CN117038761A - 一种高性能NdNb2O7紫外探测器及其制备方法 - Google Patents

一种高性能NdNb2O7紫外探测器及其制备方法 Download PDF

Info

Publication number
CN117038761A
CN117038761A CN202311224649.7A CN202311224649A CN117038761A CN 117038761 A CN117038761 A CN 117038761A CN 202311224649 A CN202311224649 A CN 202311224649A CN 117038761 A CN117038761 A CN 117038761A
Authority
CN
China
Prior art keywords
ndnb
nano
preparation
ultraviolet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311224649.7A
Other languages
English (en)
Inventor
张勇
姚建
康黎星
方晓生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202311224649.7A priority Critical patent/CN117038761A/zh
Publication of CN117038761A publication Critical patent/CN117038761A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开一种高性能NdNb2O7紫外探测器及其制备方法,包括如下步骤:(a)NdNb2O7纳米片的制备方法。(b)NdNb2O7纳米片薄膜的自组装方法。(c)NdNb2O7纳米片薄膜器件的光电性能。本发明首次公开一种高性能NdNb2O7紫外探测器及其制备方法。这项工作通过固相反应‑液相剥离方法首次制备出NdNb2O7纳米片,通过界面自组装方法获得NdNb2O7纳米片薄膜,并获得高性能NdNb2O7纳米片薄膜紫外探测器,为其在光电探测领域的应用奠定基础。

Description

一种高性能NdNb2O7紫外探测器及其制备方法
技术领域
本发明属于紫外光电探测器技术领域,更具体的涉及一种高性能NdNb2O7紫外探测器及其制备方法。
背景技术
层状氧化物钙钛矿由于其独特的层状结构和层间化学反应性,是一种重要的多功能材料,具有丰富的物理和化学性质。在传统的二维材料中,如石墨烯和过渡金属硫族化物,这些主要由s和p轨道的电子决定,它们表现出弱的相互作用。过渡金属氧化物钙钛矿中d轨道的强相互作用电子产生了丰富的奇异相,包括高温超导性、巨磁阻、莫特金属-绝缘体跃迁和多铁性等,为揭示物理学中的新范式和新应用提供了一个良好的平台。目前,通过液相剥离法制备的二维钙钛矿铌酸盐纳米片已引起广泛关注。RbNdNb2O7是一种稳定的双层氧化物钙钛矿,具有Dion-Jacobson相结构。其稳定的性质使NdNb2O7成为广泛应用的有前途的候选者。然而,NdNb2O7纳米片的剥离及其光电性能的研究尚未报道。因此,探索基于二维钙钛矿型NdNb2O7的高性能光电探测器是至关重要的。
发明内容
本发明首次通过固相反应-液相剥离法制备出NdNb2O7纳米片,并通过界面自组装法获得NdNb2O7纳米片薄膜,并实现高性能NdNb2O7纳米片薄膜紫外探测器,为NdNb2O7纳米片在光电子器件领域的应用提供基础。
为达到上述发明创造目的,本发明采用下述技术方案:
根据本发明的第一个方面,本发明提供一种NdNb2O7纳米片的制备方法,包括如下步骤:NdNb2O7纳米片是通过固相反应和液相剥离方法制备的,Rb2CO3、Nd2O3和Nb2O5的混合研磨后煅烧,得RbNdNb2O7粉末;将所得RbNdNb2O7粉末与HNO3水溶液振荡,得到HNdNb2O7产物洗涤并干燥;将HNdNb2O7与四丁基氢氧化铵水溶液中振荡、离心,得到NdNb2O7纳米片。
优选地,按照摩尔比计算,Rb2CO3:Nd2O3:Nb2O5=1.3:1:2。
优选地,所述煅烧是指在1000℃下空气中煅烧24小时。
优选地,将HNdNb2O7与其等摩尔的四丁基氢氧化铵水溶液中振荡3天。
根据本发明的第二个方面,本发明提供一种气液界面自组装方法制备NdNb2O7纳米片薄膜的方法,包括如下步骤:将上述NdNb2O7纳米片分散在水中,并加入DMF形成混合分散液,然后取混合分散液滴在氯仿表面,自组装形成NdNb2O7纳米片薄膜。优选地,首先将NdNb2O7纳米片分散在水中,并加入少量DMF。然后取部分溶液滴在氯仿表面。随后,NdNb2O7纳米片薄膜开始在水面上形成,并逐渐形成更大的NdNb2O7纳米片薄膜。最后自组装的纳米片薄膜可以直接转移到不同的衬底上,用于器件制造。
根据本发明的第三个方面,本发明提供了一种NdNb2O7紫外光电探测器(简称器件),将上述NdNb2O7纳米片薄膜转移至衬底上,然后用用硬膜版蒸镀Cr/Au电极来构筑紫外光电探测器。
优选地,所述衬底为Si/SiO2,PET或载玻片;进一步优选为PET。
根据本发明的第四个方面,本发明提供了一种NdNb2O7纳米片的用途,用于制备NdNb2O7紫外光电探测器。
本发明中NdNb2O7纳米片薄膜具有高的可见光透明性,同时该器件具有优异的光电性能,并且在很多弯曲测试仍有良好的光电性能。
透明性能中,NdNb2O7紫外光电探测器具有高的可见光透明性(>80%)。
光电性能中,NdNb2O7紫外光电探测器具有高的光电性能,在3
V电压和260nm光照射下,该器件具有高的光电流为1.4uA,高的响应度为1.2A/W,高的比探测率为7.7*1011Jones。
柔性性能中,NdNb2O7紫外光电探测器在进行200次弯曲测试后,仍然具有优异的光电性能,具有较高的光电流为0.12uA,较大的开关比为100。
本发明首次提出一种高性能NdNb2O7紫外探测器,大大拓展NdNb2O7纳米片在光电子器件中的应用。
本发明具有突出优点:
1,本发明首次提出高性能柔性透明NdNb2O7紫外探测器,制备简单、成本低廉、具有可产业化前景。
2,NdNb2O7纳米片是通过固相反应和液相剥离方法制备的。
3,NdNb2O7纳米片薄膜是通过气液界面自组装方法实现的。
4,NdNb2O7纳米片薄膜紫外探测器具有优异的紫外探测性能,在3V和260nm光照射下具有高的光电流(1.4uA),高响应度(1.2AW-1)和高比探测率(7.7*1011)。
5,NdNb2O7纳米片薄膜器件经过多次弯曲测试也能保持优异的性能,表现出令人满意的光电流(0.12uA)和大的开/关比(100)。
附图说明
图1为实施例NdNb2O7纳米片制备过程的示意图,其中a为纳米片的制备过程示意图;b,c,d分别为材料制备过程中的扫描电子显微镜图。
图2为NdNb2O7纳米片的表征图,a,b,c分别为纳米片的Nd、Nb、O元素的mapping图,d,e,f分别为纳米片的Nd、Nb、O元素的X射线光电子谱图。
图3为NdNb2O7纳米片薄膜的自组装过程示意图,a,b,c为纳米片自组装过程示意图,d,e分别为纳米片薄膜的透射电子显微镜图和扫描电子显微镜图。
图4为NdNb2O7纳米片薄膜器件的光电性能,a为该纳米片薄膜的透明度图,b为该器件的柔性弯曲展示图,c,d为该器件弯曲测试的I-V和I-t图,e,f为该薄膜器件的响应度和探测率。
具体实施方式
NdNb2O7纳米片薄膜紫外探测器的光电性能是通过半导体测量系统(Keithley4200)、探针台和光源组合系统进行测试的。所有测量均在室温下的大气环境中进行。
实施例1
(1)NdNb2O7纳米片的制备。首先,将Rb2CO3、Nd2O3和Nb2O5(摩尔比为1.3:1:2)的混合物彻底研磨。将混合物在1000℃下空气中煅烧24小时后,重复一次研磨和煅烧。其次,将所得RbNdNb2O7粉末与5MHNO3水溶液缓慢振荡5天,每天更新HNO3水溶液,得到HNdNb2O7产物洗涤并干燥。最后,将HNdNb2O7产物与其等摩尔四丁基氢氧化铵水溶液中进行振荡3天,然后对溶液进行离心,得到NdNb2O7纳米片。
图1为NdNb2O7纳米片的制备过程示意图和形貌表征,图1中a为纳米片的制备过程示意图,分别对应于固相烧结,质子化,液相剥离步骤。图1中b为固相烧结的RbNdNb2O7粉末的扫描电镜图,可以看出获得大尺寸的块状颗粒。图1中c为质子化的HNdNb2O7粉体的扫描电镜图,可以看出其具有明显的层状结构和层间缝隙。图1中d图为液相剥离的NdNb2O7纳米片的扫描电镜图,可以看出成功的剥离出NdNb2O7纳米片。
图2为NdNb2O7纳米片的表征图。a,b,c分别为纳米片的透射电镜Mapping图对应Nd、Nb、O元素的分布图,可以看出三种元素均匀地分布于纳米片中。d,e,f分别为纳米片的X射线光电子谱图,可以看出NdNb2O7纳米片对应的Nd3d,Nb3d,O1s态。
(2)NdNb2O7纳米片薄膜的界面自组装方法,首先将NdNb2O7纳米片分散在水中,并加入少量DMF。然后取部分溶液滴在氯仿表面。随后,薄膜开始在水面上形成,并逐渐形成更大的薄膜。最后自组装的纳米片薄膜可以直接转移到不同的衬底上(Si/SiO2,PET,载玻片),用于器件制造。
图3为纳米片的自组装过程示意图和纳米片薄膜表征图。图3中a,b,c为NdNb2O7纳米片自组装过程示意图。将适量的DMF滴入纳米片的水溶液中。DMF可与水和氯仿混溶,降低了它们之间的界面能,增加纳米片的流动性。将氯仿加入玻璃容器中,然后将纳米片溶液小心地加入氯仿表面(图3中a)。随着氯仿的蒸发,纳米片悬浮液迁移到水-空气界面(图3中b)。纳米片的流动性导致纳米片并排排列,组装成平整的宏观薄膜。如图3中c所示,小的NdNb2O7颗粒选择性地从纳米片中分离并粘附在容器壁上。大的NdNb2O7颗粒保留在氯仿-水界面,对组装结构没有贡献。表面配体(四丁基离子)仍然分散在水溶液中。因此通过界面自组装方法获得的平坦性和均匀性良好的纳米片薄膜。d-e分别为纳米片薄膜的原子力显微镜图和扫描电镜图,可以看出纳米片薄膜具有良好的平整度。
(3)NdNb2O7纳米片薄膜器件的光电性能。
纳米片通过界面自组装方法获得纳米片薄膜,然后转移到PET衬底,然后用硬膜版蒸镀Cr/Au电极来构筑器件。
如图4中a所示,NdNb2O7薄膜在350nm附近表现出透射率的明显降低,随后从350nm逐渐降低到300nm。由于其宽带隙,它在可见光范围(400-760nm)内保持80%的平均透射率。拍摄的照片清楚地展示了NdNb2O7纳米片的透明度。NdNb2O7薄膜器件的柔性展示如图4中b所示。NdNb2O7纳米片薄膜器件可以大角度弯曲,并测试了相应的光电性能。NdNb2O7薄膜器件在经历重复弯曲循环后,在黑暗和300nm光照下的I-V特性如图4中c所示。在弯曲测试之前,该器件在300nm光照射下在3V下表现出12nA的暗电流和2.3uA的光电流。图4中d示出了在300nm光照下特定弯曲角度下NdNb2O7薄膜器件的I-t曲线。即使在多次弯曲循环之后,该器件也表现出快速且可重复的光响应,没有任何明显的延迟。在打开和关闭入射光时,光电流迅速增加到1.2μA、0.56μA和0.12μA,然后分别迅速衰减到6.8nA、3.9nA和1.1nA。相应的开关比估计为176、143和109。图4中e展示了NdNb2O7薄膜器件的高响应度,在3V时在260nm处达到1.2AW-1。图4中f突出了NdNb2O7膜器件的高检测率,达到7.7*1011Jones。考虑到简单的制造工艺以及器件的灵活性和透明度,即使在反复弯曲测试后,NdNb2O7薄膜器件也能保持令人满意的性能。
综上所述,本发明首次提出高性能NdNb2O7纳米片薄膜紫外探测器,并提供一种剥离和自组装方法,将为NdNb2O7纳米片在光电子器件领域的应用奠定基础。

Claims (10)

1.一种NdNb2O7纳米片的制备方法,包括如下步骤:NdNb2O7纳米片是通过固相反应和液相剥离方法制备的,Rb2CO3、Nd2O3和Nb2O5的混合研磨后煅烧,得RbNdNb2O7粉末;将所得RbNdNb2O7粉末与HNO3水溶液振荡,得到HNdNb2O7产物洗涤并干燥;将HNdNb2O7与四丁基氢氧化铵水溶液中振荡、离心,得到NdNb2O7纳米片。
2.根据权利要求1所述的方法,其特征在于:按照摩尔比计算,Rb2CO3:Nd2O3:Nb2O5=1.3:1:2;
和/或,所述煅烧是指在1000℃下空气中煅烧24小时;
和/或,将HNdNb2O7与其等摩尔的四丁基氢氧化铵水溶液中振荡3天。
3.一种气液界面自组装方法制备NdNb2O7纳米片薄膜的方法,包括如下步骤:将权利要求1或2所述方法制备出的NdNb2O7纳米片分散在水中,并加入DMF形成混合分散液,然后取混合分散液滴在氯仿表面,自组装形成NdNb2O7纳米片薄膜。
4.一种NdNb2O7紫外光电探测器,将权利要求3所述方法制备出的NdNb2O7纳米片薄膜转移至衬底上,然后用硬膜版蒸镀Cr/Au电极来构筑紫外光电探测器。
5.根据权利要求4所述的NdNb2O7紫外光电探测器,所述衬底为Si/SiO2,PET或载玻片;进一步优选为PET。
6.一种NdNb2O7纳米片的用途,用于制备NdNb2O7紫外光电探测器。
7.根据权利要求6所述的用途,用于制备高性能柔性透明紫外探测器。
8.一种NdNb2O7紫外光电探测器的制备方法,包括如下步骤:
NdNb2O7纳米片的制备:NdNb2O7纳米片是通过固相反应和液相剥离方法制备的,Rb2CO3、Nd2O3和Nb2O5的混合研磨后煅烧,得RbNdNb2O7粉末;将所得RbNdNb2O7粉末与HNO3水溶液振荡,得到HNdNb2O7产物洗涤并干燥;将HNdNb2O7与四丁基氢氧化铵水溶液中振荡、离心,得到NdNb2O7纳米片;
NdNb2O7纳米片薄膜的制备:将NdNb2O7纳米片分散在水中,并加入DMF形成混合分散液,然后取混合分散液滴在氯仿表面,自组装形成NdNb2O7纳米片薄膜;
NdNb2O7纳米片薄膜转移至PET衬底上,然后用硬膜版蒸镀Cr/Au电极来构筑紫外光电探测器。
9.根据权利要求8所述的方法,所述NdNb2O7纳米片薄膜紫外探测器具有优异的光电性能,在3V和260nm光照射下,光电流为1.4uA,响应度为1.2A/W,比探测率为7.7*1011Jones。
10.根据权利要求8所述的高性能NdNb2O7紫外探测器,其特征在于:NdNb2O7纳米片薄膜紫外探测器具有优异的柔性光电性能,在200次弯曲测试后,NdNb2O7紫外探测器的光电流为0.12uA,开关比为100。
CN202311224649.7A 2023-09-21 2023-09-21 一种高性能NdNb2O7紫外探测器及其制备方法 Pending CN117038761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311224649.7A CN117038761A (zh) 2023-09-21 2023-09-21 一种高性能NdNb2O7紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311224649.7A CN117038761A (zh) 2023-09-21 2023-09-21 一种高性能NdNb2O7紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN117038761A true CN117038761A (zh) 2023-11-10

Family

ID=88645112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311224649.7A Pending CN117038761A (zh) 2023-09-21 2023-09-21 一种高性能NdNb2O7紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN117038761A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808294A (zh) * 2019-10-21 2020-02-18 复旦大学 二维铌酸锶纳米片紫外光电晶体管探测器
CN114122183A (zh) * 2021-11-25 2022-03-01 常熟理工学院 一体化柔性滤纸基铌酸钙紫外探测器及其制备方法与用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808294A (zh) * 2019-10-21 2020-02-18 复旦大学 二维铌酸锶纳米片紫外光电晶体管探测器
CN114122183A (zh) * 2021-11-25 2022-03-01 常熟理工学院 一体化柔性滤纸基铌酸钙紫外探测器及其制备方法与用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG ZHANG 等: "Two-dimensional perovskite NdNb2O7 for high-performance UV photodetectors by a general exfoliation and assembly strategy", 《NANO ENERGY 》, 16 September 2023 (2023-09-16), pages 1 - 7 *

Similar Documents

Publication Publication Date Title
Yen et al. van der Waals heteroepitaxy on muscovite
Yang et al. Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects
US20120205606A1 (en) Nonvolatile Memory Device Using The Resistive Switching of Graphene Oxide And The Fabrication Method Thereof
Ko et al. High-stability transparent flexible energy storage based on PbZrO3/muscovite heterostructure
Bernal et al. Free‐standing ferroelectric nanotubes processed via soft‐template infiltration
CN108101381B (zh) 一种铋基卤化物钙钛矿纳米片及其制备方法
Bhattacharya et al. 2D WS 2 embedded PVDF nanocomposites for photosensitive piezoelectric nanogenerators with a colossal energy conversion efficiency of∼ 25.6%
Wu et al. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors
Nagaraju et al. Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators
Li et al. Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications
CN110098326A (zh) 一种二维Ti3C2-MXene薄膜材料及其制备方法和在阻变存储器中的应用
Selamneni et al. Large area deposition of MoSe 2 on paper as a flexible near-infrared photodetector
Sun et al. Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity
CN106876584A (zh) 一种含黑磷烯的石墨烯柔性阻变存储器及其制备方法
Khan et al. Fabrication of zinc oxide nanoneedles on conductive textile for harvesting piezoelectric potential
TWI570055B (zh) 製備低維度材料之方法、製得的低維度材料及含彼之太陽能電池裝置
CN109455756B (zh) 一种SnS量子点/石墨烯忆阻器的制备方法
Zhang et al. Large-area flexible and transparent UV photodetector based on cross-linked Ag NW@ ZnO NRs with high performance
Ren et al. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition
Manamel et al. Electroforming-free nonvolatile resistive switching of redox-exfoliated MoS2 nanoflakes loaded polystyrene thin film with synaptic functionality
Lei et al. Synthesis of vertically-aligned large-area MoS2 nanofilm and its application in MoS2/Si heterostructure photodetector
Ban et al. Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film
CN117038761A (zh) 一种高性能NdNb2O7紫外探测器及其制备方法
Venugopal et al. Observation of nonvolatile resistive memory switching characteristics in Ag/graphene-oxide/Ag devices
CN116344662A (zh) 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination