CN117012842B - 二维超表面结构MoS2异质结偏振光电探测器及其制备方法 - Google Patents

二维超表面结构MoS2异质结偏振光电探测器及其制备方法 Download PDF

Info

Publication number
CN117012842B
CN117012842B CN202311263999.4A CN202311263999A CN117012842B CN 117012842 B CN117012842 B CN 117012842B CN 202311263999 A CN202311263999 A CN 202311263999A CN 117012842 B CN117012842 B CN 117012842B
Authority
CN
China
Prior art keywords
mos
film
substrate
pmma
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311263999.4A
Other languages
English (en)
Other versions
CN117012842A (zh
Inventor
李金华
王子恒
楚学影
石凯熙
翟英娇
徐铭泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202311263999.4A priority Critical patent/CN117012842B/zh
Publication of CN117012842A publication Critical patent/CN117012842A/zh
Application granted granted Critical
Publication of CN117012842B publication Critical patent/CN117012842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电探测领域,具体为一种二维超表面结构MoS2异质结偏振光电探测器及其制备方法。探测器采用CdSe/Bp/MoS2三元超表面异质结,通过将单层或少层的黑磷薄膜、MoS2薄膜、CdSe量子点薄膜复合,获得宏观尺度下偏振敏感光电响应器件,实现宽光谱范围内的高性能偏振光电探测。

Description

二维超表面结构MoS2异质结偏振光电探测器及其制备方法
技术领域
本发明涉及光电探测领域,具体为一种二维超表面结构MoS2异质结偏振光电探测器及其制备方法。
背景技术
光电探测器已广泛应用于光通信、光纤传感、光电成像、环境监测等军事和民用领域。偏振光电探测能够获取除目标辐射和反射之外的偏振多维信息,从而具有提高探测目标精度、提高目标识别率和穿云透雾等能力,在隐蔽目标和空中目标探测方面均发挥了重要作用。近年来,基于各向异性二维材料的偏振光电探测器得到了广泛的研究。一些二维材料由于低对称性的固有晶体结构和各向异性的形貌,表现出各方向明显不同的振动、光学、电子和电学特性。然而,对于理想电子或光电性能的电子器件,基于二维异质结的功能化器件的偏振光学特性仍然需要探索新的机制或结构。在此条件下,基于二维高性能异质结结构的超表面材料应运而生。在亚波长尺度内有效的控制电磁波相位、振幅和偏振的新型二维材料被称为超表面材料。其对电磁调控由体调控走向面调控,并不会对超表面材料结构独特的电磁特性造成影响,还大大降低了损耗和工艺制备难度,是进一步调控光电器件结构的理想平台。因此利用主动可控性材料复合超表面结构单元实现主动、高效的功能化器件就显得尤为重要。单层或少层MoS2薄膜为直接带隙半导体,禁带宽度可调,表面缺陷低,结晶质量高,稳定性好,其光电探测器件开关电流比高,在光电、电子器件领域具有重要的应用价值。但其较低的电子迁移率和面内各向同性结构限制了其在偏振光电探测领域的应用。
目前,基于二维超表面结构MoS2异质结能实现对可见光区域的高性能探测,但单一MoS2构建超表面结构器件无法实现偏振光电探测。二维MoS2薄膜的偏振特性研究主要集中在利用高压和改变介电环境,但无法有效的在器件中应用。现有策略是利用其他一维材料的形貌各向异性实现偏振敏感,工艺复杂。
发明内容
为了解决现有技术的不足,本发明提供一种基于二维超表面结构MoS2异质结偏振光电探测器及其制备方法,解决了目前二维超表面结构MoS2异质光电探测技术中器件无法对于偏振信息响应,且制备工艺复杂,响应波段窄的问题。
本发明采用如下技术内容:一种二维超表面结构MoS2异质结偏振光电探测器,包括衬底,衬底上设置有电极,还包括复合于衬底表面的黑磷薄膜,复合于黑磷薄膜表面的MoS2薄膜,复合于MoS2薄膜表面的CdSe量子点薄膜。
进一步地,黑磷薄膜、MoS2薄膜、CdSe量子点薄膜均为单层或少层。
二维超表面结构MoS2异质结偏振光电探测器的制备方法,包括:
S1:制备MoS2薄膜和黑磷薄膜;
S2:MoS2薄膜上滴加少量聚甲基丙烯酸甲酯,英文polymethylmethacrylate,以下简称PMMA,将PMMA甩均匀后,把样品烘干;
S3:样品冷却至室温后,浸入30%的NaOH溶液里,浸泡后PMMA/MoS2和SiO2/Si衬底分离,SiO2/Si衬底沉在烧杯杯底,PMMA/MoS2漂于NaOH溶液表面;
S4:使用干净的载玻片将PMMA/MoS2捞起,并浸入超纯水中漂洗5次以充分清理残余的NaOH,然后用带有Bp材料的衬底把PMMA/MoS2捞起烘干;
S5:PMMA/MoS2/Bp冷却至室温后,浸入丙酮溶液12小时以充分溶解PMMA。最后在N2气氛下将MoS2/Bp用200℃退火2小时;
S6:制备CdSe量子点薄膜:
硒化镉溶液滴加在亚相表面,此处的亚相为离子水,滑障挤压从而调节表面压力,再操控提拉臂将薄膜转移至衬底表面,将带有二硫化钼的衬底放置在提拉臂上,等待挥发后,通过滑障的挤压移动来增大表面压力,将提拉臂水平或垂直转移薄膜,在提拉臂完成转移薄膜后,取下静置,得到CdSe量子点薄膜;
S7:将带有MoS2薄膜和黑磷薄膜的SiO2/Si衬底置于提拉臂上,将两个滑障取出,使用随机器标配的软毛刷或者脱脂棉蘸无水乙醇沿一个方向清洗,之后再用去离子水清洗,清洗完成后先将槽体放回仪器上,挂上铂片,并将去离子水放于装置内,而后压缩滑障从而挤压液面到一定程度,用抽水泵吸去亚相表面杂质,打开滑障,利用微量移液器,滴加浓度为1mg/ml-5mg/ml含硒化镉材料的溶液到清洗好的L-B拉膜仪的亚相表面,挥发5-10min后,以20mm/min-30mm/min的速度使滑障移动直至液面达到崩溃压后停止,随后将操控提拉臂以5mm/min-10mm/min的速度进行水平或垂直提拉,最终形成CdSe/Bp/MoS2三元超表面异质结;
S8:在S7中形成的三元异质结两侧分别沉积电极,本发明中,电极为金,将衬底正面朝上放入HDMS预处理系统中,设定温度为110℃,处理时间10min,将制备得到的CdSe/Bp/MoS2三元超表面异质结放置于匀胶机上进行涂胶,将吸取的AZ5214光刻胶均匀的滴在衬底上,匀胶机转速为4000z/s旋涂30s,所涂的AZ5214光刻胶的厚度在1.6μm~1.7μm,匀胶后无光条件下在100℃温度下,在恒温对流烘箱中烘烤90s,随后将烘胶完毕的衬底放入光刻机中光刻电极,将光刻好的电极图案使用电子束蒸镀,蒸镀70nm~100nm的Au层;随后丙酮浸泡10min,去掉光刻胶,使用去离子水对衬底进行冲刷,随后用氮气枪吹干表面后,获得CdSe/Bp/MoS2三元异质结偏振光电探测器,随后对器件进行退火处理,退火温度为150℃,退火时间为20min,以提高材料和金属电极之间的接触质量。
进一步地,步骤S2中,MoS2薄膜和黑磷薄膜采用机械剥离法制备:
取出二硫化钼体材料,通过3M胶带粘取材料多次对折剥离至多层,然后采用粘性较弱的蓝膜从3M胶带粘取多层材料,再多次对折获得单层或少层二硫化钼二维材料,将粘有二硫化钼二维材料的蓝膜粘贴在SiO2/Si衬底上放于温度为60℃的热板上加热20min,加热完成后等待其冷却后撕下蓝膜。
进一步地,步骤S2中,聚甲基丙烯酸甲酯采用均胶机以4000转/min将PMMA甩均匀后,把样品放在烘干台上,80℃烘干5min后150℃烘干15min。
进一步地,步骤S4中,用带有Bp材料的衬底把PMMA/MoS2捞起放在烘干台上,80℃烘干5min后150℃烘干30min。
本发明具备如下有益效果:本发明提出三元异质结,利用黑磷二维材料、二维MoS2、CdSe量子点薄膜构建超表面结构异质结以获得宏观尺度下偏振敏感光电响应器件。此三元异质结利用硒化镉量子点提高异质结光吸收,利用黑磷二维材料的结构各向异性实现偏振敏感,最终获得宽光谱范围内的高性能偏振光电探测。
附图说明
图1为本发明结构示意图;
图2为本发明黑磷薄膜与MoS2薄膜复合方法流程示意图;
图3为本发明CdSe量子点薄膜与黑磷薄膜MoS2薄膜复合方法流程示意图。
图中,1-衬底,2-黑磷薄膜,3-MoS2薄膜,4-CdSe量子点薄膜,5-电极,6-滑障,7-提拉臂。
具体实施方式
如图1所示,二维超表面结构MoS2异质结偏振光电探测器,包括衬底1,复合于衬底1表面的黑磷薄膜2,复合于黑磷薄膜2表面的MoS2薄膜3,复合于MoS2薄膜3表面的CdSe量子点薄膜4,沉积于黑磷薄膜2、MoS2薄膜3两端的电极5。其中,衬底1为表面设置有SiO2层的Si片,本发明对衬底1的规格没有特殊限制,为偏振光电探测器中衬底的常规规格即可,在本实施例中,衬底规格为:长度和宽度均为1cm,厚度为0.5mm,黑磷薄膜2、MoS2薄膜3、CdSe量子点薄膜4为单层或少层,少层为五层以内。电极5与黑磷薄膜2、MoS2薄膜3两侧接触方式为部分覆盖,即电极的左右两侧,有一部分覆盖在黑磷薄膜2、MoS2薄膜3上、另一部分覆盖在衬底1上。电极5为金,金厚度为70nm~100nm。
黑磷为低对称性晶体结构材料,具有固有的各向异性特性,能够对光电探测器提供很高的偏振灵敏度。例如黑磷作为带隙可调的光学各向异性二维材料,具有高载流子迁移率,较大的开/关比等优点。通过超表面结构设计,与二维MoS2异质结构建可借助光学各向异性二维材料的低对称性结构使异质结对入射光的偏振态敏感,实现偏振敏感的光电探测。硒化镉量子点是直接跃迁的Ⅱ-Ⅵ族半导体,能够作为异质结器件的量子点敏化剂层,可以将多余的光生电子进行有效的转移。将硒化镉量子点薄膜复合基于二维超表面结构MoS2异质结形成三元异质结,可进一步加速光生载流子的分离,实现偏振敏感的宽光谱高性能光电探测。此三元异质结合二维材料的新颖材料特性,在探索开发具有新异功能的纳米光子学器件方面的应用具有重要意义。
二维超表面结构MoS2异质结偏振光电探测器的制备方法,包括:
S1:机械剥离法制备MoS2薄膜和黑磷薄膜:
取出二硫化钼体材料,通过3M胶带粘取材料多次对折剥离至多层。然后采用粘性较弱的蓝膜从3M胶带粘取多层材料,再多次对折获得单层或少层二硫化钼二维材料。将粘有二硫化钼二维材料的蓝膜粘贴在SiO2/Si衬底上放于温度为60℃的热板上加热20min,加热完成后等待其冷却后撕下蓝膜。
黑磷薄膜采用同样方式制备。
S2:MoS2薄膜上滴加少量聚甲基丙烯酸甲酯,英文polymethylmethacrylate,以下简称PMMA,使用均胶机以4000转/min将PMMA甩均匀后,把样品放在烘干台上,80℃烘干5min后150℃烘干15min,从而加强MoS2和PMMA之间的结合力。
S3:样品冷却至室温后,浸入30%的NaOH溶液里,浸泡后PMMA/MoS2和SiO2/Si衬底分离,SiO2/Si衬底沉在烧杯杯底,PMMA/MoS2漂于NaOH溶液表面。
S4:使用干净的载玻片轻轻地将PMMA/MoS2捞起,并浸入超纯水中漂洗5次以充分清理残余的NaOH。然后用带有Bp材料的衬底把PMMA/MoS2捞起放在烘干台上,80℃烘干5min后150℃烘干30min,从而将水分蒸发并将可能出现的褶皱去除。
S5:PMMA/MoS2/Bp冷却至室温后,浸入丙酮溶液12小时以充分溶解PMMA。最后在N2气氛下将MoS2/Bp用200℃退火2小时以加强MoS2和Bp之间的结合力。
S2-S5参见图2,通过步骤S2-S5,形成了MoS2/Bp超表面异质结。
S6:L-B薄膜技术制备CdSe量子点薄膜:
硒化镉溶液滴加在亚相表面,此处的亚相为离子水,滑障6挤压从而调节表面压力,再操控提拉臂7将薄膜转移至衬底表面。其中,CdSe量子点薄膜滴加的容量优选为70~100μl。将带有二硫化钼的衬底放置在提拉臂7上,等待挥发后,通过滑障6的挤压移动来增大表面压力。将提拉臂7以适合的速度进行水平或垂直转移薄膜。硒化镉溶液的浓度优选为1mg/ml~5mg/ml,挥发时间优选为5~10min。滑障6移动速度优选为20mm/min~30mm/min。提拉臂7速度优选为5mm/min~10mm/min。在提拉臂7完成转移薄膜后,取下静置,得到CdSe量子点薄膜。本发明中,可通过改变提拉次数改变CdSe量子点薄膜的层数,从而调整光电探测器整体的光吸收能力,进而达到性能的调整。
S7:将带有MoS2薄膜和黑磷薄膜的SiO2/Si衬底置于提拉臂7上,将两个滑障6取出,使用随机器标配的软毛刷或者脱脂棉蘸无水乙醇沿一个方向清洗,之后再用去离子水清洗,清洗完成后先将槽体放回仪器上,挂上铂片,并将去离子水放于装置内,而后压缩滑障6从而挤压液面到一定程度,用抽水泵吸去亚相表面杂质,打开滑障6。利用微量移液器,滴加70μl浓度为1mg/ml-5mg/ml含硒化镉材料的溶液到清洗好的L-B拉膜仪的亚相表面,挥发5-10min后,以20mm/min-30mm/min的速度使滑障6移动直至液面达到崩溃压后停止,随后将操控提拉臂7以5mm/min-10mm/min的速度进行水平或垂直提拉,最终形成CdSe/Bp/MoS2三元超表面异质结。
S8:在S7中形成的三元超表面异质结构两侧分别沉积电极,本发明中,电极为金。将衬底正面朝上放入HDMS预处理系统中,设定温度为110℃,处理时间10min。将制备得到的CdSe/Bp/MoS2三元异质结放置于匀胶机上进行涂胶,将吸取的AZ5214光刻胶均匀的滴在衬底上,匀胶机转速为4000z/s旋涂30s。所涂的AZ5214光刻胶的厚度在1.6μm~1.7μm,匀胶后无光条件下在100℃温度下,在恒温对流烘箱中烘烤90s。随后将烘胶完毕的衬底放入光刻机中光刻电极,将光刻好的电极图案使用电子束蒸镀,蒸镀70nm~100nm的Au层;随后丙酮浸泡10min,去掉光刻胶,使用去离子水对衬底进行冲刷,随后用氮气枪吹干表面后,获得CdSe/Bp/MoS2三元异质结偏振光电探测器。随后对器件进行退火处理,退火温度为150℃,退火时间为20min,以提高材料和金属电极之间的接触质量。
经过步骤S1-S8,最终完成二维超表面结构MoS2异质结偏振光电探测器的制备。

Claims (6)

1.一种二维超表面结构MoS2异质结偏振光电探测器,包括衬底(1),所述衬底(1)上设置有电极(5),其特征是:还包括复合于衬底(1)表面的黑磷薄膜(2),复合于黑磷薄膜(2)表面的MoS2薄膜(3),复合于MoS2薄膜(3)表面的CdSe量子点薄膜(4);
其中,MoS2薄膜(3)通过如下方法复合于黑磷薄膜(2)表面:
MoS2薄膜上滴加少量聚甲基丙烯酸甲酯,英文polymethylmethacrylate,以下简称PMMA,将PMMA甩均匀后,把样品烘干;样品冷却至室温后,浸入30%的NaOH溶液里,浸泡后PMMA/MoS2和SiO2/Si衬底分离,SiO2/Si衬底沉在烧杯杯底,PMMA/MoS2漂于NaOH溶液表面;使用干净的载玻片将PMMA/MoS2捞起,并浸入超纯水中漂洗5次以充分清理残余的NaOH,然后用带有Bp材料的衬底把PMMA/MoS2捞起烘干;PMMA/MoS2/Bp冷却至室温后,浸入丙酮溶液12小时以充分溶解PMMA;
电极(5)在黑磷薄膜(2)、MoS2薄膜(3)两侧部分覆盖,即一部分覆盖在黑磷薄膜(2)、MoS2薄膜(3)上、另一部分覆盖在衬底(1)上。
2.根据权利要求1所述的二维超表面结构MoS2异质结偏振光电探测器,其特征是:所述黑磷薄膜(2)、MoS2薄膜(3)、CdSe量子点薄膜(4)均为单层或少层。
3.二维超表面结构MoS2异质结偏振光电探测器的制备方法,其特征是:包含如下步骤:
S1:制备MoS2薄膜和黑磷薄膜;
S2:MoS2薄膜上滴加少量聚甲基丙烯酸甲酯,英文polymethylmethacrylate,以下简称PMMA,将PMMA甩均匀后,把样品烘干;
S3:样品冷却至室温后,浸入30%的NaOH溶液里,浸泡后PMMA/MoS2和SiO2/Si衬底分离,SiO2/Si衬底沉在烧杯杯底,PMMA/MoS2漂于NaOH溶液表面;
S4:使用干净的载玻片将PMMA/MoS2捞起,并浸入超纯水中漂洗5次以充分清理残余的NaOH,然后用带有Bp材料的衬底把PMMA/MoS2捞起烘干;
S5:PMMA/MoS2/Bp冷却至室温后,浸入丙酮溶液12小时以充分溶解PMMA;
最后在N2气氛下将MoS2/Bp用200℃退火2小时;
S6:制备CdSe量子点薄膜:
硒化镉溶液滴加在亚相表面,此处的亚相为离子水,滑障挤压从而调节表面压力,再操控提拉臂将薄膜转移至衬底表面,将带有二硫化钼的衬底放置在提拉臂上,等待挥发后,通过滑障的挤压移动来增大表面压力,将提拉臂水平或垂直转移薄膜,在提拉臂完成转移薄膜后,取下静置,得到CdSe量子点薄膜;
S7:将带有MoS2薄膜和黑磷薄膜的SiO2/Si衬底置于提拉臂上,将两个滑障取出,使用随机器标配的软毛刷或者脱脂棉蘸无水乙醇沿一个方向清洗,之后再用去离子水清洗,清洗完成后先将槽体放回仪器上,挂上铂片,并将去离子水放于装置内,而后压缩滑障从而挤压液面到一定程度,用抽水泵吸去亚相表面杂质,打开滑障,利用微量移液器,滴加浓度为1mg/ml-5mg/ml含硒化镉材料的溶液到清洗好的L-B拉膜仪的亚相表面,挥发5-10min后,以20mm/min-30mm/min的速度使滑障移动直至液面达到崩溃压后停止,随后将操控提拉臂以5mm/min-10mm/min的速度进行水平或垂直提拉,最终形成CdSe/Bp/MoS2三元超表面异质结;
S8:在S7中形成的三元异质结两侧分别沉积电极,本发明中,电极为金,将衬底正面朝上放入HDMS预处理系统中,设定温度为110℃,处理时间10min,将制备得到的CdSe/Bp/MoS2三元超表面异质结放置于匀胶机上进行涂胶,将吸取的AZ5214光刻胶均匀的滴在衬底上,匀胶机转速为4000z/s旋涂30s,所涂的AZ5214光刻胶的厚度在1.6μm~1.7μm,匀胶后无光条件下在100℃温度下,在恒温对流烘箱中烘烤90s,随后将烘胶完毕的衬底放入光刻机中光刻电极,将光刻好的电极图案使用电子束蒸镀,蒸镀70nm~100nm的Au层;随后丙酮浸泡10min,去掉光刻胶,使用去离子水对衬底进行冲刷,随后用氮气枪吹干表面后,获得CdSe/Bp/MoS2三元异质结偏振光电探测器,随后对器件进行退火处理,退火温度为150℃,退火时间为20min,以提高材料和金属电极之间的接触质量。
4.根据权利要求3所述的二维超表面结构MoS2异质结偏振光电探测器的制备方法,其特征是:所述步骤S2中,MoS2薄膜和黑磷薄膜采用机械剥离法制备:
取出二硫化钼体材料,通过3M胶带粘取材料多次对折剥离至多层,然后采用粘性较弱的蓝膜从3M胶带粘取多层材料,再多次对折获得单层或少层二硫化钼二维材料,将粘有二硫化钼二维材料的蓝膜粘贴在SiO2/Si衬底上放于温度为60℃的热板上加热20min,加热完成后等待其冷却后撕下蓝膜。
5.根据权利要求3所述的二维超表面结构MoS2异质结偏振光电探测器的制备方法,其特征是:所述步骤S2中,聚甲基丙烯酸甲酯采用均胶机以4000转/min将PMMA甩均匀后,把样品放在烘干台上,80℃烘干5min后150℃烘干15min。
6.根据权利要求3所述的二维超表面结构MoS2异质结偏振光电探测器的制备方法,其特征是:所述步骤S4中,用带有Bp材料的衬底把PMMA/MoS2捞起放在烘干台上,80℃烘干5min后150℃烘干30min。
CN202311263999.4A 2023-09-28 2023-09-28 二维超表面结构MoS2异质结偏振光电探测器及其制备方法 Active CN117012842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311263999.4A CN117012842B (zh) 2023-09-28 2023-09-28 二维超表面结构MoS2异质结偏振光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311263999.4A CN117012842B (zh) 2023-09-28 2023-09-28 二维超表面结构MoS2异质结偏振光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN117012842A CN117012842A (zh) 2023-11-07
CN117012842B true CN117012842B (zh) 2023-12-26

Family

ID=88574677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311263999.4A Active CN117012842B (zh) 2023-09-28 2023-09-28 二维超表面结构MoS2异质结偏振光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN117012842B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
CN105470320A (zh) * 2015-12-07 2016-04-06 浙江大学 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN105679876A (zh) * 2016-03-18 2016-06-15 电子科技大学 基于黑磷/二硫化钼异质结的光探测器
CN207977318U (zh) * 2018-03-05 2018-10-16 中国科学技术大学 一种多功能器件
CN116314424A (zh) * 2022-12-21 2023-06-23 深圳大学 多波段紫外光电探测器及其制备方法
CN116344662A (zh) * 2023-05-25 2023-06-27 长春理工大学 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
CN105470320A (zh) * 2015-12-07 2016-04-06 浙江大学 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN105679876A (zh) * 2016-03-18 2016-06-15 电子科技大学 基于黑磷/二硫化钼异质结的光探测器
CN207977318U (zh) * 2018-03-05 2018-10-16 中国科学技术大学 一种多功能器件
CN116314424A (zh) * 2022-12-21 2023-06-23 深圳大学 多波段紫外光电探测器及其制备方法
CN116344662A (zh) * 2023-05-25 2023-06-27 长春理工大学 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Growth of CdSe/MoS2 vertical heterostructures for fast visiblewavelength photodetectors;Yide Yuan等;《Journal of Alloys and Compounds》;第815卷;15309(1-6) *

Also Published As

Publication number Publication date
CN117012842A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN107424682A (zh) 一种具有分形结构的多孔金属薄膜透明导电电极的制备方法
CN109300774B (zh) 一种微米级含有金属电极的石墨烯层的加工和转移的方法
CN107103944A (zh) 一种金属纳米线的定向排布方法
CN110676384A (zh) 一种氮化硼封装的二维有机-无机异质结及其制备方法
CN111129198A (zh) 一种石墨烯/硫化铅红外探测器及其制备方法
CN117012842B (zh) 二维超表面结构MoS2异质结偏振光电探测器及其制备方法
CN111916524B (zh) 一种仿视网膜成像的硫化钼光探测器及其制备方法
WO2020199299A1 (zh) 一种在非硅基底上制造压电薄膜谐振器的方法
CN114551730A (zh) 一种大面积钙钛矿微晶薄膜的制备方法及x射线探测器
CN116344662B (zh) 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法
CN112713240A (zh) 一种基于二维材料的反对称磁电阻器件制备方法
CN112614946A (zh) 一种具有金字塔结构的柔性钙钛矿光电探测器及其制备
CN111129199A (zh) 一种石墨烯/硫化铅/钙钛矿光电探测器及其制备方法
CN113031151B (zh) 一种硫系狭缝光波导结构及其制备方法
CN114583003A (zh) 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法
CN102637746A (zh) 一种高介电栅介质场效应透明薄膜晶体管及其制备方法
CN112490362A (zh) 一种基于图案化衬底的有机场效应晶体管制备方法
WO2019085595A1 (zh) 一种近红外光电探测器及其制备方法
CN210467888U (zh) 一种氮化硼封装的二维有机-无机异质结
CN117440694A (zh) 一种顶接触锗基二维钙钛矿晶体管及其制备方法
CN114914315B (zh) 一种基于深能级缺陷态的CdTe宽光谱探测器及其工作方法
CN115472744B (zh) 具有优异生物相容性的柔性衬底及其制备方法和应用
CN114695124B (zh) 一种独立式离子胶薄膜门控石墨烯场效应晶体管制备方法
CN115295629A (zh) 一种基于修饰层的氧化物薄膜晶体管及其制备方法
CN116744754A (zh) 钙钛矿聚合物纤维膜光电器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant