CN117096323A - 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法 - Google Patents

一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法 Download PDF

Info

Publication number
CN117096323A
CN117096323A CN202311268314.5A CN202311268314A CN117096323A CN 117096323 A CN117096323 A CN 117096323A CN 202311268314 A CN202311268314 A CN 202311268314A CN 117096323 A CN117096323 A CN 117096323A
Authority
CN
China
Prior art keywords
nickel
ferromanganese
prussian blue
sodium
based prussian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311268314.5A
Other languages
English (en)
Inventor
杨宏训
付雪莹
�田�浩
任璐琳
刘坤
魏雨萌
孙志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202311268314.5A priority Critical patent/CN117096323A/zh
Publication of CN117096323A publication Critical patent/CN117096323A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法,所述复合正极材料为锰铁镍基普鲁士蓝微粒均匀分散在三维石墨烯网络的内部和表面,其中锰铁镍基普鲁士蓝化学式为Nax1(MnxFeyNiz)[Fe(CN)6]x2·aH2O,1.5≤x1≤2,0≤x≤1,0≤y≤1,0≤z≤1,0.5≤x2≤1,Mn、Fe、Ni的摩尔比为0.35~0.9:0.05~0.3:0.05~0.3,a为0.5~1.5;本发明的锰铁镍基普鲁士蓝/石墨烯复合正极材料制法简单,应用于钠离子电池具有长循环寿命、高比容量等优点,且便于大规模生产,操作安全,副产品易于回收,实现绿色无污染生产。

Description

一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法
技术领域
本发明涉及一种复合正极材料,尤其涉及一种锰铁镍基普鲁士蓝/石墨烯复合正极材料,还涉及上述复合正极材料的制法。
背景技术
在新能源储能领域中,钠离子电池以其低成本和资源丰富等优势得到了极好地发展。目前钠离子电池正极材料的研究主要集中在层状金属氧化物、聚阴离子化合物和普鲁士蓝类似物三大类材料体系上。其中,普鲁士蓝类化合物因其独特的开放框架和三维大孔道结构而具有较大储钠位点(约0.460nm)及离子脱嵌通道(在〈100〉晶面方向约为0.320nm),非常适合于存储离子半径较大的Na+。所以,普鲁士蓝类化合物被认为是目前最具应用前景的钠离子电池正极材料之一,已受到广泛关注。
普鲁士蓝类化合物的结构通式为NaxM[Fe(CN)6]1-y·□y·zH2O(可简写为MHCF或PBAs),其中M表示Fe、Co、Ni、Mn等过渡金属元素,□表示Fe(CN)6缺陷,x的范围为0<x<2;y的范围为0<y<1。当MHCF结构中与CN-中N相连的过渡金属元素M不同时,材料的电化学性能也不相同。若M为Ni、Zn、Cu等电化学惰性元素,那么材料在充放电过程中只发生1个Na+的可逆脱嵌,理论容量为85mA·h/g左右;而当M为Fe、Co、Mn等电化学活性元素时,在充放电过程中能发生2个Na+的可逆脱嵌,理论容量可达170mA·h/g左右。
在PBAs中,MnHCF具有高比容量和高电压下的氧化还原平台。然而,其严重的晶体姜-泰勒畸变效应影响了长期循环。FeHCF是PBA材料中研究最广泛的一种。FeLS和FeHS在不同的电位下参与钠储存的氧化还原反应,使其理论容量为170mAh/g。然而,FeLS的活性较低,导致有效的容量和放电电压降低。由于晶体结构中的晶格空位以及在接近4V的高压下材料与电解质之间的副反应,FeHCF也存在较差的循环稳定性,综上,普鲁士蓝类化合物作为钠离子电池正极材料仍存在容量低和循环寿命差的技术问题亟待解决。
发明内容
发明目的:本发明的目的是提供一种容量大且循环寿命长的锰铁镍基普鲁士蓝/石墨烯复合正极材料,并提供上述复合正极材料的制法。
技术方案:本发明所述的锰铁镍基普鲁士蓝/石墨烯复合正极材料,为锰铁镍基普鲁士蓝微粒均匀分散负载在三维石墨烯网络的内部和表面,所述锰铁镍基普鲁士蓝的化学式为Nax1(MnxFeyNiz)[Fe(CN)6]x2·aH2O,其中1.5≤x1≤2,0≤x≤1,0≤y≤1,0≤z≤1,0.5≤x2≤1,Mn、Fe、Ni的摩尔比为0.35~0.9:0.05~0.3:0.05~0.3,a为0.5~1.5。
优选的,所述锰铁镍基普鲁士蓝微粒为直径约400~600nm的球形微粒。
上述复合正极材料的制法,包括以下步骤:
(1)将钠盐、十水合亚铁氰化钠、表面活性剂溶解于水中,形成溶液A;
(2)将锰盐、铁盐、镍盐及螯合剂溶解于水中,形成溶液B;
(3)将溶液B滴加至溶液A中,搅拌,得到悬浊液C;
(4)将悬浊液C在110~130℃条件下水热反应12~24小时后,冷却到室温,将沉淀物离心分离,水洗,干燥,得到锰铁镍基普鲁士蓝材料;
(5)将锰铁镍基普鲁士蓝材料超声分散于氧化石墨烯溶液中,冷冻干燥得到氧化石墨烯包裹的锰铁镍基普鲁士蓝材料;
(6)将氧化石墨烯包裹的锰铁镍基普鲁士蓝材料在氢氩混合气氛中加热200~300℃保持1~2小时后冷却到室温,得到锰铁镍基普鲁士蓝/石墨烯复合正极材料。
优选的,步骤(1)中,钠盐与十水合亚铁氰化钠的摩尔比为1.5~15:1,钠盐的浓度为0.06~4mol/L;表面活性剂的浓度为10~300g/L。
优选的,步骤(1)中,所述的钠盐为氯化钠、硫酸钠、乙酸钠或草酸钠中的一种,表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵或十二烷基苯磺酸钠中的一种。
优选的,步骤(2)中,锰盐、铁盐、镍盐的摩尔比为0.35~0.75:0.2~0.3:0.05~0.3,锰盐的浓度为0.075~3mol/L,螯合剂的浓度为0.2~8mol/L。
优选的,步骤(2)中,所述的锰盐为氯化锰、乙酸锰、硝酸锰、硫酸锰或草酸锰中的一种,铁盐为氯化铁、乙酸铁、硝酸铁、硫酸铁或草酸铁中的一种,镍盐为氯化镍、乙酸镍、硝酸镍、硫酸镍或草酸镍中的一种,螯合剂为柠檬酸钠、乙二胺、乙二胺四乙酸或氨三乙酸三钠中的一种。
优选的,步骤(3)中,将溶液B滴加至溶液A时的流速为0.2mL/min~5mL/min,所述搅拌,速率为400~1000r/min,时间为0.5~2h。
优选的,步骤(5)中,所述氧化石墨烯溶液的密度为1.5~2.5mg/ml,锰铁镍基普鲁士蓝材料和氧化石墨烯溶液的质量比为1~3:1。
优选的,步骤(5)中,超声分散时间为1~2h,冷冻干燥条件为-75~80℃,时间为2~3天。
优选的,步骤(5)中,所述分离采用离心法,离心的转速为6000~10000rpm,时间为3~5分钟,所述干燥为真空干燥,真空度为10-6-10-2pa,干燥温度为100-160℃,干燥时间为12-48小时。
上述的锰铁镍基普鲁士蓝/石墨烯复合正极材料作为钠离子电池正极活性材料的应用,具体包括如下步骤:
(1)按照质量比将材料:聚偏氟乙烯粘结剂:导电剂Ketjen Black=6~8:3~1:1进行混合,搅拌均匀,得到混合物;
(2)将混合物与N-甲基吡咯烷酮按照质量比为20:80~25:75进行混合,搅拌均匀,制得浆料;
(3)将浆料涂覆在铝箔上,经干燥、辊压后制得厚度为13~22μm的钠离子电池电极片;
(4)将钠离子电池电极片作为电极正极片,采用超细玻璃纤维膜(GF/D,Whatman)为隔膜,使用等体积的聚碳酸酯(PC)和碳酸乙烯酯(EC)的1mol/L NaClO4的混合物为电解液,在充满氩气的手套箱中装配成CR2032扣式钠离子电池。
发明原理:本申请的锰铁镍基普鲁士蓝/石墨烯复合正极材料,通过元素的掺杂,结合不同金属优势的协同作用,提高材料的比容量,改善材料的循环性能;并且在包覆在石墨烯碳材料的表面,提高复合材料的导电性,抑制材料体积在充放电过程中的变化,改善材料的循环性能,达到材料之间的复合,结合材料的优点,协同增效使材料在复合后性能比原材料更优越,锰铁镍基普鲁士蓝/石墨烯复合正极材料不仅具有高比容量,而且具有极高的循环稳定性。
其中,Fe2+和Ni2+的部分取代,抑制了MnHCF的姜-泰勒畸变效应,激活了Mn还原反应(Mn3+/Mn2+),对FeHCF进行引入少量的Ni元素,可以激发与碳相连的低自旋Fe(FeLS)的活性,使FeLS的氧化还原反应更充分,容量贡献有所增加,提高了材料的比容量。电化学惰性的Ni2+则可降低循环时因体积变化引起的晶格应力-应变,稳定晶体结构,提高材料的循环稳定性。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)应用于钠离子电池的正极材料,容量提高至109.1mAh/g,首次库伦效率提高至97.27%,且改善其循环寿命,在循环100次后,仍取得107.5mAh/g的放电容量和98.53%的容量保持率;(2)本发明提供的制备方法中,具有大规模生产、操作安全、副产品易于回收的优点,实现绿色无污染生产。
附图说明
图1为本发明实施例1制得的复合正极材料的扫描电镜图;
图2是本发明实施例1制得的复合正极材料的X射线衍射(XRD)图谱;
图3是本发明实施例1制得的复合正极材料的热重曲线(TG);
图4是本发明实施例1制得的复合正极材料的拉曼图谱;
图5是本发明实施例1制得的复合正极材料作为钠离子电池正极材料在0.2C下的循环性能图;
图6是本发明实施例1制得的复合正极材料作为钠离子电池正极材料从0.2C到1C的倍率性能图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
(1)将15mmol氯化钠、1mmol十水合亚铁氰化钠,0.40g聚乙烯吡咯烷酮溶解于30mL去离子水中,搅拌10分钟得到溶液A;
(2)将1.35mmol硫酸锰、0.075mmol氯化铁和0.075mmol氯化镍与0.6mmol柠檬酸钠溶解于30mL去离子水中,搅拌10分钟得到溶液B。;
(3)将溶液B以1mL/min的速率缓慢滴加至溶液A中,并不断搅拌。待溶液B滴加完毕后,搅拌1h,得到悬浊液C;
(4)将C移至100mL反应釜中,120℃水热反应12小时,自然冷却到室温;将沉淀物离心分离,以8000rpm离心3min,去离子水进行多次洗涤,然后再120℃真空干燥12h,从而得到锰铁镍基普鲁士蓝材料,分子式为Na1.5(Mn0.9Fe0.05Ni0.05)[Fe(CN)6]·0.98H2O;
(5)将30mg锰铁镍基普鲁士蓝材料超声分散于10ml 2.0mg/ml的氧化石墨烯溶液中1小时;然后置于冷冻干燥机内,在-80℃条件下,保持2天,得到氧化石墨烯包裹的锰铁镍基普鲁士蓝材料;
(6)将氧化石墨烯包裹的锰铁镍基普鲁士蓝材料放置在管式炉内,以氢氩混合气2℃/min的升温速率,在250℃保持2小时后自然冷却到室温,得到锰铁镍基普鲁士蓝/石墨烯复合正极材料。
实施例2
与实施例1相比,改变原料添加量及反应条件:
(1)将3.5mmol硫酸钠、2mmol十水合亚铁氰化钠,1.0g十六烷基三甲基溴化铵溶解于50mL去离子水中,搅拌20分钟得到溶液A;
(2)将2.4mmol氯化锰、0.45mmol氯化铁和0.15mmol硫酸镍与4.5mmol乙二胺四乙酸二钠溶解于50mL去离子水中,搅拌20分钟得到溶液B;
(3)将溶液B以2mL/min的速率缓慢滴加至溶液A中,并不断搅拌。待溶液B滴加完毕后,搅拌1h,得到悬浊液C;
(4)将C移至100mL反应釜中,120℃水热反应18小时,自然冷却到室温;将沉淀物离心分离,以10000rpm离心5min,去离子水进行多次洗涤,然后再120℃真空干燥24h,从而得到锰铁镍基普鲁士蓝材料,分子式为Na1.75(Mn0.8Fe0.15Ni0.05)[Fe(CN)6]·1.2H2O;
(5)将30mg锰铁镍基普鲁士蓝材料超声分散于10ml 1.5mg/ml的氧化石墨烯溶液中1小时;然后置于冷冻干燥机内,在-80℃条件下,保持2天,得到氧化石墨烯包裹的锰铁镍基普鲁士蓝材料;
(6)将氧化石墨烯包裹的锰铁镍基普鲁士蓝材料放置在管式炉内,以氢氩混合气2℃/min的升温速率,首先在200℃保持2小时后自然冷却到室温,得到锰铁镍基普鲁士蓝/石墨烯复合正极材料。
实施例3
与实施例1相比,改变原料添加量及反应条件:
(1)将10mmol乙酸钠、1.5mmol十水合亚铁氰化钠,1.0g聚乙烯吡咯烷酮溶解于40mL去离子水中,搅拌30分钟得到溶液A;
(2)将2.1mmol氯化锰、0.6mmol硝酸铁和0.3mmol硝酸镍与6.0mmol无水柠檬酸钠溶解于40mL去离子水中,搅拌30分钟得到溶液B;
(3)将溶液B以1.5mL/min的速率缓慢滴加至溶液A中,并不断搅拌。待前驱体B滴加完毕后,搅拌1h,得到悬浊液C;
(4)将C移至100mL反应釜中,130℃水热反应12小时,自然冷却到室温;将沉淀物离心分离,以8000rpm离心5min,去离子水进行多次洗涤,然后再120℃真空干燥12h,从而得到锰铁镍基普鲁士蓝材料,分子式为Na1.68(Mn0.7Fe0.2Ni0.1)[Fe(CN)6]·1.3H2O;
(5)将25mg锰铁镍基普鲁士蓝材料超声分散于10ml 2.5mg/ml的氧化石墨烯溶液中1小时;然后置于冷冻干燥机内,在-80℃条件下,保持2天,得到氧化石墨烯包裹的锰铁镍基普鲁士蓝材料;
(6)将氧化石墨烯包裹的锰铁镍基普鲁士蓝材料放置在管式炉内,以氢氩混合气3℃/min的升温速率,首先在300℃保持2小时后自然冷却到室温,得到锰铁镍基普鲁士蓝/石墨烯复合正极材料。
以实施例1制备得到的锰铁镍基普鲁士蓝/石墨烯复合正极材料为例,进行电镜扫描,扫描结果如图1,锰铁镍基普鲁士蓝材料呈现出类球形形貌,平均直径在500nm,尺寸较为均匀。均匀分散在三维石墨烯网络的内部和表面。
XRD谱图如图2所示,从图中可以看出,所得材料所有的峰都能很好地对应于标准卡(JCPDS card No.52-1907)。XRD谱图在24°左右出现了多个衍射峰,这表明(Mn、Fe、Ni)N6和FeC6八面体与协同扭曲的氰化物配体相互连接。它的XRD峰被标记为单斜相,空间群为P21/n。
为确定锰铁镍基普鲁士蓝/石墨烯复合正极材料的水含量,进一步进行了热重分析。如图3所示,所得材料的水含量比较低,为11.2%。此外,步骤(6)中氢氩混合气煅烧温度会对材料性能有所影响,结合图3热重图,200℃之前,质量百分数的下降源于材料的水含量,300℃之后质量百分数的下降是由于C≡N键的断裂,材料的框架破坏,进而材料的性能下降。
图4为实施例1的锰铁镍基普鲁士蓝/石墨烯复合正极材料的拉曼图谱,可以看出在~1350和~1604cm-1处有两个宽泛的特征峰,分别对应sp2π键离域的D波段和G波段。ID/IG值约为0.88,表明材料中含有大量缺陷,这些缺陷可以为反应提供更多的活性位点,缩短Na+的传输路径,提高材料性能。
针对上述制得的锰铁镍基普鲁士蓝/石墨烯复合正极材料,应用于钠离子电池正极活性材料,具体为CR2032扣式钠离子电池的组装及性能测试:
(1)将锰铁镍基普鲁士蓝/石墨烯复合正极材料、科琴黑、粘结剂聚偏氟乙烯按照质量比7:2:1混合均匀,得到固体混合物;
(2)将固体混合物与N-甲基吡咯烷酮按照质量比为25:75进行混合,搅拌均匀,制得浆料;
(3)将浆料涂覆在铝箔上,经干燥、辊压后制得厚度为10~24μm的钠离子电池电极片;
(4)将钠离子电池电极片作为电极正极片,钠片作为电极负极片,超细玻璃纤维膜(GF/D,Whatman)为隔膜,使用等体积的聚碳酸酯(PC)和碳酸乙烯酯(EC)的1mol/L NaClO4的混合物为电解液,在充满氩气的手套箱中装配成CR2032扣式钠离子电池。
将组装好的钠离子电池在2.0-4.0V电压范围内,以0.2C的电流密度进行充放电循环测试。在2.0-4.0V电压范围内,从0.2逐步升至0.4、0.6、0.8、1C进行倍率性能测试。
图5所示为制备的锰铁镍基普鲁士蓝/石墨烯复合正极材料作为钠离子电池正极材料在0.2C(1C=170mA·h/g)下的循环性能图,第一次充放电比容量分别为112.1、109.1mA·h/g,首次库伦效率为97.32%。循环100次后,取得了107.5mA·h/g的放电容量和98.53%的容量保持率。
制备的锰铁镍基普鲁士蓝/石墨烯复合正极材料作为钠离子电池正极材料的倍率性能如图6所示,随着充放电倍率从0.2逐步升至0.4、0.6、0.8、1C,锰铁镍基普鲁士蓝/石墨烯复合正极材料的可逆比容量从111.7mA·h/g逐步降至98.7、93.2、88.3、83.6mA·h/g。此外,当重新回到0.1C时,比容量恢复到109.3mA·h/g,表现出良好的倍率性能。
对比例1
与实施例1相比,不进行石墨烯的负载:
(1)15mmol氯化钠、1mmol十水合亚铁氰化钠,0.40g聚乙烯吡咯烷酮溶解于30mL去离子水中,搅拌10分钟得到溶液A;
(2)将1.35mmol硫酸锰、0.075mmol氯化铁和0.075mmol氯化镍与0.6mmol柠檬酸钠溶解于30mL去离子水中,搅拌10分钟得到溶液B。;
(3)将溶液B以1mL/min的速率缓慢滴加至溶液A中,并不断搅拌。待溶液B滴加完毕后,搅拌1h,得到悬浊液C;
(4)将C移至100mL反应釜中,120℃水热反应12小时,自然冷却到室温;将沉淀物离心分离,以8000rpm离心3min,去离子水进行多次洗涤,然后再120℃真空干燥12h,从而得到锰铁镍基普鲁士蓝材料,分子式Na1.5(Mn0.9Fe0.05Ni0.05)[Fe(CN)6]·1.48H2O。
所得产物为球形微粒的锰铁镍基普鲁士蓝材料,其粒径约为400~600nm;将所得的产物作为钠离子电池电极材料,在手套箱中组装为半电池,在0.2C倍率的小电流下运行,在2~4V间进行充放电循环;球形微粒的锰铁镍基普鲁士蓝材料的初始比容量为106.5mA·h/g,100次循环后容量保持率为43%,显示了较差的充放电性能和循环稳定性。

Claims (10)

1.一种锰铁镍基普鲁士蓝/石墨烯复合正极材料,其特征在于,所述锰铁镍基普鲁士蓝微粒均匀分散负载在三维石墨烯网络的内部和表面,锰铁镍基普鲁士蓝的化学式为Nax1(MnxFeyNiz)[Fe(CN)6]x2·aH2O,其中1.5≤x1≤2,0≤x≤1,0≤y≤1,0≤z≤1,0.5≤x2≤1,Mn、Fe、Ni的摩尔比为0.35~0.9:0.05~0.3:0.05~0.3,a为0.5~1.5。
2.根据权利要求1所述的复合正极材料,其特征在于,所述锰铁镍基普鲁士蓝微粒为直径约400~600nm的球形微粒。
3.一种权利要求1所述复合正极材料的制法,其特征在于,包括以下步骤:
(1)将钠盐、十水合亚铁氰化钠、表面活性剂溶解于水中,形成溶液A;
(2)将锰盐、铁盐、镍盐及螯合剂溶解于水中,形成溶液B;
(3)将溶液B滴加至溶液A中,搅拌,得到悬浊液C;
(4)将悬浊液C在110~130℃条件下水热反应12~24小时后,冷却到室温,将沉淀物离心分离,水洗,干燥,得到锰铁镍基普鲁士蓝材料;
(5)将锰铁镍基普鲁士蓝材料超声分散于氧化石墨烯溶液中,冷冻干燥得到氧化石墨烯包裹的锰铁镍基普鲁士蓝材料;
(6)将氧化石墨烯包裹的锰铁镍基普鲁士蓝材料在氢氩混合气氛中加热200~300℃保持1~2小时后冷却到室温,得到锰铁镍基普鲁士蓝/石墨烯复合正极材料。
4.根据权利要求4所述的制法,其特征在于,步骤(1)中,钠盐与十水合亚铁氰化钠的摩尔比为1.5~15:1,钠盐的浓度为0.06~4mol/L;表面活性剂的浓度为10~300g/L。
5.根据权利要求4所述的制法,其特征在于,步骤(1)中,所述的钠盐为氯化钠、硫酸钠、乙酸钠或草酸钠中的一种,表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵或十二烷基苯磺酸钠中的一种。
6.根据权利要求4所述的制法,其特征在于,步骤(2)中,锰盐、铁盐、镍盐的摩尔比为0.35~0.75:0.2~0.3:0.05~0.3,锰盐的浓度为0.075~3mol/L,螯合剂的浓度为0.2~8mol/L。
7.根据权利要求4所述的制法,其特征在于,步骤(2)中,所述的锰盐为氯化锰、乙酸锰、硝酸锰、硫酸锰或草酸锰中的一种,铁盐为氯化铁、乙酸铁、硝酸铁、硫酸铁或草酸铁中的一种,镍盐为氯化镍、乙酸镍、硝酸镍、硫酸镍或草酸镍中的一种,螯合剂为柠檬酸钠、乙二胺、乙二胺四乙酸或氨三乙酸三钠中的一种。
8.根据权利要求4所述的制法,其特征在于,步骤(3)中,将溶液B滴加至溶液A时的流速为0.2mL/min~5mL/min,所述搅拌,速率为400~1000r/min,时间为0.5~2h。
9.根据权利要求4所述的制法,其特征在于,步骤(5)中,所述氧化石墨烯溶液的密度为1.5~2.5mg/ml,锰铁镍基普鲁士蓝材料和氧化石墨烯溶液的质量比为1~3:1。
10.根据权利要求4所述的制法,其特征在于,步骤(5)中,超声分散时间为1~2h,冷冻干燥条件为-75~80℃,时间为2~3天。
CN202311268314.5A 2023-09-28 2023-09-28 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法 Pending CN117096323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311268314.5A CN117096323A (zh) 2023-09-28 2023-09-28 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311268314.5A CN117096323A (zh) 2023-09-28 2023-09-28 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法

Publications (1)

Publication Number Publication Date
CN117096323A true CN117096323A (zh) 2023-11-21

Family

ID=88773668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311268314.5A Pending CN117096323A (zh) 2023-09-28 2023-09-28 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法

Country Status (1)

Country Link
CN (1) CN117096323A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117430134A (zh) * 2023-12-21 2024-01-23 山东海化集团有限公司 一种锰铁基普鲁士蓝钠电正极材料的制备方法及由该方法制备的正极材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117430134A (zh) * 2023-12-21 2024-01-23 山东海化集团有限公司 一种锰铁基普鲁士蓝钠电正极材料的制备方法及由该方法制备的正极材料

Similar Documents

Publication Publication Date Title
CN106920964B (zh) 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN109659542B (zh) 一种核壳结构的高电压钴酸锂正极材料及其制备方法
CN107845796B (zh) 一种碳掺杂磷酸钒钠正极材料及其制备方法和应用
WO2021036791A1 (zh) 钠离子电池用正极材料、制备方法及其相关的钠离子电池、电池模块、电池包和装置
CN109390563B (zh) 改性磷酸铁锂正极材料及其制备方法、正极片、锂二次电池
CN116454261A (zh) 锂离子电池正极材料及其制备方法
US20230264975A1 (en) Doped nickel-rich ternary material and preparation method thereof
CN113479944A (zh) 一种改性高镍三元正极材料的制备方法
CN117096323A (zh) 一种锰铁镍基普鲁士蓝/石墨烯复合正极材料及其制法
CN114715957B (zh) 铌包覆镍钴锰三元前驱体及制备方法及应用
CN109950503B (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN115064670A (zh) 一种掺杂包覆改性的镍锰酸钠正极材料的制备方法
CN108878873A (zh) 磷酸铁锂正极材料改性表面结构及其制备方法和应用
CN116314731B (zh) 钠离子电池正极材料及其前驱体、制备方法和应用
CN117154046A (zh) 一种富钠的隧道型过渡金属氧化物正极材料及其制备方法和应用
CN117096336A (zh) 一种锰基层状氧化物正极材料及其制备方法、正极片和二次电池
CN116706056A (zh) 基于超小颗粒NaxFeyMz(SO4)3的无损快充正极材料及其制备方法与应用
CN116470021A (zh) 一种磷酸盐正极材料、制备方法及锂电池应用
CN106549147B (zh) 一种二维纳米材料固定的镍钴锰酸锂及其制备方法与应用
CN114864905A (zh) 石墨烯复合硅掺杂磷酸钒钠的复合材料及制备方法和应用
CN114906882A (zh) 一种铌基双金属氧化物负极材料的制备方法及其应用
CN114649526A (zh) 一种内高外低梯度掺杂的富锂锰基层状材料及其制备方法
CN110783544A (zh) 一种碳纳米管包覆h3po4改性富锂锰基正极材料及其制法
CN114944488B (zh) 一种包覆型正极材料的制备方法及其制品和应用
CN115132998B (zh) 一种表面结构重组的富锂锰基正极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination