CN117286039A - 一种菌丝形态优化的里氏木霉菌株及其应用 - Google Patents

一种菌丝形态优化的里氏木霉菌株及其应用 Download PDF

Info

Publication number
CN117286039A
CN117286039A CN202311586993.0A CN202311586993A CN117286039A CN 117286039 A CN117286039 A CN 117286039A CN 202311586993 A CN202311586993 A CN 202311586993A CN 117286039 A CN117286039 A CN 117286039A
Authority
CN
China
Prior art keywords
trichoderma reesei
strain
fermentation
cellulase
cdc42
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311586993.0A
Other languages
English (en)
Other versions
CN117286039B (zh
Inventor
高乐
吴信
鲍彤彤
张兆昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202311586993.0A priority Critical patent/CN117286039B/zh
Publication of CN117286039A publication Critical patent/CN117286039A/zh
Application granted granted Critical
Publication of CN117286039B publication Critical patent/CN117286039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于生物技术领域,具体公开一种菌丝形态优化的里氏木霉菌株及其应用。其是通过在里氏木霉菌株中过表达cdc42后,得到重组里氏木霉的菌丝延展性明显提升,菌丝分支频率为23‑56µm/tips,比出发菌株分支频率大幅度提升。在液态深层发酵过程中,相比出发菌株,重组里氏木霉发酵液粘度降低30%以上,传氧传质效率大幅度提升,肉眼可见,重组里氏木霉菌丝形态已经由长长的菌丝调整为菌球状态。并且重组里氏木霉OCdc42的蛋白分泌量和酶活均显著高于出发菌株。同时,与里氏木霉A2H为出发菌株进行比较,重组里氏木霉的胞外蛋白浓度增加49.9%;滤纸酶活增加20.9%;内切葡聚糖酶活增加39.1%。

Description

一种菌丝形态优化的里氏木霉菌株及其应用
技术领域
本发明属于微生物领域和生物技术领域,具体涉及一种菌丝形态优化的里氏木霉菌株。
背景技术
丝状真菌具有分泌大量纤维素酶的能力,是工业上纤维素酶的重要来源。例如它可以生产蛋白酶、淀粉酶、纤维素酶等。丝状真菌的主要特征是菌丝结构,即一个菌丝包括杆状的主菌丝体,分支菌丝体和分生孢子聚集体。菌丝生长为底物的定植、水解酶的分泌、营养物质的同化、形态发生的调节和环境信号的识别提供了手段。菌丝的生长和分化是一个复杂的过程,需要控制细胞壁的合成、极化的囊泡运输、胞吞作用、吞噬作用、膨压、细胞器的定位以及细胞质的迁移和融合。前期报道逐渐发现菌丝形态(菌丝直径、菌丝长度、菌丝分支)对微生物的代谢活性和产酶能力有着重要影响。一方面丝状真菌的生长形态和目标产物生产效率密切相关,已有研究证实丝状真菌的蛋白质通常从菌丝尖端分泌出来,菌丝顶端数量直接影响到蛋白的分泌能力,菌丝顶端数量的增加利于大部分蛋白合成。另一方面,因为丝状真菌一般是通过深层液态发酵分泌胞外工业酶,而菌丝体的形态可以直接影响发酵液的流变特性,从而影响生物反应器的性能。一般来说,如果菌丝体过长,发酵液的粘度越高,氧气和营养物质的分布越不均匀,不利于丝状真菌的正常生长。
里氏木霉作为纤维素酶的最主要生产菌株,其生产的纤维素酶组分丰富、性质优良,被广泛用于纺织、造纸、食品、饲料等行业。但在纤维素类生物质转化过程中,纤维素酶的生产成本是制约其产业化应用的瓶颈之一。虽然目前里氏木霉纤维素酶的诱导表达机制得到了比较深入的研究,但是作为纤维素酶表达调控重要组成部分的菌丝形态研究却相对较少。从菌种本身性状考虑,丝状真菌的菌丝形态发育包括菌丝细胞壁完整性、菌丝分隔、菌丝延展性、菌丝侧枝形成等受到多种代谢途径中多个基因的调控。挖掘新的影响纤维素酶表达的菌丝调控因子,有效地调整里氏木霉菌丝形态对于深入理解丝状真菌纤维素酶合成分泌调控网络以及扩大里氏木霉的工业化应用具有重要意义。
发明内容
本发明的目的是通过理性调控里氏木霉菌丝形态,降低里氏木霉的发酵粘度,提升里氏木霉胞外表达目的蛋白如纤维素酶的分泌量,提升纤维素酶的酶活力并降低酶的成本。
本发明提供一种菌丝形态优化的里氏木霉菌株,其是通过在出发菌株中过表达cdc42基因而得到。
优选地,通过在出发菌中导入过表达cdc42基因的质粒,或者将过表达cdc42基因的表达盒整合到出发菌的基因组而得到。
进一步地,还导入拟表达的目的蛋白基因。
本发明进而提供所述的里氏木霉菌株的目的蛋白发酵生产中的应用。
具体地,其是在纤维素酶发酵生产中的应用。
本发明特别提供一种生产纤维素酶的发酵方法,其是将所述的里氏木霉菌株进行发酵培养以产生纤维素酶。在本发明的其中一些实施例中,作为优选,所述培养的条件为:温度为24℃~28℃,pH4.8~5.2,转速250~300 rpm,发酵液中溶氧量25~35 %(v/v),培养一定时间。
在本发明的其中一些实施例中,作为优选,所述培养一定时间为24~120小时。
在本发明的其中一个实施例中,作为优选,所述培养的条件为:温度为26℃,pH5.0,发酵液中溶氧量30 %(v/v)。
在本发明的其中一些实施例中,作为优选,所述培养中,所述培养基包含如下组分:葡萄糖20~30 g/L,玉米浆干粉2~6 g/L,KOH 1.60~1.72 g/L,(NH4)2SO4 2.6~3.0 g/L和MgSO4 0.4~0.8 g/L。
在本发明的其中一个实施例中,作为优选,所述培养中,所述培养基包含如下组分:葡萄糖25 g/L,玉米浆干粉4 g/L,KOH 1.66 g/L,(NH4)2SO4 2.8 g/L和MgSO4 0.6 g/L。
本发明的有益效果在于,本发明通过挖掘到调控丝状真菌菌丝形态的功能元件cdc42,通过将cdc42过量表达后,实现里氏木霉OCdc42菌丝延展性明显提升,菌丝分支频率为23-56 µm/tips,比出发菌株A2H分支频率73-114 µm/tips大幅度提升。在液态深层发酵过程中,相比出发菌株A2H,里氏木霉OCdc42发酵液粘度降低30%以上,传氧传质效率大幅度提升,肉眼可见,里氏木霉菌丝形态已经由长长的菌丝调整为菌球状态了。并且里氏木霉OCdc42的蛋白分泌量和酶活均显著高于出发菌株A2H。与出发菌株A2H相比,里氏木霉OCdc42胞外蛋白浓度增加49.9%;滤纸酶活增加20.9%;内切葡聚糖酶活增加39.1%。因此,本发明具有较大的实用价值。
附图说明
图1:菌丝形态相关功能元件敲除后,里氏木霉A2H菌落形态变化。
图2:出发菌株A2H和过量表达cdc42改造菌株OCdc42在不同碳源平板上生长情况。
图3:显微镜下观察出发菌株A2H和改造菌株OCdc42菌丝形态。
图4:测量出发菌株A2H和改造菌株OCdc42菌丝分支频率。其中,L hgu是菌丝长度与菌丝尖端数的比值,单位:μm/tips。
图5:显微镜下观察过量表达cdc42改造菌株OCdc42发酵过程中的菌丝形态变化。其中,a显示的出发菌株A2H的菌丝形态,b显示改造菌株OCdc42的菌丝形态。
图6:分析A2H和改造菌株OCdc42胞外蛋白分泌量变化。
图7:分析A2H和改造菌株OCdc42滤纸酶活力变化。
图8:分析A2H和改造菌株OCdc42纤维素内切酶酶活力变化。
具体实施方式
下面通过具体实施例对本发明做进一步的阐述,以期更好的理解本发明,但并不构成对本发明的限制。
实施例一:挖掘决定菌丝极性的关键基因元件
对诱变菌的里氏木霉菌A2H及野生菌株RUT-C30进行比较转录组学研究,发现真核细胞极性生长的重要调节因子是Rho家族的分子开关小G蛋白(如ras1,ras2,cla4,rhoA,racA,cdc42,spa2等)表达情况都发生了显著变化,初步推断,这7个基因的差异表达可能影响了菌丝分枝。其中,里氏木霉菌株A2H(专利号:ZL202110336275.2)。
为了验证以上推测,我们将ras1,ras2,cla4,rhoA,racA,cdc42,spa2等分别进行基因敲除后,里氏木霉A2H胞外滤纸酶活力均受到严重影响,出现明显下降,其中cdc42功能元件(NCBI accession number: NW_006711164.1)敲除后,里氏木霉A2H滤纸酶活力影响最大。敲除菌丝分枝相关的元件后,平板上菌落出现生长速度减慢,菌丝延展度降低。其中,敲除cdc42元件后,里氏木霉菌株A2H出现明显菌丝极性消失的现象。Cdc42位于丝状真菌菌丝顶端,形成肌动蛋白。实验结果说明Cdc42对于里氏木霉菌丝形态影响尤为明显,cdc42的作用是建立丝状真菌菌丝极性作用。
实施例二:载体构建和重组菌株的构建
以里氏木霉A2H基因组为模板,用高保真Phanta Max Super-Fidelity DNAPolymerase,以Ptef-F(GGGACAGAATGTACAGTACTATACT,SEQ ID NO:1)和Ptef-R(TTTGACGGTTTGTGTGATGTAG,SEQ ID NO:2)为引物扩增tef1a基因(TRIREDRAFT_46958)启动子(Ptef1),以cdc42-F(CTACATCACACAAACCGTCAAAATGGTGGTCGCAACCATCAAG,SEQ ID NO:3)和cdc42-R(AAGTTCAGGGTCTGCTTGACTAGAATGAGGCACTTGTGGG,SEQ ID NO:4)为引物扩增cdc42基因(TRIREDRAFT_50335)开放阅读框(cdc42-ORF),以Tegl1-F(TGGACGAGCTGTACAAGTAAAGCGTTGACTTGCCTCTGGTC,SEQ ID NO:5)和Tegl1-R(TGCATTTCAAGGGCGTTGCTG,SEQ IDNO:6)为引物扩增egl1基因(cel7b, TRIREDRAFT_122081)终止子(Tegl1);以质粒Ptef1-MhGlaA-9 × His-2A-GFP-TtrpC[1]为模板,以2A-F(GTCAAGCAGACCCTGAACTTC,SEQ ID NO:7)和eGFP-R(TTACTTGTACAGCTCGTCCATGC,SEQ ID NO:8)为引物扩增2A-eGFP片段。
用ClonExpress II One Step Cloning Kit将Ptef1、cdc42-ORF、2A-eGFP和Tegl1重组至pEASY-Blunt Simple克隆载体上。然后用引物Ptef-F和Tegl1-R扩增Ptef1-cdc42-2A-eGFP-Tegl1表达盒,使用原生质体转化的方法将该表达盒转入至A2H菌株。
将里氏木霉孢子悬液涂布在铺有玻璃纸的马铃薯葡萄糖琼脂平板,28°C培养15小时后收集菌丝体。然后,使用0.5%溶壁酶消化菌丝体细胞壁,30°C消化2小时后双层擦镜纸过滤离心收集原生质体。用预冷STC溶液洗涤并重悬原生质体,将原生质体浓度调整为5x107个/mL,即得到原生质体悬液。取200 μL原生质体悬液加入10 μL Ptef1-cdc42-2A-eGFP-Tegl1表达盒和50 μL PEG溶液,轻轻混匀,冰浴20分钟。然后,再加入2 mL PEG溶液,室温放置5分钟。加入20 mL添加了1 M山梨醇的生长培养基过夜培养,使用70 μm孔径细胞过滤器(无锡耐思生命科技股份有限公司)过滤,用美国Beckman-Coulter公司的MoFlo XDP流式分选仪进行荧光筛选。选取荧光强度最高的转化子,作为cdc42高表达菌株标记为里氏木霉OCdc42,进行后续实验。
实施例三:过量表达Cdc42优化里氏木霉菌丝形态
cdc42高表达菌株OCdc42菌丝形态和酶活力均有显著影响。当出发菌株A2H和里氏木霉OCdc42吸取等量孢子悬液点至不同碳源平板上,30度培养5天,可以看到里氏木霉OCdc42在不同碳源的平板上(纤维素、蔗糖、淀粉、PDA、微晶纤维素)的生长较出发菌株更为致密(图2)。通过显微镜可以看到,与出发菌株A2H相比,里氏木霉OCdc42菌丝分支明显增多(图3)。通过软件测量菌丝分支数量及分支频率,里氏木霉OCdc42菌丝延展性明显提升,分支频率为(23-56 µm/tips),比出发菌株A2H分支频率(73-114 µm/tips)大幅度提升发现显著多于出发菌株(图4)。
实施例四:发酵生产纤维素酶
本发明还提供利用实施例2制备的里氏木霉OCdc42进行发酵来制备复合纤维素酶酶制剂,包括如下步骤:
培养方法:发酵培养基和种子培养基均为:葡萄糖25 g/L,玉米浆干粉4 g/L,KOH1.66 g/L,(NH4)2SO4 2.8 g/L,MgSO4 0.6 g/L。
发酵罐控制条件:pH5.0,温度26℃,250-300 rpm,溶氧30%。发酵时间12,24,36,48,60,72,84,96,120 h取样,离心获得上清液,进行酶活力和蛋白含量测定。
发酵结果表明,相比出发菌株A2H,里氏木霉OCdc42发酵液粘度降低30%以上,明显传氧传质效率大幅度提升,发酵状态更好。从发酵罐中取样,显微镜观察可见,出发菌株里氏木霉A2H菌丝形态长长的,向外扩散。里氏木霉OCdc42菌丝调整为菌球状态了,菌丝生长更紧密(图5)。
离心取上清液,检测发酵上清中蛋白浓度和酶活。里氏木霉OCdc42的蛋白分泌量和酶活均显著高于出发菌株A2H。与出发菌株A2H相比,里氏木霉OCdc42胞外蛋白浓度增加49.9%(图6);滤纸酶活增加20.9%(图7);内切葡聚糖酶活增加39.1%(图8)。
其中,蛋白浓度测定采用Bradford法进行测定:标准曲线的绘制使用牛血清白蛋白为标品。向试管中加入100 μL经过稀释的酶液,然后加入1 mL的考马斯亮蓝工作液中,注意考马斯亮蓝工作液和酶液的体积比应保持为10:1左右,混合均匀后,静置5min,然后吸取200微升于96孔板中测定OD595的值,通过标准曲线求出蛋白浓度。
纤维素酶滤纸酶活的测定:在比色管中放入一条经过折叠的Whatman滤纸条(50mg),依次加入1 mL 0.05 M pH = 4.8醋酸-醋酸钠缓冲液、0.5 mL经过稀释的酶液,然后置于50℃水浴反应1小时,然后采用DNS法测定生成的葡萄糖的生成量,具体步骤为:反应结束后加入3 mL的DNS试剂,煮沸5 min,然后吸取200微升反应液加入1 mL蒸馏水进行稀释,取稀释后的溶液200微升,测OD540的吸光值,通过与已制作的葡萄糖标准曲线比对,得到葡萄糖的含量,从而求出滤纸酶活。滤纸酶活的定义为每分钟转化底物生成1微摩尔的葡萄糖所需要的酶量为1个活力单位。

Claims (10)

1.一种菌丝形态优化的里氏木霉菌株,其特征在于,通过在出发菌株中过表达cdc42基因而得到。
2.如权利要求1所述的里氏木霉菌株,其特征在于,通过在出发菌中导入过表达cdc42基因的质粒,或者将过表达cdc42基因的表达盒整合到出发菌的基因组而得到。
3.如权利要求2所述的里氏木霉菌株,其特征在于,还导入拟表达的目的蛋白基因。
4.如权利要求1或2或3所述的里氏木霉菌株的目的蛋白发酵生产中的应用。
5.如权利要求4所述的应用,其特征在于,其是在纤维素酶发酵生产中的应用。
6.一种生产纤维素酶的发酵方法,其特征在于,将如权利要求1或2或3所述的里氏木霉菌株进行发酵培养以产生纤维素酶。
7.如权利要求6所述的发酵方法,其特征在于,所述发酵培养的条件为:温度为24℃~28℃,pH4.8~5.2,转速250~300 rpm,发酵液中溶氧量25~35 %(v/v),培养24~120小时。
8.如权利要求6所述的发酵方法,其特征在于,所述发酵培养的培养基包含如下组分:葡萄糖20~30 g/L,玉米浆干粉2~6 g/L,KOH 1.60~1.72 g/L,(NH4)2SO4 2.6~3.0 g/L和MgSO4 0.4~0.8 g/L。
9.如权利要求6至8任一项所述的发酵方法,其特征在于,将发酵培养后的培养基离心取上清液即得到含有纤维素酶的产物。
10.如权利要求9所述的发酵方法,其特征在于,还包括进一步纯化纤维素酶的步骤。
CN202311586993.0A 2023-11-27 2023-11-27 一种菌丝形态优化的里氏木霉菌株及其应用 Active CN117286039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311586993.0A CN117286039B (zh) 2023-11-27 2023-11-27 一种菌丝形态优化的里氏木霉菌株及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311586993.0A CN117286039B (zh) 2023-11-27 2023-11-27 一种菌丝形态优化的里氏木霉菌株及其应用

Publications (2)

Publication Number Publication Date
CN117286039A true CN117286039A (zh) 2023-12-26
CN117286039B CN117286039B (zh) 2024-03-12

Family

ID=89252160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311586993.0A Active CN117286039B (zh) 2023-11-27 2023-11-27 一种菌丝形态优化的里氏木霉菌株及其应用

Country Status (1)

Country Link
CN (1) CN117286039B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060596A2 (en) * 2006-11-15 2008-05-22 Danisco Us Inc., Genencor Division Enhanced protein production in t. reesei by co-expression of selected genes
CN108513582A (zh) * 2015-06-18 2018-09-07 布罗德研究所有限公司 新型crispr酶以及系统
CN113151006A (zh) * 2021-03-29 2021-07-23 中国科学院天津工业生物技术研究所 能够生产活性提高的纤维素酶的里氏木霉菌株及其应用
CN114269896A (zh) * 2019-06-24 2022-04-01 丹尼斯科美国公司 酵母中用于增加醇和赖氨酸生产的cdc42效应因子破坏
CN114667350A (zh) * 2019-11-08 2022-06-24 丹尼斯科美国公司 包含蛋白质生产率提高表型的真菌菌株及其方法
CN116083405A (zh) * 2023-03-07 2023-05-09 中国科学院天津工业生物技术研究所 一种酒糟降解酶制剂及菌酶协同生产单细胞蛋白的方法
CN116200279A (zh) * 2023-03-30 2023-06-02 安琪酶制剂(宜昌)有限公司 一种里氏木霉重组菌株、其制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060596A2 (en) * 2006-11-15 2008-05-22 Danisco Us Inc., Genencor Division Enhanced protein production in t. reesei by co-expression of selected genes
CN108513582A (zh) * 2015-06-18 2018-09-07 布罗德研究所有限公司 新型crispr酶以及系统
CN114269896A (zh) * 2019-06-24 2022-04-01 丹尼斯科美国公司 酵母中用于增加醇和赖氨酸生产的cdc42效应因子破坏
CN114667350A (zh) * 2019-11-08 2022-06-24 丹尼斯科美国公司 包含蛋白质生产率提高表型的真菌菌株及其方法
CN113151006A (zh) * 2021-03-29 2021-07-23 中国科学院天津工业生物技术研究所 能够生产活性提高的纤维素酶的里氏木霉菌株及其应用
CN116083405A (zh) * 2023-03-07 2023-05-09 中国科学院天津工业生物技术研究所 一种酒糟降解酶制剂及菌酶协同生产单细胞蛋白的方法
CN116200279A (zh) * 2023-03-30 2023-06-02 安琪酶制剂(宜昌)有限公司 一种里氏木霉重组菌株、其制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIENER, ET AL: "Characterization of the protein processing and secretion pathways in a comprehensive set of expressed sequence tags from Trichoderma reesei", FEMS MICROBIOL LETT., pages 275 - 282 *
TUIJA VASARA ET.AL: "interactions of the trichoderma reesei rho3 with the secretory pathway in yeast and T.reesei", MOLECULAR MICROBIOLOGY, vol. 42, no. 5, pages 1349 - 1361 *

Also Published As

Publication number Publication date
CN117286039B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN100547078C (zh) 在缺乏酶的黑曲霉突变体中生产生物物质的方法
CN105802854B (zh) 一种纤维素酶高产菌株及其应用
US12037632B2 (en) Recombinant expression vector applicable to rapid screening for recombinant strain and application
CN102268448B (zh) 一种用于在里氏木霉细胞内表达外源蛋白的表达设备及其基因工程菌
CN102304540B (zh) 一种在里氏木霉分泌表达外源蛋白的表达设备及其应用
CN112513249B (zh) 木霉属丝状菌的突变株和蛋白质的制造方法
CN109988714A (zh) 一种新型木霉及其应用
CN103097536B (zh) 具有粘度改变表型的丝状真菌
CN108251310B (zh) 一种新型木霉宿主细胞及其应用
EA006873B1 (ru) Трансформированные грибы-гифомицеты, способ их получения и способы экспрессии и получения белков при их использовании
CN113980938B (zh) 一种获取高产高稳定性异源β-葡萄糖苷酶的方法
CN117286039B (zh) 一种菌丝形态优化的里氏木霉菌株及其应用
CN113106114A (zh) 调控里氏木霉蛋白表达效率的因子、调控方法及应用
CN112226437B (zh) 梯度调控芽胞杆菌启动子启动效率的序列组合及应用
Han et al. Effect of VIB gene on cellulase production of Trichoderma orientalis EU7-22
CN106350461B (zh) 根瘤农杆菌介导的特异腐质霉的遗传转化方法及其表达载体
CN111849790B (zh) 重组顶头孢霉工程菌及其构建方法和应用
Siebecker et al. Transcriptomic insights into the roles of the transcription factors Clr1, Clr2 and Clr4 in lignocellulose degradation of the thermophilic fungal platform Thermothelomyces thermophilus
CN113755509A (zh) 溶血磷脂酶变体及其构建方法和在黑曲霉菌株中的表达
CN113943662A (zh) 一株异源表达木聚糖酶/纤维素酶CbXyn10c基因的里氏木霉菌株及应用
US20220017933A1 (en) Method for the production of enzymes by a strain belonging to a filamentous fungus
RU2728243C1 (ru) Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis
CN110747221A (zh) 一种宿主米曲霉敲除系统及其构建方法与应用
US20230303991A1 (en) Method of Producing Proteins Using a Trichoderma Fungus Strain in Which the CEL1A Gene is Invalidated
CN113913410B (zh) 一种牦牛瘤胃厌氧真菌木聚糖酶基因工程菌的构建及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant