WO2019085595A1 - 一种近红外光电探测器及其制备方法 - Google Patents

一种近红外光电探测器及其制备方法 Download PDF

Info

Publication number
WO2019085595A1
WO2019085595A1 PCT/CN2018/101438 CN2018101438W WO2019085595A1 WO 2019085595 A1 WO2019085595 A1 WO 2019085595A1 CN 2018101438 W CN2018101438 W CN 2018101438W WO 2019085595 A1 WO2019085595 A1 WO 2019085595A1
Authority
WO
WIPO (PCT)
Prior art keywords
inse
layer
infrared photodetector
source
drain
Prior art date
Application number
PCT/CN2018/101438
Other languages
English (en)
French (fr)
Inventor
张晗
王慧德
郭志男
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711070851.3A external-priority patent/CN107863402A/zh
Priority claimed from CN201721459164.6U external-priority patent/CN207611774U/zh
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019085595A1 publication Critical patent/WO2019085595A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of photodetectors, in particular to a near-infrared photodetector and a preparation method thereof.
  • a photodetector is a photodetector fabricated using the photoconductive effect of a semiconductor material.
  • the so-called photoconductive effect refers to a physical phenomenon in which the conductivity of an irradiated material is changed by radiation.
  • Photodetectors are used in a wide range of applications, including military and national economy, such as ray measurement and detection, industrial automation, and photometric measurement in the visible and near-infrared bands. At present, the development of high-efficiency photodetectors using new two-dimensional materials and semiconductors in scientific research and industrial production is rapidly developing.
  • III-VI semiconductor materials have enormous potential applications in the fields of electronics and optoelectronics due to their special electrical and optical properties.
  • InSe is an important layered semiconductor with a photoelectric detection range from visible light to near-infrared and has a high photoelectric response, but the currently reported ⁇ -InSe is easily oxidized under environmental conditions. Greatly limited its application.
  • the present invention provides a near-infrared photodetector and a method of fabricating the same.
  • the near-infrared photodetector provided by the invention has high near-infrared light responsivity and good environmental stability.
  • a first aspect of the present invention provides a near-infrared photodetector comprising: a substrate, an isolation layer and a light absorbing layer sequentially disposed on a surface of the substrate, and opposite ends of the light absorbing layer and respectively associated with the light
  • a source and a drain contacted by the absorption layer, and a channel structure formed between the source and the drain exposes a portion of the light absorbing layer, and a material of the light absorbing layer includes a ⁇ -InSe nanosheet.
  • the light absorbing layer has a thickness of 2-20 nm.
  • the light absorbing layer has a thickness of 5-10 nm.
  • the number of layers of the ⁇ -InSe nanoflakes is less than or equal to 25 layers.
  • the number of layers of the ⁇ -InSe nanoflakes is 2-25 layers.
  • the number of layers of the ⁇ -InSe nanoflakes is 2-10 layers.
  • the length of the light absorbing layer exposed between the source and the drain is 1-10 ⁇ m along a direction perpendicular to the direction in which the source and the drain extend, along parallel to the source and the
  • the width in the direction in which the drain extends is 1 to 15 ⁇ m.
  • the light absorbing layer exposed between the source and the drain has a length of 3 ⁇ m and a width of 10 ⁇ m.
  • the material of the substrate is silicon, and the substrate has a thickness of 300-500 ⁇ m and a resistivity of 1-10 ⁇ cm.
  • the material of the isolation layer is silicon dioxide, and the thickness of the isolation layer is 200-500 nm.
  • the light absorbing layer is further provided with a graphene layer, a nano metal layer or a quantum dot layer.
  • the material of the source and the drain is at least one of gold, titanium, aluminum, chromium, tungsten and nickel.
  • the source and the drain are both composite electrodes formed by laminating a chromium layer and a gold layer.
  • the chromium layer is in contact with the light absorbing layer, the chromium layer has a thickness of 5-10 nm, and the gold layer has a thickness of 20-80 nm.
  • the detection wavelength of the near-infrared photodetector is 780-980 nm.
  • the near-infrared photodetector provided by the first aspect of the invention has good environmental stability while having high near-infrared light responsivity. This indicates that the detector is capable of consistently stable operation in a non-cryogenic, non-vacuum air environment.
  • the process of device package protection that must be performed in order to prevent the oxidation of two-dimensional materials can be omitted, and the actual production process of the device greatly simplifies the processing process, and the detector structure obtained at the same time is simple.
  • a second aspect of the present invention provides a method of fabricating a near-infrared photodetector, comprising the steps of:
  • a photoresist is spin-coated over the ⁇ -InSe nanoflakes and over the isolation layer not covered by the ⁇ -InSe nanoflakes, and after exposure and development, an electrode pattern is formed;
  • the electrode material is deposited, and then the photoresist is stripped using an organic solvent to form a source and a drain.
  • the ⁇ -InSe single crystal block is obtained by the following method:
  • the In source and the Se source were mixed at a molar ratio of 1:1, and then the ⁇ -InSe single crystal block was obtained by a temperature gradient in the range of 400 to 800 °C.
  • the operation of the spin-on photoresist specifically includes:
  • the drying temperature is 50-180 degrees Celsius.
  • the electrode pattern is two through holes penetrating the photoresist and exposing a part of the ⁇ -InSe sheet.
  • the operation of depositing the electrode material specifically includes: depositing a chromium layer having a thickness of 5-10 nm above the through hole, and then depositing a gold layer having a thickness of 20-80 nm to form a composite electrode.
  • the method for preparing the photodetector provided by the embodiment of the invention is simple and easy to operate.
  • the obtained photodetector has good environmental stability, and the photodetector has high optical responsivity and is very practical.
  • the near-infrared photodetector provided by the embodiment of the invention adopts ⁇ -InSe nanosheet as a semiconductor material, has good environmental stability, is not easily oxidized, and solves the defects of the existing semiconductor material ⁇ -InSe.
  • the obtained near-infrared photodetector has good environmental stability while having high near-infrared light responsivity.
  • the preparation process of the near-infrared photodetector provided by the embodiment of the invention is simple and easy to operate.
  • FIG. 1 is a schematic structural diagram of a near-infrared photodetector according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for preparing a near-infrared photodetector according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for preparing a near-infrared photodetector according to an embodiment of the present invention
  • FIG. 5 is a photodetection test result of a near-infrared photodetector provided by an embodiment of the present invention.
  • a first aspect of an embodiment of the present invention provides a near-infrared photodetector 10, including: a substrate 1, an isolation layer 2 disposed on a surface of the substrate, and a light absorption disposed on a surface of the isolation layer 2. a layer 3, a source 4 and a drain 5 disposed at opposite ends of the light absorbing layer 3 and respectively contacting the light absorbing layer 3, and a groove formed between the source 4 and the drain 5
  • the track structure exposes a portion of the light absorbing layer 3, and the material of the light absorbing layer 3 includes ⁇ -InSe nanoflakes.
  • the number of layers of the ⁇ -InSe nanosheet is less than or equal to 25 layers.
  • the number of layers of the ⁇ -InSe nanoflakes is 2-25 layers. Further optionally, the number of layers of the ⁇ -InSe nanoflakes is 2-10 layers.
  • the light absorbing layer 3 has a thickness of 2-20 nm.
  • the light absorbing layer 3 has a thickness of 5-10 nm.
  • a graphene layer, a nano metal layer or a quantum dot layer may be disposed on the light absorbing layer 3 to form a heterojunction to effectively improve the performance of the photodetector.
  • the nano metal may be selected from the group consisting of Au, Ag or Al, and the like.
  • an array of metal nanodots is disposed on the surface of the light absorbing layer.
  • the quantum dots comprise PbS or SnSe or the like.
  • the quantum dots are spin-coated to form a heterojunction on the surface of the light absorbing layer.
  • the ⁇ -InSe nanoflakes are obtained by a method of tearing tape from a ⁇ -InSe single crystal block.
  • the material of the substrate 1 is silicon, and the substrate 1 has a thickness of 300-500 ⁇ m and a resistivity of 1-10 ⁇ cm.
  • the substrate 1 is a p-type or n-type doped silicon wafer.
  • the material of the isolation layer 2 is silicon dioxide, and the thickness of the isolation layer 2 is 200-500 nm.
  • the source 4 and the drain 5 are made of at least one of gold, titanium, aluminum, chromium, tungsten, and nickel.
  • the source 4 and the drain 5 are composite electrodes formed by laminating a chrome layer and a gold layer, wherein the chrome layer is in contact with the light absorbing layer, and the chrome layer has a thickness of 5- At 10 nm, the gold layer has a thickness of 20-80 nm.
  • the source 4 and the drain 5 are connected to an external power source.
  • the source 4 and the drain 5 may be in contact with the light absorbing layer 3, and the area of the contact is not particularly limited.
  • a portion of the source 4 and the drain 5 are in partial contact with the light absorbing layer 3 and another portion is in contact with the isolation layer 2.
  • a length L of the light absorbing layer exposed between the source and the drain is 1-10 ⁇ m along a direction perpendicular to a direction in which the source and the drain extend.
  • a width W in a direction parallel to the source and the drain extension is 1-15 ⁇ m.
  • the resulting spot detector performs well under the length and width conditions.
  • the light absorbing layer exposed between the source and the drain has a length L of 3 ⁇ m and a width W of 10 ⁇ m.
  • the photodetector can realize effective detection of near-infrared light.
  • the photodetector can detect near-infrared light with a wavelength of 780-980 nm.
  • the near-infrared photodetector provided by the first aspect of the present invention uses ⁇ -InSe nano-flakes as a semiconductor material, has good environmental stability, is not easily oxidized, and solves the defects of the existing semiconductor material ⁇ -InSe.
  • the obtained photodetector has good environmental stability while having high near-infrared light responsivity. This indicates that the detector is capable of consistently stable operation in a non-cryogenic, non-vacuum air environment.
  • the process of device package protection that must be performed in order to prevent the oxidation of two-dimensional materials can be omitted, and the actual production process of the device greatly simplifies the processing process, and the detector structure obtained at the same time is simple.
  • an embodiment of the present invention further provides a method for preparing a near-infrared photodetector, including the following steps:
  • the photoresist layer 7 is spin-coated over the ⁇ -InSe nanosheet 31 and the spacer layer 2 not covered by the ⁇ -InSe nanosheet 31, after exposure and development, forming an electrode pattern 8;
  • a p-type or n-type doped silicon wafer having a silicon dioxide layer is provided, and the silicon wafer comprises two layers, respectively a silicon dioxide layer and a silicon layer, and the silicon layer
  • the thickness is 300-500 ⁇ m
  • the resistivity is 1-10 ⁇ cm
  • the thickness of the silicon dioxide layer is 200-500 nm.
  • the silicon layer serves as the substrate 1
  • the silicon dioxide layer serves as the isolation layer 2.
  • a commercial standard 4-inch p-type or n-type doped single-spray silicon oxide wafer was cut into a size of 1 ⁇ 1 cm 2 using a silicon wafer cutter to obtain a silicon wafer to be used.
  • the step S01 further includes an operation of cleaning the silicon wafer, and the cleaning is performed according to the following method:
  • the silicon wafer to be used is sequentially ultrasonicated by acetone solution, isopropanol (or ethanol) for 3-5 minutes, ultrasonicated with deionized water for 3-8 min, and quickly dried with high purity nitrogen for use.
  • the tape is a Scotch tape.
  • the organic film 6 comprises a polydimethylsiloxane (PDMS) film.
  • PDMS polydimethylsiloxane
  • step S02 the ⁇ -InSe single crystal block is obtained according to the following method:
  • the In source and the Se source were mixed at a molar ratio of 1:1, and then the ⁇ -InSe single crystal block was obtained by a temperature gradient in the range of 400 to 800 °C.
  • step S03 a layer of photoresist 7 (PMMA) is applied over the ⁇ -InSe sheet 31 and the spacer layer 2 not covered by the ⁇ -InSe sheet 31 (model 950) , A4-A10), the speed is 2000-4000 rev / min, and baked on a hot plate for 1-5 minutes, the drying temperature is 50-180 degrees Celsius.
  • the photoresist-coated sample was subjected to electron beam exposure, and a specific electrode pattern 8 was obtained by a developing process.
  • the electrode pattern 8 is two through holes that penetrate the photoresist and expose a portion of the ⁇ -InSe sheet.
  • an electrode material is deposited over the via hole, and the electrode material fills the via hole and contacts the ⁇ -InSe wafer to form a source electrode 4 and a drain electrode 5.
  • the deposition is performed by a method such as thermal evaporation or magnetron sputtering.
  • a chromium layer 9 having a thickness of 5-10 nm is first deposited, and then a gold layer 10 having a thickness of 20-80 nm is deposited to form a composite electrode.
  • the sample of the evaporated chromium/gold electrode is placed in an organic solvent such as acetone to be used for stripping the photoresist, and placed on a hot plate for heating for 10-30 minutes, wherein the temperature of the heating plate is set to 30-50. Celsius, finally take the sample and quickly dry it with high purity nitrogen.
  • an organic solvent such as acetone
  • the preparation method of the near-infrared photodetector provided by the embodiment of the invention is simple and easy to operate.
  • the obtained film has good environmental stability, and the photodetector has high optical responsivity and is very practical.
  • a near-infrared photodetector comprising a silicon substrate, a silicon dioxide isolation layer and a ⁇ -InSe nanosheet laminated in sequence, a source disposed at opposite ends of the ⁇ -InSe nanosheet and respectively contacting the ⁇ -InSe nanosheet
  • the drain and drain, the channel structure formed between the source and the drain exposes a portion of the ⁇ -InSe nanoflake.
  • the thickness of the silicon substrate is 300 ⁇ m
  • the thickness of the silicon dioxide isolation layer is 300 nm
  • the thickness of the ⁇ -InSe nanosheet is 10 nm
  • the composite electrode formed by laminating a 5 nm thick chromium layer and a 40 nm thick gold layer, respectively. .
  • a method for preparing a near-infrared photodetector includes the following steps:
  • a near-infrared photodetector comprising a silicon substrate, a silicon dioxide isolation layer and a ⁇ -InSe nanosheet laminated in sequence, a source disposed at opposite ends of the ⁇ -InSe nanosheet and respectively contacting the ⁇ -InSe nanosheet
  • the drain and drain, the channel structure formed between the source and the drain exposes a portion of the ⁇ -InSe nanoflake.
  • the thickness of the silicon substrate is 500 ⁇ m
  • the thickness of the silicon dioxide isolation layer is 500 nm
  • the thickness of the ⁇ -InSe nanoflakes is 5 nm
  • the composite electrode formed by laminating a 10 nm thick chromium layer and a 80 nm thick gold layer, respectively. .
  • a method for preparing a near-infrared photodetector includes the following steps:
  • a near-infrared photodetector comprising a silicon substrate, a silicon dioxide isolation layer and a ⁇ -InSe nanosheet laminated in sequence, a source disposed at opposite ends of the ⁇ -InSe nanosheet and respectively contacting the ⁇ -InSe nanosheet
  • the drain and drain, the channel structure formed between the source and the drain exposes a portion of the ⁇ -InSe nanoflake.
  • the thickness of the silicon substrate is 400 ⁇ m
  • the thickness of the silicon dioxide isolation layer is 200 nm
  • the thickness of the ⁇ -InSe nanoflakes is 2 nm
  • a method for preparing a near-infrared photodetector includes the following steps:
  • the near-infrared photodetector prepared in Example 1 was tested for electrical stability, and the test method included the following steps:
  • Example 1 The near-infrared photodetector fabricated in Example 1 was taken, and a silicon dioxide layer was cut at one corner of the silicon wafer using a silicon wafer cutter.
  • the gate probe selects the voltage scan mode, the scan range is -60V-60V, the drain voltage is set to 1V, and the source voltage is 0V.
  • the near-infrared photodetector prepared in Embodiment 1 is tested for near-infrared light detection, and the test method includes the following steps:
  • a photodetector was fabricated in Example 1, and a silicon dioxide layer was cut at one corner of the silicon wafer using a silicon wafer cutter.
  • the drain probe selects the voltage scan mode, the scan range is -3V-3V, the source voltage is set to 0V, and the gate voltage is 0V.
  • the near-infrared photodetector produced by the embodiment of the present invention has high near-infrared light responsivity and good environmental stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种近红外光电探测器,包括:基底、依次设置在基底表面上的隔离层和光吸收层、以及设置在光吸收层相对的两端且分别与光吸收层接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分光吸收层,光吸收层的材料包括β-InSe纳米薄片。所述光电探测器具有很高的近红外光响应度和环境稳定性。本发明还提供了一种近红外光电探测器的制备方法,包括:提供β-InSe单晶块,将β-InSe单晶块粘到胶带上,反复撕胶带10-20次,得到β-InSe纳米薄片,将β-InSe纳米薄片转移到隔离层上,形成光吸收层;在β-InSe纳米薄片上方以及未被β-InSe纳米薄片覆盖的隔离层上方旋涂光刻胶,经曝光和显影后,形成电极图案;沉积电极材料,随后采用有机溶剂剥离光刻胶,形成源极和漏极。

Description

一种近红外光电探测器及其制备方法
本发明要求于2018年11月03日递交的申请号为201711070851.3,发明名称为“一种近红外光电探测器及其制备方法”以及要求于2018年11月03日递交的申请号为201721459164.6,发明名称为“一种近红外光电探测器”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及光电探测器领域,具体涉及一种近红外光电探测器及其制备方法。
背景技术
光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起的被照射材料电导率改变的一种物理现象。光电探测器用途广泛,涵盖军事和国民经济的各个领域,如在可见光和近红外波段主要用于射线测量和探测、工业自动控制、光度计量等。目前科学研究和工业生产领域利用新型二维材料半导体形成高效光电探测器正在迅猛发展。
III-VI半导体材料由于具有特殊的电学和光学性能,在电子和光电子领域具有巨大的潜在应用。在这些半导体中,InSe是一种重要的层状半导体,其光电探测范围可从可见光到近红外波段,且具有高的光电响应,但是目前报道的γ-InSe在环境条件下容易被氧化,这极大地限制了其应用。
发明内容
为解决上述问题,本发明提供了一种近红外光电探测器及其制备方法。本发明提供的近红外光电探测器具有很高的近红外光响应度,同时具有很好的环境稳定性。
本发明第一方面提供了近红外光电探测器,包括:基底、依次设置在所述基底表面上的隔离层和光吸收层、以及设置在所述光吸收层相对的两端且分别与所述光吸收层接触的源极和漏极,所述源极和所述漏极之间形成的沟道结构暴露出部分所述光吸收层,所述光吸收层的材料包括β-InSe纳米薄片。
其中,所述光吸收层的厚度为2-20nm。
其中,所述光吸收层的厚度为5-10nm。
其中,所述β-InSe纳米薄片的层数小于或等于25层。
其中,所述β-InSe纳米薄片的层数为2-25层。
其中,所述β-InSe纳米薄片的层数为2-10层。
其中,所述源极和所述漏极之间暴露出的光吸收层沿垂直于所述源极和所述漏极延伸方向的长度为1-10μm,沿平行于所述源极和所述漏极延伸方向的宽度为1-15μm。
其中,所述源极和所述漏极之间暴露出的光吸收层的长度为3μm,宽度为10μm。
其中,所述基底的材质为硅,所述基底的厚度为300-500μm,电阻率为1-10Ω·cm。
其中,所述隔离层的材质为二氧化硅,所述隔离层的厚度为200-500nm。
其中,所述光吸收层上还设置有石墨烯层、纳米金属层或量子点层。
其中,所述源极和漏极的材质为金、钛、铝、铬、钨和镍中的至少一种。
其中,所述源极和漏极均为由铬层和金层层叠形成的复合电极。
其中,所述铬层与所述光吸收层接触,所述铬层的厚度为5-10nm,所述金层的厚度为20-80nm。
其中,所述近红外光电探测器的探测波长为780-980nm。
本发明第一方面提供的近红外光电探测器在具有很高的近红外光响应度的同时,具有很好的环境稳定性。这表明所述探测器能够在非低温、非真空的空气环境中持续稳定的工作。可以省去为了防止二维材料氧化等问题必须要进行的器件封装保护的过程,为器件的实际生产使用大大地简化了加工工序,同时得到的探测器结构简单。
本发明第二方面提供了一种近红外光电探测器的制备方法,包括以下步骤:
提供基底和设置在所述基底上的隔离层;
提供β-InSe单晶块,将β-InSe单晶块粘到胶带上,反复撕胶带10-20次,得到β-InSe纳米薄片,再将得到的β-InSe纳米薄片转移到有机薄膜上,随后将所述有机薄膜上的β-InSe纳米薄片转移到所述隔离层上,形成光吸收层;
在所述β-InSe纳米薄片上方以及未被所述β-InSe纳米薄片覆盖的隔离层上方旋涂光刻胶,经曝光和显影后,形成电极图案;
沉积电极材料,随后采用有机溶剂剥离光刻胶,形成源极和漏极。
其中,所述β-InSe单晶块按照以下方法制得:
将In源和Se源以摩尔比为1∶1混合,然后在400-800℃范围内采用温度梯度的方法制得所述β-InSe单晶块。
其中,所述旋涂光刻胶的操作具体包括:
在所述β-InSe纳米薄片上方以及未被所述β-InSe纳米薄片覆盖的隔离层上方旋涂一层光刻胶,转速为2000-4000转/分钟,并加热烘干1-5分钟,烘干温度为50-180摄氏度。
其中,所述电极图案为穿透所述光刻胶且暴露出部分所述β-InSe薄片的两个通孔。
其中,所述沉积电极材料的操作具体包括:在所述通孔上方先沉积5-10nm厚度的铬层,然后再沉积20-80nm厚度的金层以形成复合电极。
本发明实施例提供的光电探测器的制备方法工艺简单易操作。制得的光电探测器具有很好的环境稳定性,同时所述光电探测器具有高的光响应度,极具实用价值。
综上,本发明有益效果包括以下几个方面:
1、本发明实施例提供的近红外光电探测器,采用β-InSe纳米薄片作为半导体材料,环境稳定性良好,不容易被氧化,解决了现有半导体材料γ-InSe存在的缺陷。得到的近红外光电探测器在具有很高的近红外光响应度的同时,具有很好的环境稳定性。
2、本发明实施例提供的近红外光电探测器的制备工艺简单易操作。
附图说明
图1为本发明实施方式提供的近红外光电探测器的结构示意图;
图2为本发明实施方式提供的近红外光电探测器的制备方法示意图;
图3为本发明实施方式提供的近红外光电探测器的制备方法流程图;
图4为本发明实施方式提供的近红外光电探测器的环境稳定性测试结果;
图5为本发明实施方式提供的近红外光电探测器进行光电探测测试结果。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
请参照图1,本发明实施例第一方面提供了一种近红外光电探测器10,包括:基底1、设置在所述基底表面的隔离层2、设置在所述隔离层2表面的光吸收层3、设置在所述光吸收层3相对的两端且分别与所述光吸收层3接触的源极4和漏极5,所述源极4和所述漏极5之间形成的沟道结构暴露部分所述光吸收层3,所述光吸收层3的材料包括β-InSe纳米薄片。
本发明实施例中,所述β-InSe纳米薄片的层数小于或等于25层。可选地,所述β-InSe纳米薄片的层数为2-25层。进一步可选地,所述β-InSe纳米薄片的层数为2-10层。
本发明实施例中,所述光吸收层3的厚度为2-20nm。可选地,所述光吸收层3的厚度为5-10nm。
本发明实施例中,所述光吸收层3上还可以设置石墨烯层、纳米金属层或量子点层以形成异质结,以有效提高光电探测器的性能。可选地,所述纳米金属可以选自Au、Ag或Al等。可选地,在所述光吸收层表面设置金属纳米点阵列。可选地,所述量子点包括PbS或SnSe等。可选地,所述量子点旋涂在所述光吸收层表面形成异质结。
本发明实施例中,所述β-InSe纳米薄片是从β-InSe单晶块通过撕胶带的 方法得到的。
本发明实施例中,所述基底1的材质为硅,所述基底1的厚度为300-500μm,电阻率为1-10Ω·cm。可选地,所述基底1为p型或n型掺杂的硅片。
本发明实施例中,所述隔离层2的材质为二氧化硅,所述隔离层2的厚度为200-500nm。
本发明实施例中,所述源极4和漏极5的材质为金、钛、铝、铬、钨和镍中的至少一种。可选地,所述源极4和漏极5均为由铬层和金层层叠形成的复合电极,其中,所述铬层与所述光吸收层接触,所述铬层的厚度为5-10nm,所述金层的厚度为20-80nm。所述源极4和所述漏极5连接外部电源。可选地,所述源极4和所述漏极5与所述光吸收层3实现接触即可,至于接触的面积不做特殊限定。可选地,所述源极4和所述漏极5中的一部分与所述光吸收层3部分接触,另一部分与所述隔离层2接触。
请参照图1,本发明实施例中,所述源极和所述漏极之间暴露出的光吸收层沿垂直于所述源极和所述漏极延伸方向的长度L为1-10μm,沿平行于所述源极和所述漏极延伸方向的宽度W为1-15μm。在所述长度和宽度条件下,得到的光点探测器性能良好。可选地,所述源极和所述漏极之间暴露出的光吸收层的长度L为3μm,宽度W为10μm。
本发明实施例中,所述光电探测器可以实现对近红外光的有效探测,可选地,所述光电探测器可以实现对波长为780-980nm的近红外光的探测。
本发明实施例第一方面提供的近红外光电探测器,采用β-InSe纳米薄片作为半导体材料,环境稳定性良好,不容易被氧化,解决了现有半导体材料γ -InSe存在的缺陷。得到的光电探测器在具有很高的近红外光响应度的同时,具有很好的环境稳定性。这表明所述探测器能够在非低温、非真空的空气环境中持续稳定的工作。可以省去为了防止二维材料氧化等问题必须要进行的器件封装保护的过程,为器件的实际生产使用大大地简化了加工工序,同时得到的探测器结构简单。
参照图2和图3,本发明实施例还提供了一种近红外光电探测器的制备方法,包括以下步骤:
S01、提供基底1和设置在所述基底1上的隔离层2;
S02、提供β-InSe单晶块,将β-InSe单晶块粘到胶带上,反复撕10-20次,得到β-InSe纳米薄片31,再将得到的β-InSe纳米薄片31转移到有机薄膜6上,随后将所述有机薄膜6上的β-InSe纳米薄片31转移到所述隔离层2上,形成光吸收层3;
S03、在所述β-InSe纳米薄片31上方以及未被所述β-InSe纳米薄片31覆盖的隔离层2上方旋涂光刻胶7,经曝光和显影后,形成电极图案8;
S04、沉积电极材料,随后用有机溶剂剥离光刻胶,形成源极4和漏极5。
本发明实施例中,步骤S01中,提供p型或n型掺杂的具有二氧化硅层的硅片,所述硅片包括两层,分别为二氧化硅层和硅层,所述硅层的厚度为300-500μm,电阻率为1-10Ω·cm,所述二氧化硅层厚度为200-500nm。其中,所述硅层作为基底1,所述二氧化硅层作为隔离层2。具体地,用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片切成1×1cm 2大小,得到待使用的硅片。
本发明实施例中,步骤S01中还包括对所述硅片进行清洗的操作,所述清 洗按照以下方法操作:
将待使用的硅片依次通过丙酮溶液、异丙醇(或为乙醇)分别超声3-5分钟,再用去离子水超声3-8min,并用高纯氮气快速吹干待用。
本发明实施例中,步骤S02中,所述胶带为Scotch胶带。所述有机薄膜6包括聚二甲基硅氧烷(PDMS)薄膜。通过撕胶带的方法可以得到厚度较薄、层数较少的β-InSe薄片,同时该方法简单易操作。
本发明实施例中,步骤S02中,所述β-InSe单晶块按照以下方法制得:
将In源和Se源以摩尔比为1∶1混合,然后在400-800℃范围内采用温度梯度的方法制得所述β-InSe单晶块。
本发明实施例中,步骤S03中,在所述β-InSe薄片31上方以及未被所述β-InSe薄片31覆盖的隔离层2上方旋涂一层光刻胶7(PMMA)(型号为950,A4-A10),转速为2000-4000转/分钟,并在加热板上烘1-5分钟,烘干温度为50-180摄氏度。将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案8。所述电极图案8为穿透所述光刻胶且暴露出部分所述β-InSe薄片的两个通孔。
本发明实施例中,步骤S04中,在所述通孔上方进行沉积电极材料,所述电极材料填充所述通孔并与所述β-InSe薄片相接触,形成源极4和漏极5。可选地,通过热蒸镀或磁控溅射等方法进行沉积。可选地,首先沉积5-10nm厚度的铬层9,然后再沉积20-80nm厚度的金层10以形成复合电极。沉积结束之后,将蒸镀好铬/金电极的样品放入丙酮等有机溶剂中浸泡用于剥离光刻胶,并放置在加热板上加热10-30分钟,其中加热板温度设置为30-50摄氏度,最后取出样品用高纯氮气快速吹干即可。
本发明实施例提供的近红外光电探测器的制备方法工艺简单易操作。制得的具有很好的环境稳定性,同时所述光电探测器具有高的光响应度,极具实用价值。
实施例1:
一种近红外光电探测器,包括依次层叠的硅基体、二氧化硅隔离层和β-InSe纳米薄片,设置在β-InSe纳米薄片相对设置的两端且分别与β-InSe纳米薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分β-InSe纳米薄片。硅基体的厚度为300μm,二氧化硅隔离层的厚度为300nm,β-InSe纳米薄片的厚度为10nm,源极和漏极分别为5nm厚的铬层和40nm厚的金层层叠形成的复合电极。
一种近红外光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为300μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为300nm)切成1×1cm 2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声5min并用高纯氮气快速吹干待用。
(2)制备β-InSe纳米薄片;取少量β-InSe单晶粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为10nm的β-InSe纳米薄片。再将撕好的样品转移到聚二甲基硅氧烷(PDMS)薄膜上,最后将PDMS薄膜上的样品转移到步骤(1)中清洗干净的待用硅片上。
(3)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为3000转/分钟,并在加热板上烘5分钟,烘干温度为120摄氏度。
(4)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(5)镀膜;通过热蒸镀的方法先后蒸镀5nm厚的铬层和40nm厚的金层,形成源极和漏极。
(6)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热10分钟,其中加热板温度设置为50摄氏度,最后取出样品用高纯氮气快速吹干即可。
实施例2:
一种近红外光电探测器,包括依次层叠的硅基体、二氧化硅隔离层和β-InSe纳米薄片,设置在β-InSe纳米薄片相对设置的两端且分别与β-InSe纳米薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分β-InSe纳米薄片。硅基体的厚度为500μm,二氧化硅隔离层的厚度为500nm,β-InSe纳米薄片的厚度为5nm,源极和漏极分别为10nm厚的铬层和80nm厚的金层层叠形成的复合电极。
一种近红外光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为500μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为500nm)切成1×1cm 2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声3min并用高纯氮气快速吹干待用。
(2)制备β-InSe纳米薄片;取少量β-InSe单晶粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为5nm的β-InSe纳米薄片。再将撕好的样品转 移到聚二甲基硅氧烷(PDMS)薄膜上,最后将PDMS薄膜上的样品转移到步骤(1)中清洗干净的待用硅片上。
(3)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为2000转/分钟,并在加热板上烘1分钟,烘干温度为180摄氏度。
(4)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(5)镀膜;通过热蒸镀的方法先后蒸镀10nm厚的铬层和80nm厚的金层,形成源极和漏极。
(6)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热30分钟,其中加热板温度设置为30摄氏度,最后取出样品用高纯氮气快速吹干即可。
实施例3:
一种近红外光电探测器,包括依次层叠的硅基体、二氧化硅隔离层和β-InSe纳米薄片,设置在β-InSe纳米薄片相对设置的两端且分别与β-InSe纳米薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分β-InSe纳米薄片。硅基体的厚度为400μm,二氧化硅隔离层的厚度为200nm,β-InSe纳米薄片的厚度为2nm,源极和漏极分别为10nm厚的铬层和80nm厚的金层层叠形成的复合电极。
一种近红外光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为400μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为200nm) 切成1×1cm2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声8min并用高纯氮气快速吹干待用。
(2)制备β-InSe纳米薄片;取少量β-InSe单晶粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为2nm的β-InSe纳米薄片。再将撕好的样品转移到聚二甲基硅氧烷(PDMS)薄膜上,最后将PDMS薄膜上的样品转移到步骤(1)中清洗干净的待用硅片上。
(3)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为2000转/分钟,并在加热板上烘5分钟,烘干温度为50摄氏度。
(4)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(5)镀膜;通过热蒸镀的方法先后蒸镀7nm厚的铬层和20nm厚的金层,形成源极和漏极。
(6)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热20分钟,其中加热板温度设置为40摄氏度,最后取出样品用高纯氮气快速吹干即可。
实施例4:
将实施例1制得的近红外光电探测器进行电学稳定性的测试,测试方法包括以下步骤:
(1)取实施例1中制作好的近红外光电探测器,用硅片刀在硅片的一个角划开二氧化硅层。
(2)将其放在半导体特性分析仪配套的探针平台上,通过配套的CCD成 像系统找到硅片上探测器的准确位置。
(3)选取探针台配套的两个探针分别接触到探测器的源、漏电极,选取另一探针接触步骤(1)中划开的二氧化硅层,当做探测器的背栅电极。
(4)打开半导体特性分析仪测试软件,栅极探针选择电压扫描模式,扫描范围为-60V-60V,设置漏极电压为1V,源极电压为0V。
(5)运行测试软件,得到探测器的电学测试图。
(6)将探测器分别置于空气环境中2天、4天、6天、8天、10天后重复上述测试,最终得到图4的环境稳定的电学测试结果图。
实施例5:
将实施例1制得的近红外光电探测器进行近红外光探测的测试,测试方法包括以下步骤:
(1)取实施例1中制作好光电探测器,用硅片刀在硅片的一个角划开二氧化硅层。
(2)将其放在半导体特性分析仪配套的探针平台上,通过配套的CCD成像系统找到硅片上探测器的准确位置。
(3)选取探针台配套的两个探针分别接触到探测器的源、漏电极,选取另一探针接触步骤(1)中划开的二氧化硅层,当做探测器的背栅电极。
(4)打开半导体特性分析仪测试软件,漏极探针选择电压扫描模式,扫描范围为-3V-3V,设置源极电压为0V,栅极电压为0V。
(5)运行测试软件,得到探测器在无光条件下电学测试图。
(5)引入800nm激光,垂直照射在基于β-InSe的新型光电探测器上。
(6)分别在激光功率为2.20mW/cm 2、12.0mW/cm 2、44.6mW/cm 2、94.2mW/cm 2、168.0mW/cm 2、255.0mW/cm 2的条件下运行测试软件,分别得到图5的探测器对应不同入射激光功率的电学测试图。
从图4和图5中可以看出,本发明实施例制得的近红外光电探测器具有较高的近红外光响应度,同时具有很好的环境稳定性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种近红外光电探测器,其中,包括:基底、依次设置在所述基底表面上的隔离层和光吸收层、以及设置在所述光吸收层相对的两端且分别与所述光吸收层接触的源极和漏极,所述源极和所述漏极之间形成的沟道结构暴露出部分所述光吸收层,所述光吸收层的材料包括β-InSe纳米薄片。
  2. 如权利要求1所述的近红外光电探测器,其中,所述光吸收层的厚度为2-20nm。
  3. 如权利要求2所述的近红外光电探测器,其中,所述光吸收层的厚度为5-10nm。
  4. 如权利要求1所述的近红外光电探测器,其中,所述β-InSe纳米薄片的层数小于或等于25层。
  5. 如权利要求4所述的近红外光电探测器,其中,所述β-InSe纳米薄片的层数为2-25层。
  6. 如权利要求5所述的近红外光电探测器,其中,所述β-InSe纳米薄片的层数为2-10层。
  7. 如权利要求1所述的近红外光电探测器,其中,所述源极和所述漏极之间暴露出的光吸收层沿垂直于所述源极和所述漏极延伸方向的长度为1-10μm,沿平行于所述源极和所述漏极延伸方向的宽度为1-15μm。
  8. 如权利要求7所述的近红外光电探测器,其中,所述源极和所述漏极之间暴露出的光吸收层的长度为3μm,宽度为10μm。
  9. 如权利要求1所述的近红外光电探测器,其中,所述基底的材质为硅,所述基底的厚度为300-500μm,电阻率为1-10Ω·cm。
  10. 如权利要求1所述的近红外光电探测器,其中,所述隔离层的材质为二氧化硅,所述隔离层的厚度为200-500nm。
  11. 如权利要求1所述的近红外光电探测器,其中,所述光吸收层上还设置有石墨烯层、纳米金属层或量子点层。
  12. 如权利要求1所述的近红外光电探测器,其中,所述源极和漏极的材质为金、钛、铝、铬、钨和镍中的至少一种。
  13. 如权利要求12所述的近红外光电探测器,其中,所述源极和漏极均为由铬层和金层层叠形成的复合电极。
  14. 如权利要求13所述的近红外光电探测器,其中,所述铬层与所述光吸收层接触,所述铬层的厚度为5-10nm,所述金层的厚度为20-80nm。
  15. 如权利要求1所述的近红外光电探测器,其中,所述近红外光电探测器的探测波长为780-980nm。
  16. 一种近红外光电探测器的制备方法,其中,包括以下步骤:
    提供基底和设置在所述基底上的隔离层;
    提供β-InSe单晶块,将β-InSe单晶块粘到胶带上,反复撕胶带10-20次,得到β-InSe纳米薄片,再将得到的β-InSe纳米薄片转移到有机薄膜上,随后将所述有机薄膜上的β-InSe纳米薄片转移到所述隔离层上,形成光吸收层;
    在所述β-InSe纳米薄片上方以及未被所述β-InSe纳米薄片覆盖的隔离层上方旋涂光刻胶,经曝光和显影后,形成电极图案;
    沉积电极材料,随后采用有机溶剂剥离光刻胶,形成源极和漏极。
  17. 如权利要求16所述的近红外光电探测器的制备方法,其中,所述β-InSe单晶块按照以下方法制得:
    将In源和Se源以摩尔比为1∶1混合,然后在400-800℃范围内采用温度梯度的方法制得所述β-InSe单晶块。
  18. 如权利要求16所述的近红外光电探测器的制备方法,其中,所述旋涂光刻胶的操作具体包括:
    在所述β-InSe纳米薄片上方以及未被所述β-InSe纳米薄片覆盖的隔离层 上方旋涂一层光刻胶,转速为2000-4000转/分钟,并加热烘干1-5分钟,烘干温度为50-180摄氏度。
  19. 如权利要求16所述的近红外光电探测器的制备方法,其中,所述电极图案为穿透所述光刻胶且暴露出部分所述β-InSe薄片的两个通孔。
  20. 如权利要求19所述的近红外光电探测器的制备方法,其中,所述沉积电极材料的操作具体包括:在所述通孔上方先沉积5-10nm厚度的铬层,然后再沉积20-80nm厚度的金层以形成复合电极。
PCT/CN2018/101438 2017-11-03 2018-08-21 一种近红外光电探测器及其制备方法 WO2019085595A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711070851.3A CN107863402A (zh) 2017-11-03 2017-11-03 一种近红外光电探测器及其制备方法
CN201721459164.6 2017-11-03
CN201711070851.3 2017-11-03
CN201721459164.6U CN207611774U (zh) 2017-11-03 2017-11-03 一种近红外光电探测器

Publications (1)

Publication Number Publication Date
WO2019085595A1 true WO2019085595A1 (zh) 2019-05-09

Family

ID=66331313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101438 WO2019085595A1 (zh) 2017-11-03 2018-08-21 一种近红外光电探测器及其制备方法

Country Status (1)

Country Link
WO (1) WO2019085595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493924A (zh) * 2020-04-03 2021-10-12 中国科学院上海硅酸盐研究所 一种无机柔性和塑性半导体单晶InSe材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246929A (zh) * 2017-06-01 2017-10-13 哈尔滨工业大学 二维硒化铟力学传感器的制备方法及其应用
CN107863402A (zh) * 2017-11-03 2018-03-30 深圳大学 一种近红外光电探测器及其制备方法
CN207611774U (zh) * 2017-11-03 2018-07-13 深圳大学 一种近红外光电探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246929A (zh) * 2017-06-01 2017-10-13 哈尔滨工业大学 二维硒化铟力学传感器的制备方法及其应用
CN107863402A (zh) * 2017-11-03 2018-03-30 深圳大学 一种近红外光电探测器及其制备方法
CN207611774U (zh) * 2017-11-03 2018-07-13 深圳大学 一种近红外光电探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALMEIDA, G. ET AL.: "Colloidal Monolayer β-In 2 Se 3 Nanosheets with High Photoresponsivity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 8, 3 February 2017 (2017-02-03), pages 3005 - 3011, XP055614615, DOI: 10.1021/jacs.6b11255 *
LI, QINLIANG: "Synthesis, Characterization and Optoelectronic Application of In2Se3 Nanostructures", THESIS, 30 April 2015 (2015-04-30), Soochow University, pages 83 - 85 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493924A (zh) * 2020-04-03 2021-10-12 中国科学院上海硅酸盐研究所 一种无机柔性和塑性半导体单晶InSe材料及其制备方法和应用
CN113493924B (zh) * 2020-04-03 2022-07-12 中国科学院上海硅酸盐研究所 一种无机柔性和塑性半导体单晶InSe材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. Bidirectional all‐optical synapses based on a 2D Bi2O2Se/graphene hybrid structure for multifunctional optoelectronics
CN107749433B (zh) 一种二维范德华异质结光电探测器及其制备方法
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN109950403B (zh) 一种铁电场调控的二维材料pn结光电探测器及制备方法
CN207529954U (zh) 一种二维范德华异质结光电探测器
CN107863402A (zh) 一种近红外光电探测器及其制备方法
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
WO2021114905A1 (zh) 一种各向异性器件及其制备方法和应用
CN113437166A (zh) 一种基于二维层状半导体材料的范德华异质结偏振光探测器及其制备方法
Ahmad et al. Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking
CN113097319A (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN115360259A (zh) 硒化镍钽/硒化钨异质结光电探测器及其制备方法
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
WO2019085595A1 (zh) 一种近红外光电探测器及其制备方法
CN111081806A (zh) 一种基于超短沟道石墨烯的光电探测器及其制备方法
CN109873046B (zh) 双异质结光敏二极管及制备方法
CN207611774U (zh) 一种近红外光电探测器
CN104638109A (zh) 一种有机太阳能电池的阴极界面材料及其制备方法
WO2019200791A1 (zh) 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法
CN113130704A (zh) 基于CrPS4偏振敏感的光电探测器的制备方法
CN107768463A (zh) 一种自驱动光电探测器及其制备方法
CN114361289B (zh) 一种基于范德华金属电极的自驱动超快光电探测器构筑方法
CN116072749A (zh) 一种紫磷/二硫化钼异质结光电探测器及制备方法
CN210837755U (zh) 一种各向异性器件
CN110808294B (zh) 二维铌酸锶纳米片紫外光电晶体管探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874960

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18874960

Country of ref document: EP

Kind code of ref document: A1