CN117107117A - 一种镍氢电池用超晶格贮氢合金及其制备方法和应用 - Google Patents

一种镍氢电池用超晶格贮氢合金及其制备方法和应用 Download PDF

Info

Publication number
CN117107117A
CN117107117A CN202310992638.7A CN202310992638A CN117107117A CN 117107117 A CN117107117 A CN 117107117A CN 202310992638 A CN202310992638 A CN 202310992638A CN 117107117 A CN117107117 A CN 117107117A
Authority
CN
China
Prior art keywords
alloy
nickel
hydrogen storage
superlattice
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310992638.7A
Other languages
English (en)
Inventor
崔大祥
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN202310992638.7A priority Critical patent/CN117107117A/zh
Publication of CN117107117A publication Critical patent/CN117107117A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种镍氢电池用超晶格结构的贮氢合金及其制备方法和应用,贮氢合金的分子式形式:(LaxMgy)(Ni(0.9‑z)Co0.1Mnz)n,其中:x+y=1;0<z<0.9;3.0≤n≤4.0;将原料在高频悬浮熔炼炉中惰性气体保护下熔炼,然后将所得合金铸锭在真空退火炉惰性气体保护下退火得到所需合金铸锭,将合金铸锭粉碎,本发明制得的合金活化性能好;具有较高的电化学容量;具有较长的循环寿命。

Description

一种镍氢电池用超晶格贮氢合金及其制备方法和应用
技术领域
本发明涉及一种镍氢电池用超晶格贮氢合金及其制备方法和应用,属于电池电极材料领域。
背景技术
镍氢电池以其容量高于镍镉电池,以其安全性能、价格优势优于锂离子电池,以其清洁环保优于铅酸电池等优点,从而使其应用范围得以推广。镍氢电池若在市场竞争中立于不败之地,其性能指标如容量、寿命必须要不断提高。决定其性能的关键因素是正负极活性材料,然而其正极材料Ni(OH)2的容量已经到达280mAh/g,接近其理论容量289mAh/g,所以若提高其容量,或者是用新型的正极材料替换Ni(OH)2,或者是从负极材料着手来改善镍氢电池的性能,从目前的技术水平来看,前者未能实现,因此只有从后者着手。
对镍氢电池负极材料贮氢合金的研究由来已久,从上世纪八十年代起逐渐发展起了多种类型的贮氢合金,其中得以广泛应用并且商品化的是AB5型贮氢合金,该合金的优点是循环性能稳定,但是其容量仅在300 mAh/g ~330 mAh/g之间。当锂离子电池强势登场时,其较低的容量已不能适应竞争的要求。1999年日本东芝公司申请的专利JP11264041(A)中AB3型和AB3.5型RE-Ni系贮氢合金具有较高的容量。2000年T.Kohno等提出具有RE-Mg-Ni组成的三元系列合金,发现La0.7Mg0.3Ni2.8Co0.5合金的放电容量可达到410mAh/g,这一数值远高于商品稀土基AB5贮氢合金的电化学容量,循环次数可达30次。
镍氢电池用超晶格RE-Mg-Ni系贮氢合金自问世以来便以其高容量、易活化的优势受到人们的广泛关注。该类合金的容量高达410mAh/g,高出AB5型贮氢合金容量近20%。该类合金之所以具有高容量,原因是在该类合金相结构晶格单元中包含贮氢量高的AB2亚结构单元,可以把RE-Mg-Ni系贮氢合金的主相晶格单元看作是AB5亚结构单元和AB2亚结构元交替层叠排列而成,因此RE-Mg-Ni系贮氢合金被称作是超晶格贮氢合金。该类合金具有高的电化学容量已被国内外研究者证实,但是它的充放电循环寿命差的缺点一直没有明显改善,限制了该合金的商业应用。本发明通过优化合金成分和退火热处理等方法,开发出一种高容量、长寿命的镍氢电池用超晶格RE-Mg-Ni系贮氢合金。
发明内容
针对超晶格RE-Mg-Ni系贮氢合金循环性能差的不足,本发明目的在于提供一种镍氢电池用超晶格贮氢合金。
本发明的再一目的在于:提供一种上述镍氢电池用超晶格贮氢合金的制备方法。
本发明的又一目的在于:提供一种上述产品的应用。
本发明目的通过下述方案实现:一种镍氢电池用超晶格贮氢合金,该材料的组成通式为超晶格贮氢合金各个成分满足以下条件:(LaxMgy)(Ni(0.9-z)Co0.1Mnz)n,其中:x+y=1;0<z<0.9;3.0≤n≤4.0。
在原料选择上Mg选择镍镁合金,合金质量比镍:镁为4:1,其他均为单质镍、钴、锰,其杂质含量小于1%。
本发明提供一种上述镍氢电池用超晶格贮氢合金的制备方法,将按照组分比例配制好的原料放入惰性气体保护下高频悬浮熔炼炉的铜坩埚中熔炼,为保证合金铸锭成分和组织均匀性,抑制偏析,反复熔炼三次。并将所得到的合金铸锭在惰性气体保护气氛下进行退火,温度在800℃-1000℃之间,保温4-24小时。将退火后的合金在惰性气氛中机械球磨,得到最终的RE-Mg-Ni系贮氢合金。
本发明中,将纯度在99%以上的原料按照摩尔百分比配比,然后合金熔炼采用高频悬浮感应炉。熔炼在惰性气氛保护下进行,过程分三步完成,首先将除镍镁合金外的所有原料一并放入坩埚中,稀土原料在上,其他原料在下,以逐步升温的方式进行第一次熔炼,接下来取出铸锭,将镍镁合金放在坩埚底部,其上放置第一次熔炼所得合金,同样以逐步升温的方式进行熔炼,最后一步将第二次熔炼所得合金铸锭取出,击碎成块状,放入坩埚中进行第三次熔炼,至此,合金熔炼完毕,三次熔炼是为保证合金铸锭成分和组织均匀性,抑制偏析。
本发明中,熔炼电流为20 A -50A,熔炼时间1到3分钟。
本发明中,热处理采用的设备是密封的管式真空退火炉。将铸态合金放入石英舟,送至管状炉膛的恒温区。炉膛密封后抽真空,抽至2Pa~500Pa后,通惰性气体,然后再抽真空,如此反复三次,最后充入0.01MPa~1MPa的氩气,使样品在氩气保护下进行退火热处理,热处理温度为800℃~1000℃,时间4到24小时。
所述机械球磨在氩气环境下进行,将所得合金粉过200目筛和400目筛,取其中间的合金粉。制得的合金粉的容量和循环寿命得到明显改善,C200/Cmax(%)达到80 %以上,已基本能达到实际应用的标准。
该方法使得RE-Mg-Ni系贮氢合金的容量和循环稳定性得到明显改善,从而改善了镍氢电池的电化学性能。本发明与现有技术相比,具有以下优点:一是具有较高的电化学容量;二是具有较长的循环寿命;三是活化性能好;四是电化学催化性能好;五是原材料价格合适。
附图说明
图1:合金模拟电池放电容量测试曲线;
图2:合金模拟电池循环曲线。
实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种镍氢电池用超晶格贮氢合金,其超晶格贮氢合金各个成分满足以下条件:(La0.78Mg0.22)(Ni0.89Co0.1Mn0.01)3.5,按下述步骤制备:
按照上述比例配好原料后,在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后,充入0.5个大气压的氩气,在氩气保护下,升温至850℃下,保温10个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。
200目到400目之间的合金粉用压片的方法做成模拟电池在DC-5上进行电化学容量和寿命测试,测试结果如图1所示。
另外,直接把退火合金做寿命测试作为比较例,结果显示本实施例的寿命保持率:200次循环后的容量值C200除以最大容量值Cmax,C200/Cmax由74%提高到83%,如图2所示。
实施例2
一种镍氢电池用超晶格贮氢合金,其超晶格贮氢合金各个成分满足以下条件:(La0.7Mg0.3)(Ni0.83Co0.1Mn0.07)3,按下述步骤制备:
按比例配好原料后在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后充入0.5个大气压的氩气,在氩气保护下,升温至900℃下,保温6个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。
实施例3
一种镍氢电池用超晶格贮氢合金,其超晶格贮氢合金各个成分满足以下条件:(La0.8Mg0.2)(Ni0.85Co0.1Mn0.05)4,按下述步骤制备:
按比例配好原料后在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后充入0.5个大气压的氩气,在氩气保护下,升温至950℃下,保温6个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。

Claims (8)

1.一种镍氢电池用超晶格贮氢合金,其特征在于,超晶格贮氢合金各个成分满足以下条件:(LaxMgy)(Ni(0.9-z)Co0.1Mnz)n,其中:x+y=1;0<z<0.9;3.0≤n≤4.0。
2.根据权利要求1所述的镍氢电池用超晶格贮氢合金,其特征是,所选原料杂质含量均小于1%。
3.根据权利要求1所述的镍氢电池用超晶格贮氢合金,其特征是,所选含镁元素的合金为镍镁合金,其镍:镁质量比为4:1。
4.根据权利要求1-3任一所述的镍氢电池用超晶格贮氢合金的制备方法,其特征是,将原料在高频悬浮熔炼炉中惰性气体保护下熔炼,然后将所得合金铸锭在真空退火炉惰性气体保护下退火得到所需合金铸锭,将合金铸锭粉碎,得到超晶格贮氢合金。
5.根据权利要求4所述的镍氢电池用超晶格贮氢合金的制备方法,其特征是,超晶格贮氢合金各个成分满足以下条件:(La0.78Mg0.22)(Ni0.89Co0.1Mn0.01)3.5,按下述步骤制备:
按照上述比例配好原料后,在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后,充入0.5个大气压的氩气,在氩气保护下,升温至850℃下,保温10个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。
6.根据权利要求4所述的镍氢电池用超晶格贮氢合金的制备方法,其特征是,超晶格贮氢合金各个成分满足以下条件:(La0.7Mg0.3)(Ni0.83Co0.1Mn0.07)3,按下述步骤制备:
按比例配好原料后在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后充入0.5个大气压的氩气,在氩气保护下,升温至900℃下,保温6个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。
7.根据权利要求4所述的镍氢电池用超晶格贮氢合金的制备方法,其特征是,其超晶格贮氢合金各个成分满足以下条件:(La0.8Mg0.2)(Ni0.85Co0.1Mn0.05)4,按下述步骤制备:
按比例配好原料后在氩气气氛保护的高频悬浮感应熔炼炉上熔炼,对铸锭进行热处理,条件是真空度1×102Pa,然后充入0.5个大气压的氩气,在氩气保护下,升温至950℃下,保温6个小时,在氩气气氛中机械球磨,把合金粉碎成200目筛和400目筛,得到目标产物。
8.根据权利要求1-3任一所述的超晶格贮氢合金在镍氢电池中的应用。
CN202310992638.7A 2023-08-08 2023-08-08 一种镍氢电池用超晶格贮氢合金及其制备方法和应用 Pending CN117107117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310992638.7A CN117107117A (zh) 2023-08-08 2023-08-08 一种镍氢电池用超晶格贮氢合金及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310992638.7A CN117107117A (zh) 2023-08-08 2023-08-08 一种镍氢电池用超晶格贮氢合金及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117107117A true CN117107117A (zh) 2023-11-24

Family

ID=88810303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310992638.7A Pending CN117107117A (zh) 2023-08-08 2023-08-08 一种镍氢电池用超晶格贮氢合金及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117107117A (zh)

Similar Documents

Publication Publication Date Title
CN110317974B (zh) 一种钇-镍稀土系储氢合金
CN108172807B (zh) 一种多元素单相a5b19型超晶格储氢合金电极材料及其制备方法
CN111471895B (zh) 含钆和镍的储氢合金、负极、电池及制备方法
CN110257649B (zh) 一种高性能单相La0.6R0.15Mg0.25Ni3.5电极合金及其制备方法
JP3828922B2 (ja) 低Co水素吸蔵合金
CN113881872B (zh) 一种低钴高倍率ab5型储氢合金及其制备方法
CN101552337A (zh) 超晶格贮氢合金及其制备方法
CN104404280A (zh) 一种超晶格RE-Mg-Ni系贮氢合金的制备方法
CN101899591B (zh) 一种镍氢电池用超晶格贮氢合金材料及其制备方法
CN107075617A (zh) 一种稀土系储氢合金及其用途
JP3881823B2 (ja) 水素吸蔵合金及びその製造方法
JP2001040442A (ja) 水素吸蔵合金
US6083327A (en) Hydrogen occluding alloy
CN117107117A (zh) 一种镍氢电池用超晶格贮氢合金及其制备方法和应用
JP3944237B2 (ja) 低Co水素吸蔵合金
JP2792955B2 (ja) 水素電極用水素吸蔵合金
JPH06223827A (ja) 電池用水素吸蔵合金粉末の製造方法
CN115466880B (zh) 低温型储氢合金、制备方法、镍氢合金电极及镍氢电池
JP2000239769A (ja) 希土類系水素吸蔵合金及びそれを使用した電極
JP4441936B2 (ja) 水素吸蔵電極
CN112864377B (zh) 一种网状结构RE-Mg-Ni-Ti基负极复合材料及其制备方法
CN112342438B (zh) 一种a2b7-a7b23双相超晶格储氢合金及其制备方法
JPH11269501A (ja) 水素吸蔵合金粉末の製造方法及び水素吸蔵合金電極
JP2004218017A (ja) 水素吸蔵合金
CN115961177B (zh) 一种高功率长寿命型超晶格结构储氢合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination