CN110808294B - 二维铌酸锶纳米片紫外光电晶体管探测器 - Google Patents

二维铌酸锶纳米片紫外光电晶体管探测器 Download PDF

Info

Publication number
CN110808294B
CN110808294B CN201911002104.5A CN201911002104A CN110808294B CN 110808294 B CN110808294 B CN 110808294B CN 201911002104 A CN201911002104 A CN 201911002104A CN 110808294 B CN110808294 B CN 110808294B
Authority
CN
China
Prior art keywords
strontium niobate
nano
ultraviolet
sheet
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911002104.5A
Other languages
English (en)
Other versions
CN110808294A (zh
Inventor
方晓生
李思远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201911002104.5A priority Critical patent/CN110808294B/zh
Publication of CN110808294A publication Critical patent/CN110808294A/zh
Application granted granted Critical
Publication of CN110808294B publication Critical patent/CN110808294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于半导体光电器件技术领域,具体为二维铌酸锶纳米片紫外光电晶体管探测器。本发明紫外探测器包括:SiO2/Si衬底、铌酸锶Sr2Nb3O10纳米片和铬‑金接触电极。其中Sr2Nb3O10纳米片旋涂分散于SiO2/Si衬底上,紫外光刻铬‑金电极与纳米片上表面接触,形成背栅极紫外光电晶体管结构。二维铌酸锶纳米片具有高禁带宽度,可实现无滤波片窄带紫外光探测;微米电极距离接近,紫外光照射下具有很高的探测率和光电增益,响应速度较快;形成背栅极光电晶体管,可通过调节栅压对纳米片载流子浓度进行调控,不同栅压下具有双极特性;该二维铌酸锶晶体管器件边长仅约200μm,有助于实现器件小型化应用。

Description

二维铌酸锶纳米片紫外光电晶体管探测器
技术领域
本发明属于半导体光电器件技术领域,具体涉及一种二维铌酸锶纳米片紫外光电晶体管探测器。
背景技术
近年来,高性能紫外探测器得到较大发展,广泛应用于光谱分析、环境监测、光电器件等领域。由于宽禁带半导体具有结构简单、无需复杂的滤波装置等优点,得到广泛关注。目前许多UVA紫外探测材料存在响应速度较慢、暗电流较大等缺点,而光电子器件逐渐向小型化、节能化、柔性可穿戴等方向发展。二维钙钛矿材料,具有吸光度高、带隙可调、可见光透明度高、力学性能好等优点,已成为下一代光电探测器的重要备选。层状氧化物钙钛矿不仅具有钙钛矿材料的优异性质,同时能够克服有机-无机杂化钙钛矿环境不稳定的缺点。液相剥离法能够将层状块体材料剥离成二维纳米片,非常适合于二维材料的大批量制备,对今后中试乃至工业化生产具有一定意义。同时,微纳加工技术的发展,为高性能二维光电晶体管器件的制备打下了坚实的基础。
发明内容
本发明的目的在于提供一种探测率高、探测波段窄、增益大、可栅压调控的二维铌酸锶纳米片紫外光电晶体管探测器。
本发明提供的二维铌酸锶纳米片紫外光电晶体管探测器,其结构如图1所示,包括:
SiO2/Si衬底;
旋涂分散于SiO2/Si衬底上的铌酸锶(Sr2Nb3O10)纳米片;
与纳米片上表面接触的铬-金电极。
其中,探测器源极、漏极为铬-金电极,栅极为重掺杂p型硅。
本发明中,以铌酸锶纳米片实现紫外光探测,以紫外光刻技术制备的铬-金接触电极进行载流子收集,不加栅压时,形成光电导型紫外光探测器。
本发明中,通过高温固相反应-离子交换-液相剥离制备的铌酸锶Sr2Nb3O10纳米片,旋涂分散于SiO2/Si衬底上。
进一步地,制备的铌酸锶Sr2Nb3O10纳米片直径可达0.5~5μm,依剥离层数不同,纳米片厚度在1.5~15nm之间。
进一步地,所述铬-金接触电极厚度为30 nm~60 nm。
进一步地,晶体管使用的衬底为带有250-400nm氧化层的重掺杂p型硅。
上述铌酸锶纳米片紫外光电晶体管探测器的制备方法,具体步骤为:
(1)铌酸锶纳米片制备,其制备步骤为:99.9%纯度的固态Cs2CO3、SrCO3和Nb2O5粉末,按照摩尔比1:(1.5-2.5):(2.5-3.5)混合研磨0.5-6小时(优选0.5—2小时),在1150~1400℃下高温烧结6-48小时(优选6—15小时),产物随炉冷却;将所得产物与1~5mol/L盐酸混合,进行离子交换3~7天,之后以超纯水洗涤产物并烘干;将所得产物与等摩尔比的四丁基氢氧化铵(TBAOH)混合,用多用振荡器在室温下震荡7~14天,离心,可得剥离完成的铌酸锶纳米片。如有需要,可利用超纯水多次洗涤产物,并离心;
(2)铬-金电极的制备,其制备步骤为:清洗SiO2/Si衬底表面:先后用丙酮、乙醇、超纯水清洗SiO2/Si衬底表面10 min~20 min,并将衬底吹干;将步骤(1)所得铌酸锶纳米片旋涂分散于衬底表面;定位纳米片后,旋涂光刻胶,利用紫外光刻在铌酸锶纳米片上表面制备电极图案,以电子束蒸发或热蒸发法沉积铬-金接触电极层,电极厚度为30 nm~60 nm,去除光刻胶并烘干,即得铌酸锶纳米片光电晶体管。
所述的紫外光电晶体管具有如下优势:
1、二维铌酸锶纳米片具有高禁带宽度,可实现无滤波片窄带紫外光探测;
2、微米电极距离接近,紫外光照射下具有很高的探测率和光电增益,响应速度较快;
3、形成背栅极光电晶体管,可通过调节栅压对纳米片载流子浓度进行调控,不同栅压下具有双极特性;
4、该二维铌酸锶晶体管器件边长仅约200μm,有助于实现器件小型化应用。
附图说明
图1为本发明的二维铌酸锶纳米片紫外光电晶体管探测器的结构示意图。
图2为本发明的二维铌酸锶纳米片紫外光电晶体管探测器的原子力显微镜(AFM)图。
图3为本发明的二维铌酸锶纳米片紫外光电晶体管探测器的光电测试结果:在暗态和270nm紫外光照下的电流-电压曲线。
图4为本发明的二维铌酸锶纳米片紫外光电晶体管探测器的光电测试结果:不同入射波长下的响应率曲线。
图中标号:1为SiO2/Si衬底的Si层,2为SiO2/Si衬底的SiO2层,3为铌酸锶(Sr2Nb3O10)纳米片,4为铬-金接触电极。
具体实施方式
实施例1,一种二维铌酸锶纳米片紫外光电晶体管探测器,如图1所示,包括SiO2/Si衬底1、2,旋涂分散于衬底上的铌酸锶Sr2Nb3O10纳米片3,与纳米片上表面接触的铬-金电极4。
本实施例二维铌酸锶纳米片紫外光电晶体管探测器的制备步骤为:
(1)铌酸锶纳米片制备,采用高温固相反应-离子交换-液相剥离的方法:99.9%纯度的固态Cs2CO3、SrCO3和Nb2O5粉末,按照摩尔比1:1.8:2.5混合研磨1小时,在1200℃下高温烧结6小时,产物随炉冷却。将所得产物与1mol/L浓度的盐酸混合,进行离子交换5天,之后以超纯水洗涤产物多次,并烘干。称取一定量的所得产物,与等摩尔比四丁基氢氧化铵(TBAOH)溶液进行混合,用多用振荡器在室温下震荡10天,离心可得剥离完成的铌酸锶纳米片。利用超纯水多次洗涤产物,并离心;
(2)铬-金电极的制备,采用紫外光刻技术:先后用丙酮、乙醇、超纯水清洗SiO2/Si衬底表面10 min,并用氮气将衬底吹干。将步骤(1)所得铌酸锶纳米片旋涂分散于衬底表面,使得纳米片分散均匀。定位纳米片后,旋涂光刻胶,利用紫外光刻在铌酸锶纳米片上表面制备电极图案,以电子束蒸发或热蒸发法沉积铬-金接触电极层,电极厚度为50nm,去除光刻胶并烘干。可得铌酸锶纳米片光电晶体管。
实施例2,利用本发明制备的紫外光电晶体管探测器,对特定紫外波段入射光进行探测:
利用实施例1所示的紫外光电晶体管探测器,将器件源极、漏极分别与半导体测试系统连接,改变电压,记录在暗态和光照条件下流经器件的电流,如图3所示。相同电压下,器件在270nm紫外光照射时展现出更高的电流。
利用实施例1所示的紫外光电晶体管探测器,将器件源极、漏极分别与半导体测试系统连接,偏压恒定,改变入射紫外光波长,记录流经器件的电流,经计算可得响应率,如图4所示。器件在270nm紫外波长附近展现出良好的探测性能,响应率高,探测波长范围窄。

Claims (1)

1.一种二维铌酸锶纳米片紫外光电晶体管探测器的制备方法,其特征在于,
该探测器包括:
SiO2/Si衬底;
旋涂分散于SiO2/Si衬底上的铌酸锶纳米片,用于实现紫外光探测;
与纳米片上表面接触的铬-金电极,用于进行载流子收集;
具体步骤如下:
(1)铌酸锶纳米片制备,其步骤为:99.9%纯度的固态Cs2CO3、SrCO3和Nb2O5粉末,按照摩尔比1:(1.5-2.5):(2.5-3.5)混合研磨0.5-6小时,在1150~1400℃下高温烧结6-48小时,产物随炉冷却;将所得产物与1~5mol/L盐酸混合,进行离子交换3~7天,之后以超纯水洗涤产物并烘干;将所得产物与等摩尔比的四丁基氢氧化铵混合,用多用振荡器在室温下震荡7~14天,离心,得剥离完成的铌酸锶纳米片;
(2)铬-金电极的制备,其步骤为:清洗SiO2/Si衬底表面,并将衬底吹干;将步骤(1)所得铌酸锶纳米片旋涂分散于衬底表面;定位纳米片后,旋涂光刻胶,利用紫外光刻在铌酸锶纳米片上表面制备电极图案,以电子束蒸发或热蒸发法沉积铬-金接触电极层,电极厚度为30nm~60 nm,去除光刻胶并烘干,即得铌酸锶纳米片光电晶体管。
CN201911002104.5A 2019-10-21 2019-10-21 二维铌酸锶纳米片紫外光电晶体管探测器 Active CN110808294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911002104.5A CN110808294B (zh) 2019-10-21 2019-10-21 二维铌酸锶纳米片紫外光电晶体管探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911002104.5A CN110808294B (zh) 2019-10-21 2019-10-21 二维铌酸锶纳米片紫外光电晶体管探测器

Publications (2)

Publication Number Publication Date
CN110808294A CN110808294A (zh) 2020-02-18
CN110808294B true CN110808294B (zh) 2021-07-23

Family

ID=69488851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911002104.5A Active CN110808294B (zh) 2019-10-21 2019-10-21 二维铌酸锶纳米片紫外光电晶体管探测器

Country Status (1)

Country Link
CN (1) CN110808294B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038761A (zh) * 2023-09-21 2023-11-10 常熟理工学院 一种高性能NdNb2O7紫外探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892192A (zh) * 2005-07-06 2007-01-10 中国科学院物理研究所 用钙钛矿氧化物单晶材料制作的快响应高灵敏度紫外光探测器
JP2013033839A (ja) * 2011-08-02 2013-02-14 Iwasaki Electric Co Ltd 紫外線センサ素子、および紫外線センサ
EP2743946A2 (en) * 2012-12-13 2014-06-18 Instytut Technologii Materialów Elektronicznych Use of Material, Especially an Eutectic One, as an Active Layer in an Electrode and an Electrode Comprising an Active Layer of Material, Especially an Eutectic One
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892192A (zh) * 2005-07-06 2007-01-10 中国科学院物理研究所 用钙钛矿氧化物单晶材料制作的快响应高灵敏度紫外光探测器
JP2013033839A (ja) * 2011-08-02 2013-02-14 Iwasaki Electric Co Ltd 紫外線センサ素子、および紫外線センサ
EP2743946A2 (en) * 2012-12-13 2014-06-18 Instytut Technologii Materialów Elektronicznych Use of Material, Especially an Eutectic One, as an Active Layer in an Electrode and an Electrode Comprising an Active Layer of Material, Especially an Eutectic One
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法

Also Published As

Publication number Publication date
CN110808294A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
Lin et al. Self-powered Sb2S3 thin-film photodetectors with high detectivity for weak light signal detection
Wang et al. Visible blind ultraviolet photodetector based on CH 3 NH 3 PbCl 3 thin film
Dong et al. Performance-enhanced solar-blind photodetector based on a CH 3 NH 3 PbI 3/β-Ga 2 O 3 hybrid structure
Liu et al. High performance MoO 3− x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application
CN109950403B (zh) 一种铁电场调控的二维材料pn结光电探测器及制备方法
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
Ma et al. Multilayered PtSe 2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
Shen et al. 16× 16 Solar-Blind UV Detector Based on β-Ga 2 O 3 Sensors
CN109920863A (zh) 窄禁带半导体薄膜、光敏二极管及制备方法
Fei et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect
Zhang et al. Visible-blind self-powered ultraviolet photodetector based on CuI/TiO2 nanostructured heterojunctions
CN110808294B (zh) 二维铌酸锶纳米片紫外光电晶体管探测器
Weng et al. Preparation and performance enhancement study of organic ZnO/Au/PEDOT: PSS heterojunction UV photodetector
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector
Huang et al. Easily processable Cu2O/Si self-powered photodetector array for image sensing applications
CN111525036A (zh) 一种自驱动钙钛矿光电探测器及其制备方法
Zhang et al. Two-dimensional perovskite Sr2Nb3O10 nanosheets meet CuZnS film: facile fabrications and applications for high-performance self-powered UV photodetectors
Zhang et al. Regulation of the electron concentration distribution in TiO2/BaTiO3 photodetector
Ashtar et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0. 52Ti0. 48O3 heterostructure
Kumar et al. Fabrication of n-ZnS/p-SnS, n-ZnO/p-SnS, and n-SnO2/p-SnS heterojunctions by 2-step SILAR process for photodetector applications
Lei et al. Broadband and High‐Sensitivity Photodetector Based on BiFeO3/Si Heterojunction
CN104659152A (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
Talebi et al. Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate
Yang et al. High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant