CN117843353A - 一种氧化铝陶瓷基板环保镀铜工艺 - Google Patents

一种氧化铝陶瓷基板环保镀铜工艺 Download PDF

Info

Publication number
CN117843353A
CN117843353A CN202311857161.8A CN202311857161A CN117843353A CN 117843353 A CN117843353 A CN 117843353A CN 202311857161 A CN202311857161 A CN 202311857161A CN 117843353 A CN117843353 A CN 117843353A
Authority
CN
China
Prior art keywords
alumina ceramic
ceramic substrate
copper plating
heating
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311857161.8A
Other languages
English (en)
Inventor
支建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taicang Jinlu Electroplate Co ltd
Original Assignee
Taicang Jinlu Electroplate Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taicang Jinlu Electroplate Co ltd filed Critical Taicang Jinlu Electroplate Co ltd
Priority to CN202311857161.8A priority Critical patent/CN117843353A/zh
Publication of CN117843353A publication Critical patent/CN117843353A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Chemically Coating (AREA)

Abstract

一种氧化铝陶瓷基板环保镀铜工艺,包括如下步骤:S1:通过DLP成形方法制备氧化铝陶瓷基板;S2:对所述氧化铝陶瓷基板进行激光预活化处理;S3:将激光预活化处理后的氧化铝陶瓷基板浸入镀液中进行化学镀铜,时间为20‑40min,所述化学镀铜的镀液包括如下成分:硫酸铜15‑20g/L、酒石酸钾钠50‑60 g/L、亚铁氰化钾0.1‑0.5g/L、甲醛10‑20mL/L、甲醇40‑50 mL/L。本发明所述的氧化铝陶瓷基板环保镀铜工艺,设计合理,采用DLP光固化成形方法制备氧化铝陶瓷基板,在氧化铝陶瓷基板镀铜前先进行激光预活化处理改变其表面的微观形貌及表面活性,可控性更强、操作更简单、生产速度更快、更环保,具有良好的镀铜效果,铜层均匀、平整、稳定性和持久性较好,应用前景广泛。

Description

一种氧化铝陶瓷基板环保镀铜工艺
技术领域
本发明属于镀铜技术领域,具体涉及一种氧化铝陶瓷基板环保镀铜工艺。
背景技术
氧化铝陶瓷,俗称刚玉,其主要成分为 Al2O3。氧化铝陶瓷的介质损耗小、体积电阻率大、强度高、硬度大、膨胀系数小,同时,其耐磨性和冲击性也非常优良。
随着航空航天技术、信息通信技术以及大规模集成电路的快速发展,使得氧化铝陶瓷基板广泛应用,因此在氧化铝陶瓷基板表面进行高精度的金属化一直以来都是研究人员关注的热点问题。在氧化铝陶瓷上镀铜可以提供良好的电导性能和导热性能,可以在各种电子器件和封装中得到应用。例如,在电子散热模块中,氧化铝陶瓷基板上的铜层可以提供更好的导热路径,将产生的热量有效地传递到散热器上,保持器件的良好工作状态。此外,在电路板制造中,氧化铝陶瓷基板上的铜层可以作为信号传输线的导电层,连接各个组件和部件,确保电路的正常运行。
因此,本发明的目的要研发一种氧化铝陶瓷基板环保镀铜工艺,采用化学镀铜的方式,与电镀工艺相比,化学镀铜无需添加外接电源,操作更简单,镀铜层厚度均匀,不会因为电流密度过大导致沉积不均匀,化学镀耗能小、成本低,进行相关电解质补充可使镀液循环使用,更加环保。
发明内容
发明目的:为了克服以上不足,本发明的目的是提供一种氧化铝陶瓷基板环保镀铜工艺,设计合理,采用DLP光固化成形方法制备氧化铝陶瓷基板,在氧化铝陶瓷基板镀铜前先进行激光预活化处理改变其表面的微观形貌及表面活性,可控性更强、操作更简单、生产速度更快、更环保,具有良好的镀铜效果,铜层均匀、平整、稳定性和持久性较好,应用前景广泛。
本发明的目的是通过以下技术方案实现的:
一种氧化铝陶瓷基板环保镀铜工艺,包括如下步骤:
S1:通过DLP成形方法制备氧化铝陶瓷基板;
S2:对所述氧化铝陶瓷基板进行激光预活化处理;
S3:将激光预活化处理后的氧化铝陶瓷基板浸入镀液中进行化学镀铜,时间为20-40min,所述化学镀铜的镀液包括如下成分:硫酸铜 15-20g/L、酒石酸钾钠 50-60 g/L、亚铁氰化钾0.1-0.5g/L、甲醛10-20mL/L、甲醇40-50 mL /L。
本发明所述的氧化铝陶瓷基板环保镀铜工艺,设计合理,采用DLP光固化成形方法制备氧化铝陶瓷基板,相比传统的制造方法,DLP光固化成形方法可以实现高精度的制造,能够精确地控制氧化铝陶瓷基板的尺寸和形状,还具备较快的生产速度。在氧化铝陶瓷基板镀铜前先进行激光预活化处理改变其表面的微观形貌及表面活性,相比传统陶瓷材料镀铜前的预处理工艺(即经过“粗化→敏化→活化→还原”处理,通过引入金属源,使溶液中的金属离子与陶瓷层表面金属发生氧化还原反应,制备出新的金属涂层,为还原反应提供活性),激光预活化处理的可控性更强、分辨率更高、操作更简单,激光预活化处理后进行化学镀得到的镀铜层与氧化铝陶瓷基板具有非常好的结合力。所述镀液的配方设计合理,硫酸铜提供Cu+,酒石酸钾钠作为络合剂,亚铁氰化钾作文稳定剂,甲醛作为还原剂,甲醇作为稳定剂,可以提供良好的镀铜效果,使铜层均匀、平整且具有较好的光泽,铜层的稳定性和持久性较好。在氧化铝陶瓷基板上镀铜可以提供良好的电导性能和导热性能,其中氧化铝陶瓷基板的导热系数通常在20-30W/(m·k),铜的导热系数为401 W/(m·k)。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S1,具体包括如下步骤:
S11混合:将氧化铝陶瓷粉末、粘结剂、分散剂先采用搅拌机进行初步混合,然后采用球磨机进行进一步的球磨混合,最后采用真空搅拌机配合真空泵进行高速真空搅拌,得到混合均匀的陶瓷浆料;
S12成形:将上述陶瓷浆料采用DLP 成形设备成形,得到氧化铝陶瓷基板坯体;
S13脱脂与烧结:采用管式脱脂炉对氧化铝陶瓷基板坯体进行脱脂,然后采用烧结炉进行烧结,得到氧化铝陶瓷基板。
为了使陶瓷浆料在光固化工艺下更容易成形,需要陶瓷浆料形成一个稳定的陶瓷悬浮液体系,本发明采用分步骤的方式混合氧化铝陶瓷粉末、粘结剂、分散剂,相比传统采用单一混合方式,制得的陶瓷浆料混合更均匀、流动性更好。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S11中,氧化铝陶瓷粉末、粘结剂、分散剂的质量比为100:30-50:1-5;所述氧化铝陶瓷粉末采用粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末混合而成,所述粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末的质量比为1-5:1-5;所述粘结剂为光敏树脂,所述分散剂为聚丙烯酸钠。
为了提高陶瓷浆料的流动性、降低打印时的难度以及提高烧结后的致密度,所述氧化铝陶瓷粉末采用粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末这两个尺度的氧化铝陶瓷粉末混合而成,粒径5μm氧化铝陶瓷粉末比表面积相对来说较小,可以改善陶瓷浆料的流动性,粒径500 nm氧化铝陶瓷粉末比表面积相对来说较大,虽然容易团聚,但可以在烧结过程中提高致密度。所述粘结剂采用光敏树脂,例如RESIN-A01、RESIN-A02,其光引发剂能够在波长405 nm的紫外光下发生固化反应由液体变为固体,起到了粘结剂的作用。分散剂采用聚酯烯酸钠,能够减少氧化铝陶瓷粉末间的团聚现象,降低陶瓷浆料的粘度,提高陶瓷浆料的流动性,降低光固化成形的难度。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,4.根据权利要求2所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S12中成形的参数设定为:DLP 成形设备的紫外光辐照光强为15-20mW/cm2,打印设置的每层层厚为10-15 μm,每层曝光时间 10-15s。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S13中脱脂依次包括低温脱脂、中温脱脂、高温脱脂、预烧结4个阶段,所述低温脱脂阶段的参数设定为:以加热速率40-60℃/h升温至300℃,然后保温0.5-1.5h;所述中温脱脂阶段的参数设定为:以加热速率20-30℃/h升温至370℃,然后保温2-3h,再以加热速率25-35℃/h升温至440℃,然后保温1-2h;所述高温脱脂阶段的参数设定为:以加热速率30-40℃/h升温至540℃,然后保温1-2h;所述预烧结阶段的参数设定为:以加热速率60-80℃/h升温至900℃,然后保温0.5-1h,经炉冷降到自然温度。
本发明采用分步骤的方式脱脂,低温脱脂阶段保证氧化铝陶瓷基板坯体内的结晶水充分排除以及促进低熔点粘结剂的物相变化;中温脱脂阶段加快脱脂速度的同时也保证氧化铝陶瓷基板坯体内的粘结剂充分的氧化分解,同时也要保证该阶段的升温速率不能太快避免分解的气体迅速大量的排出导致氧化铝陶瓷基板坯体出现裂纹和鼓包等缺陷;高温脱脂阶段保证将残留的粘结剂完全脱除,得到致密的氧化铝陶瓷基板坯体;预烧结使得使得脱脂后氧化铝陶瓷基板坯体体具备一定的强度,以免在转移到烧结炉的过程中崩塌。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S13中烧结的参数设定为:以加热速率3-5℃/min升温至360℃,然后保温20-30min,再以加热速率5-8℃/min升温至1000℃,然后保温30-40min,再以加热速率4-6℃/min升温至1520℃,然后保温100-150min,经炉冷降到自然温度。
本发明采用分步骤的方式烧结,在烧结的低温阶段避免发生过度的表面扩散,高温阶段避免发生过度的体积扩散,提高了烧结的质量。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S2中,采用光纤脉冲激光器对所述氧化铝陶瓷基板进行激光预活化处理,激光器的参数设置为:激光功率为10-15 W,激光扫描速度为150-250 mm/s,扫描间距为0.01-0.05mm。
本发明采用光纤脉冲激光器,由于光纤脉冲激光特殊的“点到点”活化方式,使得氧化铝陶瓷基板表面并不会被激光全部的破坏,最大的保留了氧化铝陶瓷基板表面的原始形貌,并且形成了大量的纳米微孔和凸起,增加了氧化铝陶瓷基板表面的吸附效应,同时,光纤脉冲激光改变了氧化铝陶瓷基板表面稳定的化学状态,使晶格发生了畸变,产生了位点缺陷,增强了氧化铝陶瓷基板表面的反应活性,对化学镀铜起到了催化作用。吸附效应与催化作用的叠加使得经过激光辐照后的氧化铝陶瓷基板表面无需涂覆活化剂或敏化剂而能直接的进行化学镀铜工艺。
进一步的,上述的氧化铝陶瓷基板环保镀铜工艺,所述S3,所述化学镀铜的镀液的配置包括如下内容:先使用去离子水将硫酸铜完全溶解,然后加入酒石酸钾钠进行完全溶解,得到混合液A;同时将甲醛与甲醇配置溶解,得到混合液B;待混合液A与混合液B混合,使用去离子水定容,通过氢氧化钠将pH调节至12-13。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明公开的氧化铝陶瓷基板环保镀铜工艺,采用DLP光固化成形方法制备氧化铝陶瓷基板,相比传统的制造方法,DLP光固化成形方法可以实现高精度的制造,能够精确地控制氧化铝陶瓷基板的尺寸和形状,还具备较快的生产速度;
(2)本发明提出的氧化铝陶瓷基板环保镀铜工艺,氧化铝陶瓷基板镀铜前先进行激光预活化处理改变其表面的微观形貌及表面活性,相比传统陶瓷材料镀铜前的预处理工艺,激光预活化处理的可控性更强、分辨率更高、操作更简单,激光预活化处理后进行化学镀得到的镀铜层与氧化铝陶瓷基板具有非常好的结合力;
(3)本发明提出的氧化铝陶瓷基板环保镀铜工艺,采用化学镀铜的方式,与电镀工艺相比,化学镀铜无需添加外接电源,操作更简单,镀铜层厚度均匀,不会因为电流密度过大导致沉积不均匀,化学镀耗能小、成本低,进行相关电解质补充可使镀液循环使用,更加环保;所述镀液的配方设计合理,硫酸铜提供Cu+,酒石酸钾钠作为络合剂,亚铁氰化钾作文稳定剂,甲醛作为还原剂,甲醇作为稳定剂,可以提供良好的镀铜效果,使铜层均匀、平整且具有较好的光泽,铜层的稳定性和持久性较好。
具体实施方式
下面将结合具体实验数据,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
以下实施例1提供了一种氧化铝陶瓷基板的制备工艺。
实施例1
实施例1的氧化铝陶瓷基板的制备工艺,包括如下步骤:
S1:通过DLP成形方法制备氧化铝陶瓷基板。
S11混合:氧化铝陶瓷粉末、粘结剂、分散剂的质量比为100:38:2,述氧化铝陶瓷粉末采用粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末混合而成,所述粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末的质量比为2:1,所述粘结剂为光敏树脂RESIN-A01,所述分散剂为聚丙烯酸钠;将上述氧化铝陶瓷粉末、粘结剂、分散剂先采用搅拌机进行初步混合,然后采用球磨机进行进一步的球磨混合,最后采用真空搅拌机配合真空泵进行高速真空搅拌,得到混合均匀的陶瓷浆料;
S12成形:将上述陶瓷浆料采用DLP 成形设备成形,得到氧化铝陶瓷基板坯体;DLP成形设备的紫外光辐照光强为20mW/cm2,打印设置的每层层厚为12 μm,每层曝光时间15s;
S13脱脂与烧结:采用管式脱脂炉对氧化铝陶瓷基板坯体进行脱脂,脱脂依次包括低温脱脂、中温脱脂、高温脱脂、预烧结4个阶段,所述低温脱脂阶段的参数设定为:以加热速率45℃/h升温至300℃,然后保温1h;所述中温脱脂阶段的参数设定为:以加热速率25℃/h升温至370℃,然后保温2.5h,再以加热速率32℃/h升温至440℃,然后保温1.5h;所述高温脱脂阶段的参数设定为:以加热速率35℃/h升温至540℃,然后保温1.5h;所述预烧结阶段的参数设定为:以加热速率68℃/h升温至900℃,然后保温40min,经炉冷降到自然温度;然后采用烧结炉进行烧结,烧结的参数设定为:以加热速率4℃/min升温至360℃,然后保温25min,再以加热速率6℃/min升温至1000℃,然后保温40min,再以加热速率5℃/min升温至1520℃,然后保温130min,经炉冷降到自然温度,得到氧化铝陶瓷基板。
S2:采用光纤脉冲激光器对所述氧化铝陶瓷基板进行激光预活化处理,激光器的参数设置为:激光功率为15 W,激光扫描速度为200mm/s,扫描间距为0.01mm。
S3:将激光预活化处理后的氧化铝陶瓷基板浸入镀液中进行化学镀铜,时间为20-40min,所述化学镀铜的镀液包括如下成分:硫酸铜 15g/L、酒石酸钾钠55g/L、亚铁氰化钾0.2g/L、甲醛15mL/L、甲醇45mL /L,先使用去离子水将硫酸铜完全溶解,然后加入酒石酸钾钠进行完全溶解,得到混合液A;同时将甲醛与甲醇配置溶解,得到混合液B;待混合液A与混合液B混合,使用去离子水定容,通过氢氧化钠将pH调节至12-13。
效果验证:
对由上述实施例1得到的氧化铝陶瓷基板进行性能检测,测试结果见表1。
(1)厚度测试:采用探针接触式三维轮廓仪测量镀层的厚度以及粗糙度,步骤为:将实施例1得到的氧化铝陶瓷基板放置在探针接触式三维轮廓仪的工作台上,调节工作台至水平状态,移动探针至合适位置,设置扫描范围为100 mm,扫描速度设定为 100 μm/s,接触力为10 mg。
(2)导电性能测试:采用精密 LCR 数字电桥对镀层的电阻值进行测量,测试环境为25℃。
表1 性能测试结果
测试 实施例1
镀层的厚度(μm) 8.23
粗糙度(μm) 1.83
电阻(Ω) 0.072
由表1可得,实施例1的氧化铝陶瓷基板的镀层厚度为8.23μm,粗糙度较小,电阻为0.072Ω,氧化铝陶瓷基板的导热系数通常在20-30W/(m·k),铜的导热系数为401 W/(m·k)。因此,在实施例1的氧化铝陶瓷基板可以提供良好的电导性能和导热性能。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式。应当指出,以上实施例仅用于说明本发明,而并不用于限制本发明的保护范围。对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

Claims (8)

1.一种氧化铝陶瓷基板环保镀铜工艺,其特征在于,包括如下步骤:
S1:通过DLP成形方法制备氧化铝陶瓷基板;
S2:对所述氧化铝陶瓷基板进行激光预活化处理;
S3:将激光预活化处理后的氧化铝陶瓷基板浸入镀液中进行化学镀铜,时间为20-40min,所述化学镀铜的镀液包括如下成分:硫酸铜 15-20g/L、酒石酸钾钠 50-60 g/L、亚铁氰化钾0.1-0.5g/L、甲醛10-20mL/L、甲醇40-50 mL /L。
2.根据权利要求1所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S1,具体包括如下步骤:
S11混合:将氧化铝陶瓷粉末、粘结剂、分散剂先采用搅拌机进行初步混合,然后采用球磨机进行进一步的球磨混合,最后采用真空搅拌机配合真空泵进行高速真空搅拌,得到混合均匀的陶瓷浆料;
S12成形:将上述陶瓷浆料采用DLP 成形设备成形,得到氧化铝陶瓷基板坯体;
S13脱脂与烧结:采用管式脱脂炉对氧化铝陶瓷基板坯体进行脱脂,然后采用烧结炉进行烧结,得到氧化铝陶瓷基板。
3.根据权利要求2所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S11中,氧化铝陶瓷粉末、粘结剂、分散剂的质量比为100:30-50:1-5;所述氧化铝陶瓷粉末采用粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末混合而成,所述粒径5μm氧化铝陶瓷粉末与粒径500 nm氧化铝陶瓷粉末的质量比为1-5:1-5;所述粘结剂为光敏树脂,所述分散剂为聚丙烯酸钠。
4.根据权利要求2所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S12中成形的参数设定为:DLP 成形设备的紫外光辐照光强为15-20mW/cm2,打印设置的每层层厚为10-15 μm,每层曝光时间 10-15 s。
5.根据权利要求2所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S13中脱脂依次包括低温脱脂、中温脱脂、高温脱脂、预烧结4个阶段,所述低温脱脂阶段的参数设定为:以加热速率40-60℃/h升温至300℃,然后保温0.5-1.5h;所述中温脱脂阶段的参数设定为:以加热速率20-30℃/h升温至370℃,然后保温2-3h,再以加热速率25-35℃/h升温至440℃,然后保温1-2h;所述高温脱脂阶段的参数设定为:以加热速率30-40℃/h升温至540℃,然后保温1-2h;所述预烧结阶段的参数设定为:以加热速率60-80℃/h升温至900℃,然后保温0.5-1h,经炉冷降到自然温度。
6.根据权利要求2所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S13中烧结的参数设定为:以加热速率3-5℃/min升温至360℃,然后保温20-30min,再以加热速率5-8℃/min升温至1000℃,然后保温30-40min,再以加热速率4-6℃/min升温至1520℃,然后保温100-150min,经炉冷降到自然温度。
7.根据权利要求1所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S2中,采用光纤脉冲激光器对所述氧化铝陶瓷基板进行激光预活化处理,激光器的参数设置为:激光功率为10-15 W,激光扫描速度为150-250 mm/s,扫描间距为0.01-0.05mm。
8.根据权利要求1所述氧化铝陶瓷基板环保镀铜工艺,其特征在于,所述S3,所述化学镀铜的镀液的配置包括如下内容:先使用去离子水将硫酸铜完全溶解,然后加入酒石酸钾钠进行完全溶解,得到混合液A;同时将甲醛与甲醇配置溶解,得到混合液B;待混合液A与混合液B混合,使用去离子水定容,通过氢氧化钠将pH调节至12-13。
CN202311857161.8A 2023-12-29 2023-12-29 一种氧化铝陶瓷基板环保镀铜工艺 Pending CN117843353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311857161.8A CN117843353A (zh) 2023-12-29 2023-12-29 一种氧化铝陶瓷基板环保镀铜工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311857161.8A CN117843353A (zh) 2023-12-29 2023-12-29 一种氧化铝陶瓷基板环保镀铜工艺

Publications (1)

Publication Number Publication Date
CN117843353A true CN117843353A (zh) 2024-04-09

Family

ID=90533813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311857161.8A Pending CN117843353A (zh) 2023-12-29 2023-12-29 一种氧化铝陶瓷基板环保镀铜工艺

Country Status (1)

Country Link
CN (1) CN117843353A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086836A (zh) * 2016-08-18 2016-11-09 东莞市印和新材料科技有限公司 一种高速化学镀铜溶液及其镀铜工艺
CN113213893A (zh) * 2021-04-29 2021-08-06 南京航空航天大学 一种基于激光活化的3d打印陶瓷表面镀铜工艺
CN114853450A (zh) * 2022-05-23 2022-08-05 西北工业大学 一种光固化3d打印氧化铝基陶瓷型芯及其制备方法
CN114956793A (zh) * 2022-06-01 2022-08-30 东南大学 3d打印陶瓷电子电路的陶瓷浆料及其制备技术和混合增材制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086836A (zh) * 2016-08-18 2016-11-09 东莞市印和新材料科技有限公司 一种高速化学镀铜溶液及其镀铜工艺
CN113213893A (zh) * 2021-04-29 2021-08-06 南京航空航天大学 一种基于激光活化的3d打印陶瓷表面镀铜工艺
CN114853450A (zh) * 2022-05-23 2022-08-05 西北工业大学 一种光固化3d打印氧化铝基陶瓷型芯及其制备方法
CN114956793A (zh) * 2022-06-01 2022-08-30 东南大学 3d打印陶瓷电子电路的陶瓷浆料及其制备技术和混合增材制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴国庆: "3D打印技术基础及应用", 31 July 2021, 北京理工大学, pages: 72 *
安茂忠: "电镀理论与技术", 31 August 2004, 哈尔滨工业大学, pages: 276 - 277 *
萧莹,龙明武: "致富化工产品生产技术", 31 August 1995, 安徽科学技术出版社, pages: 184 *

Similar Documents

Publication Publication Date Title
WO2022227118A1 (zh) 一种基于激光活化的3d打印陶瓷表面镀铜工艺
US6194032B1 (en) Selective substrate metallization
JPS6189839A (ja) 焼結方法
CN112359236A (zh) 一种利用钨粉制备高致密度钨铜合金金属材料的工艺
CN107365958A (zh) 金属掩膜板的制备方法
CN114309955B (zh) 一种陶瓷覆铜基板及其激光加工工艺
CN117843353A (zh) 一种氧化铝陶瓷基板环保镀铜工艺
CN116543949B (zh) 填孔浆料及其制备方法
JP2006024808A (ja) 導電性組成物作製方法、層間接続方法、及び導電性膜または導電性画像作製方法
EP3287465A1 (en) Metal catalyst, manufacturing method and application therof
CN107639237B (zh) Cu/SiO2复合材料、其制备方法与铜-陶瓷基板的制备方法
CN111302785A (zh) 一种高性能微波介质陶瓷及其光固化制造方法
KR20080058787A (ko) 감광성 전극 페이스트 및 그 제조방법
CN115381144A (zh) 一种基于dpc工艺的电子烟加热片及其制备方法
CN114743717A (zh) 三维颗粒晶体和二维片状晶体组成的银粉及其制备方法
CN111370217B (zh) 一种光固化辅助直写3d打印制备永磁体的方法
CN114980539B (zh) 基于复合微纳增材制造高精度陶瓷基电路批量化制造方法
CN109651892B (zh) 一种纳米铜导电墨水的制备方法
KR100806755B1 (ko) 감광성 저온 동시소성 세라믹 조성물 및 그 제조방법
KR102690649B1 (ko) Mlcc용 변성 니켈 페이스트의 제조 방법
CN109825863B (zh) 一种碳纳米管导电浆在黑孔化直接电镀中的应用
JPH06275954A (ja) 多層配線基板の製造方法
CN114180831B (zh) 一种可光刻玻璃及其微结构加工方法
CN116782516B (zh) 一种基于均相离子型催化油墨制备铜印刷电路的普适工艺
CN118221443B (zh) 一种pzt基陶瓷的快速制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination