CN117467629A - 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用 - Google Patents

一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用 Download PDF

Info

Publication number
CN117467629A
CN117467629A CN202311391810.XA CN202311391810A CN117467629A CN 117467629 A CN117467629 A CN 117467629A CN 202311391810 A CN202311391810 A CN 202311391810A CN 117467629 A CN117467629 A CN 117467629A
Authority
CN
China
Prior art keywords
hydroxysteroid dehydrogenase
beta
gene
plasmid
genetically engineered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311391810.XA
Other languages
English (en)
Inventor
柳志强
朱四方
张博
郑裕国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202311391810.XA priority Critical patent/CN117467629A/zh
Publication of CN117467629A publication Critical patent/CN117467629A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/12Acting on D ring
    • C12P33/16Acting at 17 position
    • C12P33/18Hydroxylating at 17 position
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010513 (or 17)-Beta-hydroxysteroid dehydrogenase (1.1.1.51)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/32Mycobacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于基因工程与酶工程领域,具体涉及一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用。本发明提供了一种来源于Brettanomyces naardenensis的17β‑羟基类固醇脱氢酶的氨基酸序列以及编码此酶基因的核苷酸序列,并且提供了包含17β‑羟基类固醇脱氢酶编码基因的基因工程菌,以将雄甾‑1,4‑二烯‑3,17‑二酮、植物甾醇转化为宝丹酮,实现宝丹酮的全细胞转化生产,转化速度快、转化率高、反应条件温和、绿色环保、工艺简单、易于控制,更适合工业应用。

Description

一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用
技术领域
本发明属于基因工程与酶工程领域,具体涉及一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用。
背景技术
甾体药物作为目前临床上用量仅次于抗生素的第二类药物,全球年产量已超过100余万吨,据2018年统计数据显示,全球甾体药物市场规模超过1200亿美元。常见的甾体药物中间体分为C19类与C22两类,其中以宝丹酮(BD)、雄甾烯-4-烯-3,17-二酮(AD)、雄甾烯-1,4-烯-3,17-二酮(ADD)、9α-羟基雄甾烯-4-烯-3,17-二酮(9α-OH-AD)和睾酮(TS)为主的甾体药物中间体在医药领域市场的需求逐年上升。
宝丹酮(BD)是雄激素合成代谢类固醇和睾丸激素(TS)衍生物,可促进蛋白质合成,支持氮潴留并刺激肾脏促红细胞生成素释放。BD通常是由雄甾烯-4-烯-3,17-二酮(AD)或1,4-雄烯二酮(ADD)通过化学合成制得的。然而,存在合成路线繁琐、需要添加强酸或有毒试剂、副产物多、产率低以及成本高等缺陷。此外,化学法合成宝丹酮的过程中会产生大量的三废,这些废气废水废料会严重污染环境,不符合国家环保需求。微生物转化法具有高立体选择性、绿色环保等优点,已逐渐在甾体药物中间体的应用中发挥着越来越大的作用,近年来通过生物合成BD成了研究的热点。
17β-羟基类固醇脱氢酶(17β-hydroxysteroid dehydrogenase,17β-HSD),是一类依赖NAD(P)H/NAD(P)+的氧化还原酶,能够催化甾体中C-17的羟基与酮基之间的相互转化。葡萄糖6-磷酸脱氢酶G6PDH是磷酸戊糖氧化途径中的限制性酶,可以催化葡萄糖-6-磷酸氧化为6-磷酸葡萄糖内酯,同时NADP+还原为NADPH。作为细胞内NADPH再生的重要酶之一,G6PDH的过表达已被广泛应用于体内代谢工程中补充NADPH。例如邵明龙等在毕赤酵母中共表达人17β-羟基类固醇脱氢酶3型和酿酒酵母的葡萄糖6-磷酸脱氢酶,睾酮的生产提高了67.6%,因此可运用17β-HSD与G6PDH共表达构建辅酶再生系统。
许多微生物利用雄甾-1,4-二烯-3,17-二酮(ADD)作为底物通过17β-羟基类固醇脱氢酶还原反应以产生BD,但该类酶在多数微生物中酶活力不高,难以用于有竞争力的商业化过程。同时,该类酶还常受微生物体内的营养状态调控,会在营养贫乏时强化逆反应,重新把还原的羟基氧化为酮基,使得最终的转化率较低,不利于分离纯化。
发明内容
针对现有技术中的缺陷,本发明旨在提供新的合适的具有高催化活性的17β-羟基类固醇脱氢酶,并建立对宝丹酮程绿色环保、产品收率、质量成本具有商业化竞争力的全细胞转化生产策略,具体技术方案如下:第一方面,本发明提供了一种来源于Brettanomycesnaardenensis的17β-羟基类固醇脱氢酶,其氨基酸序列如SEQ ID NO.1所示。
第二方面,本发明提供了一种编码所述17β-羟基类固醇脱氢酶的基因。
第三方面,本发明提供了一种包含所述17β-羟基类固醇脱氢酶编码基因的载体。
第四方面,本发明提供了一种包含所述的17β-羟基类固醇脱氢酶编码基因的基因工程菌。
进一步地,所述基因工程菌以大肠杆菌或分枝杆菌为宿主菌。
进一步地,所述大肠杆菌为E.coli BL21(DE3)。
进一步地,分枝杆菌为快速生长型分枝杆菌,包括耻垢分枝杆菌、偶发分枝杆菌、微黄分枝杆菌、新金分枝杆菌。
进一步地,所述分枝杆菌选择Mycobacterium sp.NRRL B-3805。
第五方面,本发明提供了一种全细胞转化生产宝丹酮基因工程菌的方法,包括如下步骤:
S1:合成氨基酸序列如SEQ ID NO.1所示的17β-羟基类固醇脱氢酶的编码基因,
S2:选择质粒上酶切位点对质粒进行酶切,将合成基因与载体连接;
S3:将步骤S2中的重组载体质粒转化到细胞中,筛选验证后得到基因工程菌。
进一步地,构建重组大肠杆菌的方法,包括如下步骤:
S1:合成Brettanomyces naardenensis(Gen Bank ID:VEU22018.1)17β-HSDbn序列(SEQ ID NO.1),
S2:选择pET28a(+)质粒上酶切位点(BamHI和XhoI)对质粒进行酶切,将合成基因与载体连接,
S3:转化到E.coli BL21(DE3)感受态细胞中,筛选验证后即构成重组工程菌E.coli BL21(DE3)/pET-28a(+)-17βHSDbn。
进一步地,构建重组分枝杆菌的方法,包括如下步骤:
S1:以新金色分枝杆菌Mycobacterium sp.NRRL B-3805为底盘菌,敲除kshA1、MnOpccR、SalA基因,得到菌株Mn 3805△kMS;
S2:将核苷酸序列如SEQ ID NO.3所示的携带核糖体结合位点RBS(CGGAGGA)的6-磷酸葡萄糖脱氢酶编码基因、氨基酸序列如SEQ ID NO.1所示的17β-羟基类固醇脱氢酶的编码基因连接至载体质粒,得到重组载体质粒;
S3:将步骤S2中的重组载体质粒转化至步骤S1中的菌株Mn 3805△kMS,得到高产宝丹酮基因工程菌。
进一步地,所述G6PDH来源于Mycobacterium sp.NRRL B-3805。
第六方面,本发明提供了如权利要求1所述的17β-羟基类固醇脱氢酶,或如权利要求3所述的载体,或如权利要求4、5、6中任一项所述的工程菌在催化甾体中C-17的羟基与酮基之间相互转化的反应中的应用。
第七方面,本发明提供了如所述的17β-羟基类固醇脱氢酶,或如所述的载体,或如权利要求4、5、6中任一项所述的工程菌在合成宝丹酮中的应用。
第八方面,本发明提供了一种全细胞转化生产宝丹酮的方法,具体包括如下步骤:将雄甾-1,4-二烯-3,17-二酮、植物甾醇在所述的17β-羟基类固醇脱氢酶的作用下,生成宝丹酮,如下式所示:
进一步地,一种利用重组大肠杆菌制备宝丹酮的方法,其以核苷酸序列如SEQ IDNO.1所示的17β-羟基类固醇脱氢酶为催化剂,以雄甾-1,4-二烯-3,17-二酮(ADD)作为底物制备宝丹酮。具体制备方法为:采用5-10m L反应体系,50-55m M、pH7.5-8.0的PBS缓冲液垂悬重组大肠杆菌至菌体湿重为150-200g/L,加入1.0-2.5g/L的葡萄糖,0.5-2mM NADPH,0.5-1.0g/L底物ADD进行转化,转化温度为30-37℃,转化pH为7.5-8.0,底物助溶剂为羟丙基-β-环糊精、1-2%吐温80,所述ADD:羟丙基-β-环糊精质量的比为1:3。
进一步地,一种重组分枝杆菌制备宝丹酮的方法,其以核苷酸序列如SEQ ID NO.1所示的17β-羟基类固醇脱氢酶为催化剂,以植物甾醇作为底物制备宝丹酮。
本发明具有如下有益效果:
(1)本发明首次鉴定出Brettanomyces naardenensis来源的17β-HSD具有17β-羟基甾体脱氢酶功能,并成功构建了表达真菌来源的17β-羟基类固醇脱氢酶的重组大肠杆菌及重组分枝杆菌;
(2)以本发明提供的重组工程菌全细胞为催化剂生产宝丹酮,其转化速度快,转化率高;
(3)本发明提供的微生物全细胞生产宝丹酮的方法,具有反应条件温和、绿色环保、产品收率高、工艺简单、易于控制等优点,更适合工业应用。
附图说明
图1:本发明实施例1中E.coli BL21(DE3)表达17β-羟基类固醇脱氢酶质粒示意图。
图2:本发明实施例3中构建重组过表达17β-羟基类固醇脱氢酶质粒示意图。
图3:本发明实施例5中构建辅酶再生系统质粒示意图。
图4:本发明实施例2中大肠杆菌全细胞转化产量结果图。
图5:本发明实施例4中新金色分枝杆菌异源表达17β-羟基类固醇脱氢酶的BD生产曲线图。
图6:本发明实施例6中构建辅酶再生系统工程菌的BD生产曲线图。
具体实施方式
下面结合具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
以下实施例中所用宿主菌:E.coli BL21(DE3)、E.coli DH5α;Mycobacteriumsp.NRRLB-3805,通过宝赛生物公司购买得到,并连续敲除kshA1、MnOpccR、SalA三个基因,从而获得基因敲除菌株Mn B-3805△kMS,所用敲除方法及敲除基因序列均参考CN115747238 A。
培养基:
LB液体培养基:蛋白胨10.0g/L,酵母提取物5.0g/L,Na Cl 10.0g/L。
M3培养基:磷酸二氢钾0.5g/L、磷酸氢二钾0.5g/L、磷酸氢二铵1.5g/L、酵母提取物5g/L、甘油5g/L、七水合硫酸亚铁0.005g/L、七水合硫酸锌0.002g/L、七水合硫酸镁0.2g/L及吐温80 0.5g/L。
表1构建重组菌表达质粒及验证引物
实施例1重组菌株E.coli BL21(DE3)/pET-28a(+)-17βHSDbn的构建合成Brettanomyces naardenensis(Gen Bank ID:VEU22018.1)17β-HSD序列(SEQ ID NO.1),根据分枝杆菌的密码子偏好进行密码子优化,交于北京擎科生物科技有限公司进行合成。利用限制性内切酶(BamHI和XhoI)对表达质粒pET-28-28a(+)进行酶切,同时以合成的基因为模板,扩增带有限制性内切酶位点(BamHI和XhoI)的目的基因片段,所需引物PET-BN-F、PET-BN-R(如表1所示),将片段纯化后,将目的片段与载体连接,将连接产物转化到E.coliBL21(DE3)感受态细胞中,涂布于卡那霉素抗性LB平板上,37℃置培养15-18h。挑取单菌落,接10m L LB试管培养,提取质粒,送测至北京擎科生物科技有限公司,测序结果正确即可用于后续实验。
实施例2重组菌株E.coli BL21(DE3)/pET-28a(+)-17βHSDbn全细胞转化性能检测将实施例1中构建的重组菌E.coli BL21(DE3)/pET-28a(+)-17βHSDbn挑取单菌落接种于10mL LB培养基中,37℃培养12h。按2%接种量接种于装有100m L LB培养基的500m L摇瓶中,37℃培养2h,待OD600达到0.6~0.8时,添加0.1mM IPTG,28℃培养12h~16h。离心收集菌体,50m M的PBS缓冲液洗涤两次。PBS缓冲液重新悬浮至细胞湿重为200g/L,加入0.5g/L底物ADD(ADD:羟丙基-β-环糊精质量的比为1:3),2.5g/L的葡萄糖,2mMNADPH,在30℃下反应5min,用盐酸终止反应,加入3倍乙酸乙酯萃取,离心5min,取上清挥干,加甲醇复溶,经0.22μm滤膜过滤除杂,吸取200μL加入液相瓶的内衬管中,进行高效液相检测。对照组采用同体积的PBS缓冲液(50m M,pH7.5)代替菌液,结果如图4所示。
结果如图5显示,经过5min全细胞转化,0.5g/L ADD可转化为398.13mg/L宝丹酮,时空产率79.626mg/(L·min)(即4.78g/(L·h))。
实施例3重组过表达17β-羟基类固醇脱氢酶工程菌的构建
(1)过表达17β-羟基类固醇脱氢酶质粒的构建:利用限制性内切酶(BamHI和EcoRI)对表达质粒pMV261进行酶切,同时扩增带有限制性内切酶位点(BamHI和EcoRI)的17βHSDbn基因片段。提取pET-28a(+)-17βHSDbn质粒用作模板扩增目的片段,所需引物261-BN-F、261-BN-R(如表1所示),琼脂糖凝胶电泳检测PCR产物条带大小后,利用蛋白纯化试剂盒进行纯化备用。将目的片段与载体连接,将连接产物转化到E.coli DH5α感受态细胞中,涂布于卡那霉素抗性LB平板上,37℃置培养15-18h。从平板上挑取单菌落,用设计的验证引物:YZpMV261-F、YZpMV261-R(如表1所示)进行菌落PCR验证,用琼脂糖凝胶电泳检测PCR产物条带,将条带正确的PCR产物送测至北京擎科生物科技有限公司,测序结果正确即可接单菌落至试管,提取质粒用于后续实验。
(2)新金色分枝杆菌的电转化及验证:首先制备分枝杆菌Mn B-3805△kMS感受态细胞(步骤1.挑单菌落于10mL LB试管中,37℃振荡培养36h;步骤2.将试管中的培养液接种于50mL LB摇瓶中,接种量2%,30℃摇床培养12-14h,待OD600为1.2-1.8将摇瓶置于冰上静置10min:步骤3.4000rpm,4℃离心10min,去上清;步骤4.用蒸馏水重悬,4000rpm,4℃离心10min,去上清,洗涤两次;步骤5.用2mL 15%甘油水溶液重悬,分装到EP管中,每管100μL)于-80℃保存备用。将上诉实施例3中构建完成的重组表达质粒加入分枝杆菌Mn B-3805△kMS感受态细胞置于冰上静置10min,使用电脉冲仪电击两次(电击条件:设定电压2.5kV,电击杯孔径选择2mm)。加入700μL预冷过后的LB液体培养基,垂悬菌体后,转移至无菌EP管;37℃、180rpm振荡温育4h,6000rpm离心3min,弃去上清,100μL重悬,涂布于卡那霉素抗性LB平板上,30℃倒置培养3-5d。挑取单菌落进行菌落PCR,选择条带长度正确的进行送测。将测序正确的单菌落接种于10mL LB试管中,37℃振荡培养36h后保菌备用。
实施例4新金色分枝杆菌异源过表达17β-羟基类固醇脱氢酶转化性能检测将实施例3中构建完成的菌株在含卡那霉素抗性的LB固体平板上划线活化,30℃培养2-3d;挑取单菌落于5mL LB试管中,30℃振荡培养36h;取4%转接到100mL M3培养基中,30℃振荡培养48h。用高速冷冻离心机收菌(4℃,6000rpm,离心10min),去除上清培养基,再用50mM pH7.5的PBS缓冲液重悬清洗2次,最后再用适量的PBS缓冲液重悬湿菌体。
静息细胞反应体系(50ml):60g/L湿菌体,10g/L植物甾醇(100g/L植物甾醇母液:10g植物甾醇,30g羟丙基-β-环糊精,吐温80 2g,定容至100ml),40g/L的葡萄糖。30℃,180rpm振荡培养,反应144h。
样品处理方法:500μL样品加入1.5mL乙酸乙酯萃取,振荡混匀,离心5min,取上层有机相200μL于EP管中挥发,加入800μL甲醇复溶,用0.22μm有机膜过滤,取200μL与液相瓶内衬管中待测。
高效液相色谱法(HPLC):选用Agilent1260高效液相色谱仪,紫外检测器,色谱柱为C18柱(5um,250mmx4.6mm)型色谱柱,进样量10u L,检测波长为254nm,柱温为30℃。流动相:甲醇:水(70:30,v/v),流速1mL/min。
结果如图6所示,Mn B-3805△kMS pMV261-17β-HSDbn转化96小时达到最高产量2.262g/L。
实施例5辅酶再生系统工程菌的构建
(1)辅酶再生系统工程菌质粒的构建:利用限制性内切酶(EcoRI和HindIII)对表达质粒pMV261-17βHSDbn进行酶切,同时扩增带有限制性内切酶位点(EcoRI和HindIII)及核糖体结合位点RBS(CGGAGGA)的目的片段。用新金色分枝杆菌作模板扩增同源6-磷酸葡萄糖脱氢酶g6pdh,所需引物261-G6PDH-F、261-G6PDH-R(如表1所示),琼脂糖凝胶电泳检测PCR产物条带大小后,利用蛋白纯化试剂盒进行纯化备用。将目的片段与载体连接,将连接产物转化到E.coli DH5α感受态细胞中,涂布于卡那霉素抗性LB平板上,37℃置培养15-18h。从平板上挑取单菌落,用设计的验证引物:YZpMV261-F、YZpMV261-R(如表1所示)进行菌落PCR验证,用琼脂糖凝胶电泳检测PCR产物条带,将条带正确的PCR产物送测至北京擎科生物科技有限公司,测序结果正确即可接单菌落至试管,提取质粒用于后续实验。
(2)新金色分枝杆菌的电转化及验证:首先制备分枝杆菌Mn B-3805△kMS感受态细胞(步骤同实施例3)于-80℃保存备用。将上诉实施例5中构建完成的重组质粒加入分枝杆菌Mn B-3805△kMS感受态细胞置于冰上静置10min,使用电脉冲仪电击两次。加入700μL预冷过后的LB液体培养基,垂悬菌体后,转移至无菌EP管;37℃、180rpm振荡温育4h,6000rpm离心3min,弃去上清,100μL重悬,涂布于卡那霉素抗性LB平板上,30℃倒置培养3-5d。挑取单菌落进行菌落PCR,选择条带长度正确的进行送测,将测序正确的单菌落,接种于10mL LB试管中,37℃振荡培养36h后保菌备用。
实施例6辅酶再生系统工程菌的转化性能检测
将实施例5中构建完成的菌株在含卡那霉素抗性的LB固体平板上划线活化,30℃培养2-3d;挑取单菌落于5mL LB试管中,30℃振荡培养36h;取4%转接到100mL M3培养基中,30℃振荡培养48h。用高速冷冻离心机收菌(4℃,6000rpm,离心10min),去除上清培养基,再用50mM pH 7.5的PBS缓冲液重悬清洗2次,最后再用适量的PBS缓冲液重悬湿菌体。
静息细胞反应体系(50ml):60g/L湿菌体,10g/L植物甾醇(100g/L植物甾醇母液:10g植物甾醇,30g羟丙基-β-环糊精,吐温80 2g,定容至100ml),40g/L的葡萄糖。30℃,180rpm振荡培养,反应144h。样品处理方法和高效液相色谱法(HPLC)同实施例4。
结果如图6所示,Mn B-3805△kMS pMV261-17β-HSDbn-G6PDHmn转化96小时达到最高产量3.087g/L,较不共表达G6PDH提升36.47%产率。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (10)

1.一种17β-羟基类固醇脱氢酶,其氨基酸序列如SEQ ID NO.1所示。
2.一种编码权利要求1所述的17β-羟基类固醇脱氢酶的基因。
3.一种包含如权利要求1所述的17β-羟基类固醇脱氢酶编码基因的载体。
4.一种包含如权利要求1所述的17β-羟基类固醇脱氢酶编码基因的基因工程菌。
5.根据权利要求4所述的一种基因工程菌,其特征在于:所述基因工程菌以大肠杆菌或分枝杆菌为宿主菌。
6.一种构建全细胞转化生产宝丹酮基因工程菌的方法,其特征在于,包括如下步骤:
S1:合成氨基酸序列如SEQ ID NO.1所示的17β-羟基类固醇脱氢酶的编码基因,
S2:选择质粒上酶切位点对质粒进行酶切,将合成基因与载体连接;
S3:将步骤S2中的重组载体质粒转化到细胞中,筛选验证后得到基因工程菌。
7.根据权利要求6所述的构建方法,其特征在于,包括如下步骤:
S1:以新金色分枝杆菌Mycobacterium sp.NRRL B-3805为底盘菌,敲除kshA1、MnOpccR、SalA基因,得到菌株Mn 3805△kMS;
S2:将核苷酸序列如SEQ ID NO.3所示的携带核糖体结合位点RBS(CGGAGGA)的6-磷酸葡萄糖脱氢酶编码基因、氨基酸序列如SEQ ID NO.1所示的17β-羟基类固醇脱氢酶的编码基因连接至载体质粒,得到重组载体质粒;
S3:将步骤S2中的重组载体质粒转化至步骤S1中的菌株Mn 3805△kMS,得到高产宝丹酮基因工程菌。
8.如权利要求1所述的17β-羟基类固醇脱氢酶,或如权利要求3所述的载体,或如权利要求4、5、6中任一项所述的工程菌在催化甾体中C-17的羟基与酮基之间相互转化的反应中的应用。
9.如权利要求1所述的17β-羟基类固醇脱氢酶,或如权利要求3所述的载体,或如权利要求4、5、6中任一项所述的工程菌在合成宝丹酮中的应用。
10.一种全细胞转化生产宝丹酮的方法,其特征在于:具体包括如下步骤:将雄甾-1,4-二烯-3,17-二酮、植物甾醇在权利要求1所述的17β-羟基类固醇脱氢酶的作用下,生成宝丹酮。
CN202311391810.XA 2023-10-25 2023-10-25 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用 Pending CN117467629A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311391810.XA CN117467629A (zh) 2023-10-25 2023-10-25 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311391810.XA CN117467629A (zh) 2023-10-25 2023-10-25 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用

Publications (1)

Publication Number Publication Date
CN117467629A true CN117467629A (zh) 2024-01-30

Family

ID=89637131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311391810.XA Pending CN117467629A (zh) 2023-10-25 2023-10-25 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用

Country Status (1)

Country Link
CN (1) CN117467629A (zh)

Similar Documents

Publication Publication Date Title
CN109055327B (zh) 醛酮还原酶突变体及其应用
CN106754993B (zh) 一种基因、重组酿酒酵母菌株及其构建方法与应用
CN114507648B (zh) 一类p450酶突变体及其应用
CN112094797B (zh) 基因工程菌及其制备9α,22-二羟基-23,24-双降胆甾-4-烯-3-酮的应用
CN112813013A (zh) 一种生产羟基酪醇的重组大肠杆菌及其应用
CN113528606A (zh) 一种酶催化制备17β-羟基类固醇的方法
CN113528472A (zh) 一种细胞色素p450 bm3突变体及其在醋酸群勃龙合成中的应用
JP2023133181A (ja) 組換え大腸菌および高純度ウルソデオキシコール酸の調製方法
CN111484962B (zh) 一种高效产5α-雄烷二酮的基因工程菌及其应用
CN108138126B (zh) 一种分枝杆菌基因工程菌及其在制备甾体化合物中的应用
CN112029701B (zh) 一种基因工程菌及其在制备22-羟基-23,24-双降胆甾-4-烯-3-酮中的应用
CN111471736B (zh) 制备c1,2-位脱氢甾体化合物的方法
CN114891707B (zh) 重组菌株及其全细胞催化生产胆红素的方法
CN114940964B (zh) 工程菌及其高效催化cdca生产udca的方法
CN113136348A (zh) 高产紫杉叶素的酿酒酵母工程菌及其构建和应用
CN109722442B (zh) 7β-羟基胆酸脱氢酶及其应用
CN117467629A (zh) 一种利用基因工程菌全细胞转化生产宝丹酮的方法及应用
CN108587997B (zh) 一种利用重组谷氨酸棒杆菌全细胞转化生产9-oh-ad的方法
CN112813041B (zh) 一种分枝杆菌的17β-羟基类固醇脱氢酶突变体和工程菌及其应用
CN111808830A (zh) 一种微生物降解植物甾醇生产雄二烯二酮的方法
WO2006124141A2 (en) A process of preparing prednisolone devoid of steroid-derived impurities using recombinant e. coli transformed with a δ1-dehydrogenase gene
CN118325858B (zh) 一种茶树菇来源的非特异性过氧合酶突变体及其在催化甾族化合物中的应用
CN111826358A (zh) 12-羟基胆酸脱氢酶及其应用
CN114989996B (zh) 一种产对羟基苯甲酸甲酯的基因工程菌及其应用
CN118360229B (zh) 重组枯草芽孢杆菌及其构建方法、麦角硫因的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination