CN117417193A - 一种多元过渡金属一硼化物粉体的低成本制备方法 - Google Patents

一种多元过渡金属一硼化物粉体的低成本制备方法 Download PDF

Info

Publication number
CN117417193A
CN117417193A CN202311289909.9A CN202311289909A CN117417193A CN 117417193 A CN117417193 A CN 117417193A CN 202311289909 A CN202311289909 A CN 202311289909A CN 117417193 A CN117417193 A CN 117417193A
Authority
CN
China
Prior art keywords
powder
heat treatment
transition metal
low
metal boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311289909.9A
Other languages
English (en)
Inventor
邹冀
李林
刘晶晶
王为民
傅正义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202311289909.9A priority Critical patent/CN117417193A/zh
Publication of CN117417193A publication Critical patent/CN117417193A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开一种多元过渡金属一硼化物粉体的低成本制备方法,属于陶瓷材料技术领域。该方法包括采用微米级MoO3、WO3、Cr2O3、MOx、B4C和C为原料,将原料粉末混料、干燥、过筛后利用无压烧结进行热处理,得到所需一硼化物粉末。本发明首先通过摇摆球磨将过渡金属氧化物MoO3,WO3,Cr2O3,Ta2O5,B4C和C粉进行湿磨混合,然后将混合均匀的原料在旋转蒸发器中充分干燥,最后对混合均匀的原料进行热处理实现高熵陶瓷粉体的制备,通过调整工艺参数,获得单相结构的高熵陶瓷粉体。该方法首次成功合成出了一硼化物的高熵陶瓷粉体,通过多项技术表征,合成的(Mo0.25W0.25Cr0.25M0.25)B高熵陶瓷粉体具有较好的颗粒分散性和微观形貌。

Description

一种多元过渡金属一硼化物粉体的低成本制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种多元过渡金属一硼化物粉体的低成本制备方法。
背景技术
高熵硼化物因独特的晶体结构和价键类型,往往展现出高熔点、优异的力学性能、较高的热稳定性等性能,如高熵二硼化物被认为是作为超高音速飞行器热防护部件、金属熔炼坩埚以及防弹装甲的候选材料。硼热-碳热还原作为制备二硼化物的一条常规途径,至今仍是十分成熟的一项工艺,无论是单相二硼化物还是高熵二硼化物都可以通过此法获得纯度很高的产物。Gild等人也是利用硼热-碳热还原成功制备出了高熵二硼化物(Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2、(Hf0.2Zr0.20.2Ti0.2Ta0.2Mo0.2)B2和(Hf0.2Zr0.2Ti0.2Ta0.2Cr0.2)B2。(Ceramics International,46(2020),6906-6913)。
由于过渡金属一硼化物独特的晶体结构和价键类型,具有高的硬度、高的熔点、耐磨损性能、良好的导电性、电磁屏蔽性能以及电化学性能等优异的物理化学性能,在刀具涂层、航空航天等领域有重要应用。2016年,Michael等人利用大原子半径的Ta取代WB中W原子制备了一种正交结构的一硼化物固溶体(W0.5Ta0.5)B,强化了双金属层晶面即(020)晶面,同时扭曲的共价键(B-B键)阻碍了(002)和(200)晶面的变形,最终成功获得了超硬的一硼化物材料。在二硼化物材料方面,高熵化可以在一定程度上增加材料的硬度。Zhao等以金属和硼粉为原料制备一硼化物粉体,并通过热压烧结成功制备了高熵一硼化物(Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B,所获材料拥有48.5±4.1Gpa的维氏硬度,也进一步说明高熵一硼化物材料将会是超硬材料的一个重要的研究方向。(Ceramics International,46(2020),26626-26631)。
根据目前已报道的一硼化物陶瓷,合成方式仅有通过金属粉末与硼粉反应的方法。由于一硼化物可以与其他硼源如硼粉、碳化硼粉等发生反应,因此氧化物硼热-碳热还原制备一硼化物中不可避免的存在二硼化物杂质。因而使用此法合成一硼化物的方法还未曾有人报道。而通过金属粉末与硼粉反应的方法也存在一些缺陷,如反应温度高;硼粉价格昂贵,以及纯度问题尚待解决;金属粉体具有一定的延展性,在球磨过程中容易延展,加之球磨过程中金属粉体还存在氧化的可能等。
因此,为避开现有合成方法存在的问题,并寻找一种低温、简单、且成本更低的一硼化物高熵陶瓷粉体的制备技术是亟需解决的问题。
发明内容
针对现有技术中存在的不足,本发明目的在于提供一种微米级、纯度较高的多元过渡金属一硼化物粉体的低成本制备方法。
为实现上述目的,本发明通过下述技术方案实现:
一种多元过渡金属一硼化物粉体的低成本制备方法,包括:采用微米级MoO3、WO3、Cr2O3、MOx、B4C和C为原料,根据以下化学方程式进行粉末的配比:
0.25MoO3+0.25WO3+0.125Cr2O3+0.25MOx+0.25B4C+aC=(Mo0.25W0.25Cr0.25M0.25)B+bCO;其中,参数a和b分别为对应不同氧化物时C和CO的计量系数;将原料粉末混料、干燥、过筛后利用无压烧结进行热处理,得到所需一硼化物粉末。
其中,获得的一硼化物粉体为正交结构,且需要多次热处理方能成功制备。
优选地,MOx中元素M为Ta、Nb、V、Ti中的任意一种。
优选地,参数a的取值范围为2.125-2.5,参数b的取值范围为2.375-2.5。
优选地,原料粉末的混料、干燥和过筛的具体步骤为:
以微米级MoO3、WO3、Cr2O3、MOx、B4C和C为原料,将各种原料粉体按设计的反应方程的配比进行称量,配料,以无水乙醇为溶剂,氧化锆球为混料介质,进行混料,混合后所得的浆料通过旋转蒸发烘干,破碎过筛后得到的混合均匀的粉料。
优选地,各种原料粉体的粒径均小于3μm,纯度均为99%。
优选地,无压烧结进行热处理的具体步骤为:
一次热处理:将过筛后的粉体进行压片,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理,得到块体;
二次热处理:将得到的块体进行破碎、过筛,重新进行压片,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中再次进行真空热处理,热处理温度不高于第一次热处理温度。
相较于直接按照计量比合成一硼化物粉末,此处采用了多次真空热处理的方式,使得粉体纯度逐步提高。
优选地,粉体在压力3-20MPa下进行压片。
优选地,真空热处理的温度范围为1250-1750℃。
优选地,真空热处理的保温时间范围为30-90min。
优选地,真空热处理的升温速度范围为5-20℃/min。
本发明提供的技术方案具有如下优点及有益效果:
目前一硼化物合成仅能依靠金属粉末和硼粉反应合成,但此法仍存在一系列的问题:1)硼粉价格昂贵,并且反应对硼粉纯度要求很高。2)金属粉体具有一定的延展性,在球磨过程中容易延展,加之球磨过程中金属粉体还存在氧化的可能。对此,本发明方法通过硼热-碳热还原反应制得了微米级、纯度较高的一硼化物粉末,其原料成本低,方便易得,制备工艺简单,在1250-1750℃即可实现一硼化物粉末的合成。
本发明提出了一种(Mo0.25W0.25Cr0.25M0.25)B高熵陶瓷粉体材料,首先通过摇摆球磨将过渡金属氧化物MoO3,WO3,Cr2O3,Ta2O5,B4C和C粉进行湿磨混合,然后将混合均匀的原料在旋转蒸发器中充分干燥,最后对混合均匀的原料进行热处理实现高熵陶瓷粉体的制备,通过调整工艺参数,获得单相结构的高熵陶瓷粉体。该方法首次成功合成出了一硼化物的高熵陶瓷粉体,通过多项技术表征,合成的(Mo0.25W0.25Cr0.25M0.25)B高熵陶瓷粉体具有较好的颗粒分散性和微观形貌。
附图说明
图1为实施例1得到的(Mo0.25W0.25Cr0.25Ta0.25)B粉体的SEM图;
图2为实施例1得到的(Mo0.25W0.25Cr0.25Ta0.25)B粉体的元素分布图;
图3为实施例1得到的(Mo0.25W0.25Cr0.25Ta0.25)B粉体的XRD图;
图4为实施例2得到的(Mo0.25W0.25Cr0.25Ta0.25)B粉体的XRD图;
图5为实施例2得到的(Mo0.25W0.25Cr0.25Ta0.25)B粉体的XRD图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明的优选实施方案进行描述,但是不能理解为对本发明的限制,仅作举例而已。
下述实施例中所述试验方法或测试方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均从常规商业途径获得,或以常规方法制备。
实施例1
步骤1:分别称取市售的MoO3粉末3.44g、WO3粉末5.55g、Cr2O3粉末1.82g、Ta2O5粉末5.29g、B4C粉末1.32g、C粉末2.59g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。将得到的块体进行破碎、过筛,依旧在压力3-20MPa下进行压片,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中再次进行热处理,热处理温度不高于第一次热处理温度。
通过以上步骤制备的(Mo,W,Cr,Ta)B粉体的SEM、元素分布图以及XRD图,如图1-3所示,其中一硼化物纯度可达95%以上。
实施例2
步骤1:分别称取市售的MoO3粉末3.43g、WO3粉末5.52g、Cr2O3粉末1.90g、Ta2O5粉末5.26g、B4C粉末1.32g、C粉末2.57g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的(Mo,W,Cr,Ta)B粉体的XRD图,如图4所示,其中一硼化物纯度可达95%以上。
实施例3
步骤1:分别称取市售的MoO3粉末3.57g、WO3粉末5.74g、Cr2O3粉末1.88g、Ta2O5粉末5.47g、B4C粉末1.72g、C粉末1.61g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的(Mo,W,Cr,Ta)B粉体的XRD图,如图5所示。
实施例4
步骤1:分别称取市售的MoO3粉末3.85g、WO3粉末6.20g、Cr2O3粉末2.03g、Nb2O5粉末3.55g、B4C粉末1.48g、C粉末2.89g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的粉体通过XRD测试确认为(Mo,W,Cr,Nb)B。
实施例5
步骤1:分别称取市售的MoO3粉末4.11g、WO3粉末7.11g、Cr2O3粉末2.33g、V2O5粉末1.14g、B4C粉末1.69g、C粉末3.31g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的粉体通过XRD测试确认为(Mo,W,Cr,V)B。
实施例6
步骤1:分别称取市售的MoO3粉末4.21g、WO3粉末6.78g、Cr2O3粉末2.22g、TiO2粉末2.18g、B4C粉末1.62g、C粉末2.99g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的粉体通过XRD测试确认为(Mo,W,Cr,Ti)B。
实施例7
步骤1:分别称取市售的MoO3粉末2.85g、WO3粉末4.59g、Cr2O3粉末1.51g、Ta2O5粉末4.38g、Nb2O5粉末2.63g、B4C粉末1.62g、C粉末2.99g,并将称取的粉末(共20g)、50g无水乙醇和40g钇稳定氧化锆球(料球质量比约为1:2)一同加入球磨罐中球磨混料12h。然后,将混合后的料浆通过旋转蒸发在60℃烘干1h并过200目的筛网后得到均匀且干燥的混合粉末。
步骤2:将上述混合粉末,经过干压成型(成型压力3-20MPa,保压时间1min)得到混合粉末块体,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理。其中热处理温度为1250-1750℃,保温时间范围为30-90min,升温速度范围为5-20℃/min。
通过以上步骤制备的粉体通过XRD测试确认为(Mo,W,Cr,Ta,Nb)B。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,包括:采用微米级MoO3、WO3、Cr2O3、MOx、B4C和C为原料,根据以下化学方程式进行粉末的配比:0.25MoO3+0.25WO3+0.125Cr2O3+0.25MOx+0.25B4C+aC=(Mo0.25W0.25Cr0.25M0.25)B+bCO;其中,参数a和b分别为对应不同氧化物时C和CO的计量系数;将原料粉末混料、干燥、过筛后利用无压烧结进行热处理,得到所需一硼化物粉末。
2.根据权利要求1所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,MOx中元素M为Ta、Nb、V、Ti中的任意一种。
3.根据权利要求1所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,参数a的取值范围为2.125-2.5,参数b的取值范围为2.375-2.5。
4.根据权利要求1所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,原料粉末的混料、干燥和过筛的具体步骤为:
以微米级MoO3、WO3、Cr2O3、MOx、B4C和C为原料,将各种原料粉体按设计的反应方程的配比进行称量,配料,以无水乙醇为溶剂,氧化锆球为混料介质,进行混料,混合后所得的浆料通过旋转蒸发烘干,破碎过筛后得到的混合均匀的粉料。
5.根据权利要求4所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,各种原料粉体的粒径均小于3μm,纯度均为99%。
6.根据权利要求1所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,无压烧结进行热处理的具体步骤为:
一次热处理:将过筛后的粉体进行压片,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中进行真空热处理,得到块体;
二次热处理:将得到的块体进行破碎、过筛,重新进行压片,随后放入垫好石墨纸的石墨坩埚中,在石墨碳管炉中再次进行真空热处理,热处理温度不高于第一次热处理温度。
7.根据权利要求6所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,粉体在压力3-20MPa下进行压片。
8.根据权利要求6所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,真空热处理的温度范围为1250-1750℃。
9.根据权利要求6所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,真空热处理的保温时间范围为30-90min。
10.根据权利要求6所述的多元过渡金属一硼化物粉体的低成本制备方法,其特征在于,真空热处理的升温速度范围为5-20℃/min。
CN202311289909.9A 2023-10-08 2023-10-08 一种多元过渡金属一硼化物粉体的低成本制备方法 Pending CN117417193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311289909.9A CN117417193A (zh) 2023-10-08 2023-10-08 一种多元过渡金属一硼化物粉体的低成本制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311289909.9A CN117417193A (zh) 2023-10-08 2023-10-08 一种多元过渡金属一硼化物粉体的低成本制备方法

Publications (1)

Publication Number Publication Date
CN117417193A true CN117417193A (zh) 2024-01-19

Family

ID=89527500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311289909.9A Pending CN117417193A (zh) 2023-10-08 2023-10-08 一种多元过渡金属一硼化物粉体的低成本制备方法

Country Status (1)

Country Link
CN (1) CN117417193A (zh)

Similar Documents

Publication Publication Date Title
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN110734289B (zh) 一种一硼化物高熵陶瓷及其制备方法
CN114075078B (zh) 一种耐高温高强度(Ti,Zr,Hf)C中熵陶瓷材料及其制备方法
US7459408B2 (en) Al2O3 dispersion-strengthened Ti2AlN composites and a method for producing the same
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN110698204B (zh) 一种max相陶瓷的制备方法
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
CN113444952A (zh) 一种高强度高韧性的高熵金属陶瓷及其制备方法
CN113004047B (zh) 一种(CrZrTiNbV)N高熵陶瓷块体及其制备方法
CN113185295A (zh) 一种制备max相高熵陶瓷材料的方法
CN103011827A (zh) 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN112939603B (zh) 一种低温烧结氧化钇陶瓷坩埚的方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN111848159A (zh) 一种黄色导电氧化锆陶瓷的制备方法
CN111747742A (zh) 一种黑色导电氧化锆陶瓷的制备方法
KR102084452B1 (ko) Mo-Si-B 합금의 제조 방법
CN113652656A (zh) 一种钽-二氧化硅溅射靶材的制备方法
CN108690929A (zh) 内生型纳米颗粒增强高熵合金基复合材料的制备方法
CN117417193A (zh) 一种多元过渡金属一硼化物粉体的低成本制备方法
CN115386777B (zh) 一种过渡金属碳氮化物基高熵金属陶瓷及其制备方法
CN106591747B (zh) 一种β-Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法
CN114835473A (zh) 一种氧化铝陶瓷及其制备方法
KR102077536B1 (ko) Mo-Si-B 합금의 제조방법 및 Mo-Si-B 합금
CN106083002A (zh) 低温烧结原位合成六铝酸镧增强的氧化铝陶瓷及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination