 (en) Method for obtaining a high refractory composite from boron carbide and intermetallic compound of the ti-si system
CN115070042A (zh) 一种稀土氧化物改性硬质合金车刀片及其制备方法
CN118084495B (zh) 一种高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant