CN117660384A - 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用 - Google Patents

一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用 Download PDF

Info

Publication number
CN117660384A
CN117660384A CN202311520101.7A CN202311520101A CN117660384A CN 117660384 A CN117660384 A CN 117660384A CN 202311520101 A CN202311520101 A CN 202311520101A CN 117660384 A CN117660384 A CN 117660384A
Authority
CN
China
Prior art keywords
gamma
recombinant
glutamyl transpeptidase
glutamyl
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311520101.7A
Other languages
English (en)
Inventor
杨娟
廖剑洪
梁景龙
董浩
曾晓房
白卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongkai University of Agriculture and Engineering
Original Assignee
Zhongkai University of Agriculture and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongkai University of Agriculture and Engineering filed Critical Zhongkai University of Agriculture and Engineering
Priority to CN202311520101.7A priority Critical patent/CN117660384A/zh
Publication of CN117660384A publication Critical patent/CN117660384A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • C12Y203/02002Gamma-glutamyltransferase (2.3.2.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供一种γ‑谷氨酰转肽酶突变体、重组工程菌及其应用,将解淀粉芽孢杆菌的γ‑谷氨酰转肽酶对应氨基酸序列第319位氨基酸V突变为A、第437位氨基酸S突变为G,得到γ‑谷氨酰转肽酶突变体,标记为SEQ ID NO:1,基因序列为SEQ ID NO:2;重组工程菌的构建:(1)将SEQ ID NO:2序列连接到质粒载体上,得到重组质粒;(2)将重组质粒转入到枯草芽孢杆菌感受态细胞中,培养得到阳性转化菌株;(3)培养后筛选出产γ‑谷氨酰转肽酶重组工程菌;该方法构建的工程菌株酶活力高,稳定性好。将纯化后的γ‑谷氨酰转肽酶用于改善花生粕蛋白酶解物的苦味,同时合成γ‑谷氨酰三肽。

Description

一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用
技术领域
本发明属于生物工程技术领域,涉及一种可用于合成γ-谷氨酰肽的γ-谷氨酰转肽酶的基因改造、重组表达及应用研究。
背景技术
γ-谷氨酰转肽酶(γ-Glutamyltransferase,GGT,E.C.2.3.2.2)广泛存在于动物、植物和微生物中,催化γ-谷氨酰残基的转移,根据环境pH值及底物的不同,其催化的反应类型可以分为水解及转肽反应,其催化产物分别为谷氨酸或γ-谷氨酰肽。
近年来,多种微生物源GGT酶被报到能够以谷氨酰胺和一些氨基酸/乙胺为底物,催化γ-谷氨酰肽、茶氨酸等γ-谷氨酰化合物的合成。这些产物中如γ-谷氨酰二肽、三肽及含硫衍生肽等具有显著的增咸和增甜等增味作用,及提高食物的浓厚感、满口味、丰富度和持续性等厚味呈味效果,已被用于食品添加剂工业中。谷胱甘肽、茶氨酸、γ-谷氨酰牛磺酸和γ-L-谷氨酰-D-色氨酸等具有一定的药用价值,已经被用作药物或者保健品原料。此外,GGT酶也能由于改善酱油或者蛋白酶解物的苦味。如,酱油生产过程,额外添加GGT酶可以提高酱油中谷氨酸的含量。GGT酶可用于改善大豆、猪血、秀珍菇、花生粕等酶解物的苦味及提高其鲜味、咸味和厚味呈味效果。
随着γ-谷氨酰肽及其衍生物应用研究的深入,越来越多学者开始致力于从不同微生物中提取和纯化出多种GGT酶,用于酶法合成γ-谷氨酰化合物。如大肠杆菌(Escherichia coli,EcGGT)、奇异变形杆菌(Proteus mirabilis,PmGGT)、幽门螺旋杆菌(Helicobacter pylori,HpGGT)、枯草芽孢杆菌(Bacillus subtilis,BsGGT)、地衣芽孢杆菌(Bacillus licheniformis,BlGGT)和解淀粉芽孢杆菌(Bacillus amyloliquefaciens,BaGGT)等菌中均分离出了GGT酶,但是,野生型GGT酶存在难以分离纯化、酶活力较低、产量较低等问题,阻碍了GGT酶的工业化进程,同时也制约了γ-谷氨酰肽大规模生产。因此,研究人员需要利用现代生物技术对野生型GGT酶进行异源表达和分子改造,以期提高GGT酶的产率、酶活和催化特性。
发明内容
对于现有γ-谷氨酰转肽酶表达菌株表达量低及难以分泌表达的问题,本发明提供了一种γ-谷氨酰转肽酶的分子改造及产γ-谷氨酰转肽酶重组枯草芽孢杆菌工程菌株的构建方法,利用本发明的构建方法可获得胞内外分泌的γ-谷氨酰转肽酶。本发明提供一种分泌表达γ-谷氨酰转肽酶菌株,解决γ-谷氨酰转肽酶不能分泌表达的及工业生产中的分离纯化,酶制剂产品难以高质量制备的难点问题。
为实现上述目的,本发明采用如下技术方案:
一种γ-谷氨酰转肽酶突变体,所述突变体的氨基酸序列如SEQ ID NO:1所示;或者所述突变体的氨基酸序列为SEQ ID NO:1去除C末端连接的6His标签的序列。
编码所述γ-谷氨酰转肽酶突变体的基因,其核苷酸序列如SEQ ID NO:2所示。
含有所述基因的重组表达载体或重组工程菌。优选地,所述重组工程菌的宿主菌为枯草芽孢杆菌。
优选地,所述宿主菌为枯草芽孢杆菌168。
一种产γ-谷氨酰转肽酶重组枯草芽孢杆菌的构建方法,包括以下步骤:
(1)将编码γ-谷氨酰转肽酶突变体的基因连接到表达载体上,得到重组质粒;
(2)将重组质粒转入枯草芽孢杆菌感受态细胞中,培养得到阳性转化菌株;
(3)将阳性转化菌株培养,筛选出产γ-谷氨酰转肽酶重组枯草芽孢杆菌。
优选地,所述的枯草芽孢杆菌168感受态细胞的制备:将枯草芽孢杆菌168于普通LB平板上划线活化,培养箱过夜培养,挑取单菌落接种到SPI培养基中,37℃、200rpm培养14-16h,无菌条件下。取出500μl转接到4.5mL SPI培基中,37℃,200rpm条件下培养4h左右。无菌条件下以10%的接种量转接到10mL的枯草杆菌感受态SPII培养基中,培养2h左右,无菌条件下加入100μl EGTA(10mmol/L),培养15min左右,得到的枯草芽抱杆菌悬液即为枯草芽抱杆菌的感受态细胞,分装备用。
优选地,5`端添加BamH I限制内切酶识别位点,在3`端添加Nhe I限制内切酶识别位点,然后连接到pMA5上得到pMA5-GGT重组质粒。
优选地,所述表达载体为pMA5质粒;步骤(2)的培养条件为:37±2℃、200±20rpm条件下培养3±0.5h;步骤(3)的培养条件为:涂布至含有50±5μg/ml卡那霉素LB平板中,培养12-18h。
所述重组枯草芽孢杆菌用于发酵生产γ-谷氨酰转肽酶。
所述γ-谷氨酰转肽酶用于改善花生粕蛋白酶解物的苦味,同时合成γ-谷氨酰三肽。
与现有技术相比,本发明具有如下有益效果:
(1)本发明通过基因工程手段,对目的基因进行位点突变,提高了γ-谷氨酰转肽酶的活性,构建的重组载体实现了外源基因在枯草芽孢杆菌中高效稳定表达,为后续其他基因在改系统中进行高效和稳定表达及目标蛋白纯化奠定基础。
(2)本发明以一株枯草芽孢杆菌168为出发菌株,引入γ-谷氨酰转肽酶基因,构建的重组系统有目标蛋白分泌到胞外的能力且主要在胞外累积,相比于胞内表达更有利于后续的纯化等操作。
(3)本发明获得的γ-谷氨酰转肽酶可有效改善花生粕蛋白酶解物的呈味效果,具有改善花生粕蛋白溶解的不良口感,增加风味特性。γ-谷氨酰转肽酶在花生粕酶解物中可生成γ-谷氨酰肽,这些肽段可以增加咸味、鲜味、厚味的呈味效果,可以应用于食品调味品行业。
附图说明
图1为pMA5-GGT质粒图谱。
图2为pMA5-GGT双酶切电泳图。
图3为纯化后重组枯草芽孢杆菌168的γ-谷氨酰转肽酶SDS-PAGE电泳图;M:蛋白质分子量maker,1:重组枯草芽孢杆菌γ-谷氨酰转肽酶粗酶,5-6:纯化后的重组枯草芽孢杆菌γ-谷氨酰转肽酶。
图4为培养时间和重组枯草芽孢杆菌胞外酶活的关系曲线。
图5为pET24a(+)-GGT质粒图谱。
图6为pETpET24a(+)-GGT PCR及双酶切电泳图;M:maker,1-3:重组大肠杆菌菌落PCR;4:提取的大肠杆菌重组质粒的双酶切验证。
图7为纯化前后重组大肠杆菌的γ-谷氨酰转肽酶SDS-PAGE电泳图;M:蛋白质分子量maker,1-4:重组大肠杆菌γ-谷氨酰转肽酶粗酶,5-6:纯化后的重组大肠杆菌γ-谷氨酰转肽酶。
图8为重组枯草芽孢杆菌168的γ-谷氨酰转肽酶改善花生粕蛋白酶解物的呈味效果图。
图9a、b、c为十种γ-谷氨酰三肽的质谱图。
图10为γ-谷氨酰三肽对蔗糖、味精和钠盐味感的增强效果图。
图11为γ-谷氨酰三肽对酱油味感的增强效果图。
图12为γ-谷氨酰三肽对鸡粉味感的增强效果图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。本发明实施例中所用的试剂和仪器来源信息如下表1所示。
表1
实施例1
GGT酶突变体的构建及重组表达
S1.GGT酶突变体的构建
以美国国家生物技术信息中心(National Center for BiotechnologyInformation)登录号为QIC04032的解淀粉芽孢杆菌的γ-谷氨酰转肽酶DNA序列为基础,对该基因进行编辑,在末端加上CACCACCACCACCACCAC,并使对应的氨基酸序列第319位氨基酸V突变为A,第437位氨基酸S突变为G,编辑后的氨基酸序列如SEQ ID NO:1所示,核苷酸序列如SEQ ID NO:2所示。
S2.pMA5-GGT载体构建:
将人工合成的序列使用表2设计的引物扩增SEQ ID NO:2。使用BamHI、NheI对PCR产物和pMA5载体分别进行双酶切,1%琼脂糖凝胶电泳分离,切胶回收。使用胶回收试剂盒回收有相同粘性末端的目的基因和pMA5载体,使用T4连接酶连接目的基因和质粒载体,连接产物转化大肠杆菌DH5α,对鉴定出的阳性克隆提取质粒,使用BamHI、NheI双酶切验证,琼脂糖凝胶电泳验证重组质粒pMA5-GGT构建成功。构建完成的质粒图谱如图1,序列如SEQ IDNO:3。
表2
引物 序列
P1 ATACGCGGATCCAAGAAACACCCG
P2 CTACTAGCTAGCCTCGAGTTAGTGGTGGTGG
S3.重组枯草芽孢杆菌菌株中构建pMA5-GGT质粒的表达和酶活检测。
取2~3μg重组质粒pMA5/GGT加入500μl枯草芽孢杆菌168感受态细胞中,混匀,37℃、200rpm条件下培养3h,涂布至含有50μg/ml卡那霉素LB平板中,培养12h,筛选得到阳性转化菌株枯草芽孢杆菌168/GGT。挑取阳性转化菌落,分别接种至含有50μg/ml卡那霉素的LB培养基中,37℃、120rpm,培养12h,离心沉淀菌落,质粒提取试剂盒提取菌株菌落,PCR验证筛选阳性转化子,其结果如图2。
枯草芽孢杆菌发酵培养基所需试剂如下:1%葡萄糖,2%酵母粉,1.5%蛋白胨,0.2%K2HPO4.3H2O,0.1%MgSO4.7H2O。
种子培养:挑取构建成功的重组大肠杆菌单菌落接种于50mL锥形瓶内(20mL发酵培养基,卡那霉素终浓度为50μg/mL)37℃,120rpm过夜培养。
摇瓶发酵:取1mL种子培养液接种至250mL锥形瓶内(100mL发酵培养基,卡那霉素终浓度为50μg/mL)37℃,120rpm培养16h,收集培养液中的重组酶,用SDS-PAGE检测酶的产出,其结果如图3。
采用分光光度法测定培养液中的γ-谷氨酰转肽酶活力,以此作为最终确定重组菌株是否成功。本发明实施例中γ-谷氨酰转肽酶酶活检测方法如下:
在特定条件下,每分钟催化产生1μmol对硝基苯胺所需的γ-谷氨酰转肽酶量规定为1个酶活力单位。
酶促反应体系包括:90μl 50mM Tris-HCl(pH=9.0)缓冲液,30μl 0.01mol/Lγ-谷氨酰对硝基苯胺溶液,30μl 0.1mol/L双甘肽溶液,30μl一定稀释倍数的酶溶液,依据吸光度值(OD410nm)随时间变化关系计算出酶活力。定义为温度50℃,pH 9.0条件下,反应10分钟后,加入0.1mol/L的HCl 150μl终止反应。每分钟生成的1μmol的对硝基苯胺所需酶量作为1个酶活单位。
空白对照:120μl 50mMTris-HCl(pH=9.0)缓冲液,30μl 0.01mol/Lγ-谷氨酰对硝基苯胺溶液,30μl 0.1mol/L双甘肽溶液,反应时间与温度同酶活检测同等条件处理。
实施例2
本发明在实施例1的基础上,改变培养时间,具体操作如下:设置不同的重组枯草芽孢杆菌细胞培养时间(24、48、72、96、120h),其余操作同实施例1发酵条件,其结果如图4。
对比例1
本发明与实施例1的不同之处在于,以登录号为QIC04032的解淀粉芽孢杆菌的γ-谷氨酰转肽酶(其基因序列为SEQ ID NO:4)为野生型S1,不对该酶进行任何的基因工程操作,对该野生型菌株进行产酶培养,测定酶活。结果表明,在同等发酵条件下,野生型菌株产酶能力极弱,在实施例1同等的条件下,同样的酶活检测时间几乎无法检测出野生型菌株的酶活力,由此说明表达γ-谷氨酰转肽酶重组菌株适合应用于酶的发酵生产,提高酶的制备产量,降低成本。
对比例2
本发明与实施例1的不同之处在于:将野生型S1中的GGT酶基因(序列SEQ ID NO:4)导入到大肠杆菌DH5a中进行表达,序列不做基因突变处理,仍为野生型菌株酶的原始序列,其他操作不变,测定酶活。测定酶活力为64.28u/mg,酶的产量为0.12mg/mL(如表3),酶活及产量分别仅仅为枯草芽孢杆菌重组表达酶活的27.14%和20%。即本发明对该酶的基因进行定点突变能够显著提高酶的活力及产量,该ggt酶基因序列可作为生产高酶活性的产γ-谷氨酰转肽酶菌株应用于工业化生产。
表3γ-谷氨酰转肽酶酶活力及产酶量
对比例3
本发明与实施例1不同之处在于:将野生型S1的基因序列连接到pET24a(+)质粒上,构建pET24a(+)-GGT克隆载体,并在大肠杆菌中表达。具体操作如下:
在序列的5’端加上BamHI限制性内切酶识别位点,3’端加上XhoI限制性内切酶位点。然后将优化后的基因序列送苏州泓迅生物科技股份有限公司合成。合成的γ-谷氨酰转肽酶连接到pET24a(+)质粒上,得到pET24a(+)-GGT克隆载体,得到的克隆载体如图5。
将0.5-1uL的质粒加入大肠杆菌DH5a感受态细胞中用移液枪轻轻混合均匀后冰上静置30分钟;静置完成后在42℃恒温水浴锅中热激90秒,然后迅速再置于冰上静置2分钟,立马接着在超净工作台中向管中加入700μL LB培养基,在37℃,180rpm的条件下孵育45分钟-1小时。将孵育后的菌液10000rpm离心2分钟后留下200μl液体将菌液重悬最后均匀涂布于带有氨苄抗性的LB平板培养基上,37℃恒温培养过夜,离心沉淀菌落,质粒提取试剂盒提取菌株菌落,如图6,PCR验证筛选出阳性转化子。
S3.重组大肠杆菌γ-谷氨酰转肽酶的高效表达及酶活检测
种子培养:挑取构建成功的重组大肠杆菌单菌落接种于50mL锥形瓶内(20mL LB培养基,氨苄青霉素终浓度为50μg/mL)37℃,120rpm过夜培养。
摇瓶发酵:取1mL种子培养液接种至250mL锥形瓶内(100mL LB培养基,氨苄青霉素终浓度为50μg/mL)37℃,120rpm培养增殖,在OD600为0.6时,添加0.3mM的异丙基-β-D-硫代半乳糖苷(IPTG)诱导蛋白表达,并转至16℃,120rpm培养12小时,收集重组菌体蛋白,用SDS-PAGE测定蛋白检出情况,如图7,其酶活力测结果如表3。从表中可以看出,将目标酶基因转录到大肠杆菌低于枯草芽孢杆菌的酶活力。
实施例3
将实施例2(发酵120h)所得γ-谷氨酰转肽酶用于改善花生粕蛋白的呈味效果及合成γ-谷氨酰肽,具体操作如下:
1)花生粕蛋白酶解物的γ-谷氨酰基化及产物的感官评价:
脱脂花生粕分散在去离子水(1.5:10,w/v)中,用食品级氢氧化钠(5mol/L)调节pH至9.0。用碱性蛋白酶(Alcalase 2.4L FG,诺维信,天津)在55℃下,在酶/底物比(E/S)为0.75%(w/w)的条件下水解9h,然后在沸水中加热10min,终止水解反应。酶解物冷却至室温后,在4℃下,在8000×g 4℃离心15分钟。收集上清,冷冻干燥,-20℃保存,待进一步使用。
上述冻干样制备成40mg/mL水溶液,用食品级氢氧化钠(5mol/L)调节pH值至10.0。以添加γ-谷氨酰转肽酶(0.10U/mL为反应起点),在37℃下孵育6小时,然后在90℃下加热15分钟使酶失活。用2M盐酸溶液将反应混合物的pH值调整为7.0。冷却至室温后,将这两种反应溶液冷冻干燥,并在-20℃保存,待进一步使用。
产物的感官评价:选用15名经过专业培训的感官评价人员(8名男性和7名女性,年龄在23~35岁之间,其中7名已有两年以上相关感官评定经验),在专业的感官评价室进行呈味评价,感官评价室温度设置为23±2℃。各个感官评价员品尝各个样品量为10mL,食用后保持样品在嘴里停留时间25s后再缓慢吞咽。评价完一个样品后,评价员需要使用纯净水漱口再进行下一个样品的品尝。记录各个样品的基本味觉评分。以1%(w/v)蔗糖、0.35%(w/v)氯化钠、0.35%(w/v)味精、0.5%(w/v)l-异亮氨酸、0.08%(w/v)柠檬酸、0.2%(w/v)单宁酸作为甜度、咸味、鲜味、苦、酸、涩的味觉标准,设定为2.5分。以添加谷胱甘肽(5mmol/L)到空白模型鸡汤后厚味的增加定义为厚味味感的标准,评分为2.5分。将冻干后的样品(10mg)溶于去离子水(100mL),测定样品的厚味得分。比较样品的鲜味、咸味、苦味和厚味,采用5分强度量表进行评估。
结果:如图8所示,经过γ-谷氨酰基化后,花生粕蛋白酶解物的厚味、鲜味和咸味得到了大幅提升,呈味得分分别提升了160.34%、41.49%、39.46%,苦味大幅降低,得分降低了46.97%。
2)γ-谷氨酰三肽的定性定量分析:
采用超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF-MS/MS)系统对DPMH、DPMH-E中的γ-谷氨酰基肽进行鉴定。UPLC分离采用Agilent 1290系列UPLC系统(AgilentTechnologies,USA),Waters Acquity UPLC BEH C18(2.1×100mm,1.7μm)色谱柱。使用Agilent 6545maXis Impact Q-TOF MS/MS系统(Agilent Technologies)分析目标γ-谷氨酰肽的母体离子和片段离子。质谱全波长扫描范围为50~1500m/z。采用AgilentMassHunter定性分析软件B.07.00对γ-谷氨酰肽进行定性鉴定。用Agilent MassHunter定性分析导航仪B.08.00对Q-TOF-MS/MS的原始数据进行重新分析,以获得稳定的样本数据。通过提取[M+H]的信号峰值,与相应的外部校准曲线进行定量数据处理。
结果:如表4所示,经过γ-谷氨酰基化后,产物中共鉴定出了21条γ-谷氨酰肽,其中有三条γ-谷氨酰肽同时在水解物及水解物的γ-谷氨酰基化产物中检出。有14条γ-谷氨酰三肽,其中4条(γ-Glu-Glu-Glu、γ-Glu-Glu-Leu、γ-Glu-Glu-Phe、γ-Glu-Glu-Val)已被报道为以氨基酸为底物合成的具有显著增鲜、增咸和厚味呈味特性的γ-谷氨酰肽,10条(γ-Glu-AA-AA)为新发现的γ-谷氨酰肽序列(质谱图见图9),其呈味特性尚未被报道过。这些γ-谷氨酰肽合成反应的底物也被同时鉴定出,经过Q值输水性得分计算可知,这些二肽均为苦味肽,而γ-谷氨酰基化后得到的γ-谷氨酰肽的Q值显著下降,说明γ-谷氨酰基化的底物全是苦味二肽或苦味氨基酸,反应能够显著降低产品的苦味。
表4.γ-谷氨酰肽的合成
*号表示在花生粕蛋白水解物及其γ-谷氨酰基化产物中均被鉴定出。Q为疏水性,分子量小于6000Da的小肽,其疏水性Q值如果大于1400卡/摩尔,则具有苦味。
3)γ-谷氨酰三肽的感官评价:
首先采用定量描述法对各个γ-谷氨酰肽进行基本呈味特性评价。将各个γ-谷氨酰肽水溶液浓度5mmol/L(约为2mg/mL),配置10mL。pH值调至6.50±0.05。
①基本味感的增强效果:与标准食盐、味精溶液的鲜味进行比较。
结果:如图10所示,鉴定出的10条γ-谷氨酰三肽(2mg/mL)能够提高味精、食盐和蔗糖的味感,其中对于鲜味和咸味的增强效果更加。
②对酱油鲜味、咸味和厚味的增强效果,将市售酱油进行适度稀释,比较添加γ-谷氨酰肽前后,呈味特性的差异。
结果:如图11所示,鉴定出的10条γ-谷氨酰三肽(2mg/mL)能够提高适度稀释酱油的厚味、鲜味和咸味。
③对模式鸡汤分鲜味、咸味和厚味的增强效果,将市售鸡汤粉进行适度稀释,比较添加γ-谷氨酰肽前后,呈味特性的差异。
结果:如图12所示,鉴定出的10条γ-谷氨酰三肽(2mg/mL)能够提高模式鸡汤的厚味、鲜味和咸味。
以上所述是本发明的优选实施方式而已,不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动(如:在枯草芽孢杆菌以外的其他宿主、或以其他形式(如整合、不同拷贝数、不同表达载体)表达该序列的酶,均有专利所描述的合成能力),这些改进和变动也视为本发明的保护范围。

Claims (10)

1.一种γ-谷氨酰转肽酶突变体,其特征在于,所述突变体的氨基酸序列如SEQ ID NO:1所示;或者所述突变体的氨基酸序列为SEQ ID NO:1去除C末端连接的6His标签的序列。
2.编码权利要求1所述γ-谷氨酰转肽酶突变体的基因。
3.根据权利要求2所述的γ-谷氨酰转肽酶突变体的基因,其特征在于,所述基因的核苷酸序列如SEQ ID NO:2所示。
4.含有权利要求2或3所述基因的重组表达载体或重组工程菌。
5.根据权利要求4所述的重组工程菌,其特征在于,所述重组工程菌的宿主菌为枯草芽孢杆菌。
6.根据权利要求5所述的重组工程菌,其特征在于,所述宿主菌为枯草芽孢杆菌168。
7.一种产γ-谷氨酰转肽酶重组枯草芽孢杆菌的构建方法,其特征在于,包括以下步骤:
(1)将权利要求2或3编码γ-谷氨酰转肽酶突变体的基因连接到表达载体上,得到重组质粒;
(2)将重组质粒转入枯草芽孢杆菌感受态细胞中,培养得到阳性转化菌株;
(3)将阳性转化菌株培养,筛选出产γ-谷氨酰转肽酶重组枯草芽孢杆菌。
8.根据权利要求7所述的构建方法,其特征在于,所述表达载体为pMA5质粒;步骤(2)的培养条件为:37±2℃、200±20rpm条件下培养3±0.5h;步骤(3)的培养条件为:涂布至含有50±5μg/ml卡那霉素LB平板中,培养12-18h。
9.权利要求7或8所述重组枯草芽孢杆菌用于发酵生产γ-谷氨酰转肽酶。
10.权利要求9所述γ-谷氨酰转肽酶的应用,其特征在于,γ-谷氨酰转肽酶用于改善花生粕蛋白酶解物的苦味,同时合成γ-谷氨酰三肽。
CN202311520101.7A 2023-11-15 2023-11-15 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用 Pending CN117660384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311520101.7A CN117660384A (zh) 2023-11-15 2023-11-15 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311520101.7A CN117660384A (zh) 2023-11-15 2023-11-15 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用

Publications (1)

Publication Number Publication Date
CN117660384A true CN117660384A (zh) 2024-03-08

Family

ID=90067259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311520101.7A Pending CN117660384A (zh) 2023-11-15 2023-11-15 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用

Country Status (1)

Country Link
CN (1) CN117660384A (zh)

Similar Documents

Publication Publication Date Title
CN103946372B (zh) 用于分泌产生蛋白质的方法
JP2006101875A (ja) L−グルタミン酸生産菌及びl−グルタミン酸の製造方法
CN112941052B (zh) 壳聚糖酶ouc-t613及其应用
EP2481798B1 (en) Aspergillus non-inherited genetic variant having enhanced protease activity, and a production method for a natural flavour enhancer employing the same
KR100493538B1 (ko) 페르라산탈탄산효소
CN110923222B (zh) 一种新型的来源于地衣芽孢杆菌的碱性蛋白酶酸性突变体
CN109415747B (zh) 一种酶改质甜菊糖的制备方法和制备用酶及应用
JP3910634B2 (ja) Pf1022物質を産生する形質転換体、及び糸状菌綱に属する菌の形質転換方法
KR960014702B1 (ko) 산성 우레아제 및 그의 제조방법
US6544791B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
WO2003080832A1 (fr) Candida utilis contenant de la $g(g)-glutamylcysteine
CN117660384A (zh) 一种γ-谷氨酰转肽酶突变体、重组工程菌及其应用
JP4561009B2 (ja) D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
Mahesh et al. Optimization for the production of extracellular alkaline phosphatase from Proteus mirabilis
JPH10262655A (ja) 新規な納豆菌およびその取得方法ならびに新規な納豆菌が産生するポリ−γ−グルタミン酸とそれを利用した調味料
JP2000333690A (ja) ガンマ−ポリグルタミン酸の製造方法
CN113755474B (zh) 一种羧肽酶及其编码基因和应用
CN114686389B (zh) 一种增强vgbS基因转录水平的谷氨酰胺转氨酶高产菌株及其制备与发酵方法
EP0834573A1 (en) Process for the production of glutamic acid and the use of protein hydrolysates in this process
CN114686409B (zh) 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法
JP4485734B2 (ja) 5置換ヒダントインラセマーゼ、これをコードするdna、組み換えdna、形質転換された細胞および光学活性アミノ酸の製造方法
WO2022141411A1 (zh) 一种热稳定性提高的谷氨酰胺转氨酶变体
KR101707067B1 (ko) 된장에서 분리된 내염성 효모 자이고사카로마이세스 멜리스 tk-01 균주 및 그 배양물
JP3395397B2 (ja) 調味料の製造法
JP2017000086A (ja) 新規ペプチダーゼ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination