WO2019200791A1 - 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法 - Google Patents

碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法 Download PDF

Info

Publication number
WO2019200791A1
WO2019200791A1 PCT/CN2018/101416 CN2018101416W WO2019200791A1 WO 2019200791 A1 WO2019200791 A1 WO 2019200791A1 CN 2018101416 W CN2018101416 W CN 2018101416W WO 2019200791 A1 WO2019200791 A1 WO 2019200791A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cadmium telluride
black
black phosphorus
substrate
Prior art date
Application number
PCT/CN2018/101416
Other languages
English (en)
French (fr)
Inventor
张晗
王慧德
郭志男
范涛健
曹睿
Original Assignee
张晗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张晗 filed Critical 张晗
Publication of WO2019200791A1 publication Critical patent/WO2019200791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of photoelectric detection, in particular to a wide-band black phosphorus photodetector with a cadmium telluride nanocrystal composite and a preparation method thereof.
  • a photodetector is a photodetector fabricated using the photoconductive effect of a semiconductor material.
  • the so-called photoconductive effect refers to a physical phenomenon in which the conductivity of an irradiated material is changed by radiation.
  • Photodetectors are used in a wide range of applications, including military and national economy, such as ray measurement and detection, industrial automation, and photometric measurement in the visible and near-infrared bands. High-efficiency photodetectors formed by the use of new two-dimensional materials and semiconductors in scientific research and industrial production are rapidly developing.
  • Two-dimensional materials represented by graphene have great potential applications in the fields of electronics and optoelectronics due to their special electrical and optical properties.
  • the two-dimensional black phosphorus photodetector has received great attention due to the adjustable band gap and the ability to detect the mid-infrared band.
  • black phosphorus cannot meet the wide-band high-efficiency photodetection of visible light and infrared light through the method of band gap regulation. Its application in related fields has been greatly limited.
  • the present invention provides a new type of photodetector capable of efficiently detecting visible light and infrared light at the same time.
  • a first aspect of the present invention provides a cadmium telluride nanocrystal composite wide-band black phosphorus photodetector comprising a substrate, a cadmium telluride nanocrystal layer and a black phosphorus thin layer sequentially disposed on the substrate, and a spacer A source and a drain are disposed on the black phosphor sheet layer, and a channel structure formed between the source and the drain exposes a portion of the black phosphor sheet layer.
  • the black phosphor flake layer has a thickness of 2-30 nm.
  • the black phosphor flake layer has a thickness of 2-10 nm.
  • the black phosphor flake layer has a thickness of 10-30 nm.
  • the size of the cadmium telluride nanocrystals in the cadmium telluride nanocrystal layer is 2-4 nm.
  • the cadmium telluride nanocrystal layer is formed by a single layer of cadmium telluride nanocrystals.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector further comprises a positively charged polymer layer disposed between the substrate and the cadmium telluride nanocrystal layer.
  • the material of the positively charged polymer layer is polydiallyldimethylammonium chloride.
  • the cadmium telluride nanocrystal layer is negatively charged, and the positively charged polymer layer is tightly bonded to the cadmium telluride nanocrystal layer.
  • the black phosphor flake layer exposed between the source and the drain has a length in the first direction of 1-10 ⁇ m and a length in the second direction of 1-15 ⁇ m.
  • the substrate comprises a silicon layer and a partially hydroxylated silicon dioxide layer disposed on the silicon layer, the silicon layer having a thickness of 300-500 ⁇ m and a resistivity of 1-10 ⁇ cm; the partial hydroxyl group
  • the thickness of the silicon dioxide layer is 200-500 nm.
  • the material of the source and the drain is at least one of gold, titanium, aluminum, chromium, tungsten and nickel.
  • the source and the drain are both composite electrodes formed by laminating a chromium layer and a gold layer.
  • the chromium layer is in contact with the black phosphorous flake layer, the chromium layer has a thickness of 5-10 nm, and the gold layer has a thickness of 20-80 nm.
  • the detection wavelength of the wide-band black phosphorus photodetector of the cadmium telluride nanocrystal composite is 400 nm to 1550 nm.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector provided by the first aspect of the present invention comprises a cadmium telluride nanocrystal layer and a black phosphorus thin layer disposed on the cadmium telluride nanocrystal layer, wherein the germanium
  • the cadmium nanocrystal layer increases the interaction between light and the detector, and can regulate the detector's efficient response to specific wavelengths of light in the visible light band, so that the photodetector can simultaneously detect visible light and infrared light.
  • a second aspect of the present invention provides a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite, comprising:
  • the substrate is placed in an aqueous solution of cadmium telluride nanocrystals for 4-10 hours, and a cadmium telluride nanocrystal layer is prepared on the substrate;
  • a photoresist pattern is formed on the black phosphorous flake layer and above the cadmium telluride nanocrystal layer not covered by the black phosphor flake layer, and after exposure and development, an electrode pattern is formed;
  • the electrode material is deposited, and then the photoresist is stripped to form a source and a drain to obtain a cadmium telluride nanocrystal composite wide-band black phosphorus photodetector.
  • the preparation method further comprises partially hydroxylating the substrate, and the specific operations include:
  • the substrate comprising a silicon layer and a silicon dioxide layer disposed on the silicon layer;
  • Hydrogen peroxide and concentrated sulfuric acid were added to the substrate, followed by heating at 100-200 ° C for 1-3 hours. After the end of the heating, the substrate was taken out and washed to obtain a partially hydroxylated silica layer.
  • the preparation method further comprises disposing a positively charged polymer layer on the partially hydroxylated substrate, and the specific operations include:
  • the substrate provided with the partially hydroxylated silica layer is placed in an aqueous solution containing a positively charged polymer for 0.1-2 h, then taken out, washed and dried, after the partially hydroxylated silica A positively charged polymer layer is obtained on the layer.
  • the aqueous solution containing the positively charged polymer is an aqueous solution of polydiallyldimethylammonium chloride having a mass fraction of 0.7% to 1.1%.
  • the substrate provided with the positively charged polymer layer is placed in the cadmium telluride nanocrystal aqueous solution for 4-10 hours, and the cadmium telluride nanocrystals are self-assembled in the positively charged polymer layer.
  • the cadmium telluride nanocrystal layer is formed on the positively charged polymer layer.
  • the invention provides a preparation method of a wide-band black phosphorus photodetector with a cadmium telluride nanocrystal composite.
  • the method is simple and practical, and the prepared black phosphorus photodetector can simultaneously detect visible light and infrared light efficiently.
  • the wide-band black phosphorus photodetector of the cadmium telluride nanocrystal composite provided by the invention can simultaneously detect visible light and infrared light;
  • the preparation method of the wide-band black phosphorus photodetector with the cadmium telluride nanocrystal composite provided by the invention is simple and easy to operate.
  • FIG. 1 is a schematic structural view of a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite according to an embodiment of the present invention
  • Fig. 3 is a photodetection test result of a broad-band black phosphorus photodetector with a cadmium telluride nanocrystal composite in Example 1 of the present invention.
  • a first aspect of an embodiment of the present invention provides a cadmium telluride nanocrystal composite wide-band black phosphorus photodetector, comprising a substrate 10 and a cadmium telluride nanocrystalline layer sequentially disposed on the substrate 10 . 4 and a black phosphor flake layer 5, and a source electrode 6 and a drain electrode 7 disposed on the black phosphor flake layer 5, and a channel structure formed between the source electrode 6 and the drain electrode 7 exposes a portion The black phosphorus sheet layer 5.
  • the substrate 10 includes a silicon layer 1 and a partially hydroxylated silicon dioxide layer 2 disposed on the silicon layer 1.
  • the silicon layer 1 has a thickness of 300-500 ⁇ m and a resistivity of 1 -10 ⁇ cm.
  • the silica in the partially hydroxylated silica layer 2 is partially hydroxylated, and the partially hydroxylated silica layer 2 has a thickness of 200-500 nm.
  • the substrate 1 is a p-type or n-type doped single-spray silicon oxide wafer, the silicon wafer includes a silicon portion and a silicon dioxide portion, wherein the silicon portion corresponds to the silicon layer 1, the silicon dioxide portion Corresponding to the partially hydroxylated silica layer 2.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector further comprises a positively charged polymer layer disposed between the substrate 10 and the cadmium telluride nanocrystal layer 4 3. That is, the positively charged polymer layer 3 is disposed on the substrate 10, and the cadmium telluride nanocrystal layer 4 is disposed on the positively charged polymer layer 3.
  • the positively charged polymer layer 3 is disposed on the partially hydroxylated silicon dioxide layer 2.
  • the material of the positively charged polymer layer is a positively charged polymer and the polymer does not interfere with the normal operation of the detector.
  • the material of the positively charged polymer layer is polydiallyldimethylammonium chloride (PDDA).
  • PDDA polydiallyldimethylammonium chloride
  • the positively charged polymer layer 3 is obtained by immersing the substrate 10 in a solution containing the positively charged polymer.
  • the positively charged polymer layer 3 is relatively thin, only about 0.1 nm.
  • the positively charged polymer layer 3 partially covers the surface of the substrate 10.
  • the size of the cadmium telluride nanocrystals in the cadmium telluride nanocrystal layer 4 is 2-4 nm.
  • the cadmium telluride nanocrystal has a size of 2 nm, 3 nm or 4 nm.
  • the cadmium telluride nanocrystal layer 4 is formed as a single layer of cadmium telluride nanocrystals, that is, the cadmium telluride nanocrystal layer 4 may also have a thickness of 2-4 nm.
  • the cadmium telluride nanocrystal layer 4 partially covers the surface of the substrate 10.
  • the cadmium telluride nanocrystal layer 4 partially covers the surface of the positively charged polymer layer 3.
  • the substrate 10 comprises a partially hydroxylated silica layer
  • the partially hydroxylated silica is negatively charged, and the positively charged polydiallyldimethylammonium chloride can be adsorbed to a portion of the hydroxyl groups.
  • the silicon dioxide layer On the silicon dioxide layer.
  • a negatively charged cadmium telluride nanocrystal is disposed on the positively charged polydiallyldimethylammonium chloride layer, thereby self-assembling the cadmium telluride nanocrystal in the polydiallyldimethyl group.
  • the cadmium telluride nanocrystals are tightly combined with the polydiallyldimethylammonium chloride layer to form a cadmium telluride nanocrystal layer.
  • the black phosphor flake layer has a thickness of 2-30 nm.
  • the black phosphorus flakes in the black phosphor flake layer 5 are obtained by a method of tearing tape from a black phosphorus single crystal block.
  • the black phosphor flake layer is formed from a single piece of black phosphor flakes.
  • the black phosphor flakes have a thickness of 2-30 nm.
  • the black phosphor flakes have a thickness of 10-30 nm.
  • the black phosphor flakes have a thickness of 2-10 nm.
  • the black phosphor flakes have a thickness of 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm. 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm or 30 nm.
  • the source 6 and the drain 7 are made of at least one of gold, titanium, aluminum, chromium, tungsten, and nickel.
  • the source 6 and the drain 7 are composite electrodes formed by laminating a chrome layer and a gold layer, wherein the chrome layer is in contact with the black phosphor layer layer, and the chrome layer has a thickness of 5 -10 nm, the gold layer has a thickness of 20-80 nm.
  • the source 6 and the drain 7 are connected to an external power source.
  • the source 6 and the drain 7 are disposed at opposite ends of the black phosphor sheet layer.
  • the source 6 and the drain 7 are in contact with the black phosphor sheet layer, and the area of the contact is not particularly limited.
  • a portion of the source 6 and the drain 7 are in partial contact with the black phosphor flake layer and another portion is in contact with the cadmium telluride nanocrystal layer 4.
  • the length of the black phosphor flake layer exposed between the source and the drain in the first direction is 1-10 ⁇ m along the edge.
  • the length of the second direction ie, W in FIG. 1
  • the first direction is a direction perpendicular to a direction in which the source and the drain extend
  • the second direction is parallel to the The direction in which the source and the drain extend, that is, the first direction is perpendicular to the second direction.
  • the length L is 3 ⁇ m and the length W is 10 ⁇ m.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector can simultaneously detect visible light and infrared light.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector has a detection wavelength of 400 nm to 1550 nm.
  • the cadmium telluride nanocrystal composite wide-band black phosphorus photodetector provided by the embodiment of the present invention comprises a cadmium telluride nanocrystal layer and a black phosphorus thin layer disposed on the cadmium telluride nanocrystal layer, and the bismuth
  • the cadmium nanocrystal layer increases the interaction between the light and the detector, and can regulate the detector's efficient response to specific wavelengths of light in the visible light band, so that the photodetector can simultaneously detect visible light and infrared light, which is a wide band. Black phosphorus photodetector.
  • the photodetector provided by the embodiment can be well applied to fields requiring simultaneous detection of visible light and near-infrared light, such as infrared remote sensing, infrared imaging, and the like. This can greatly reduce the complexity of the detection system and the overall power consumption.
  • a second aspect of the embodiments of the present invention provides a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite, comprising:
  • the substrate is placed in a cadmium telluride nanocrystal aqueous solution for 4-10h, and a cadmium telluride nanocrystal layer is prepared on the substrate;
  • a p-type or n-type doped silicon wafer having a silicon dioxide layer is provided as a substrate, and the silicon wafer includes two layers, respectively, a silicon layer 1 and two.
  • a commercial standard 4-inch p-type or n-type doped single-spray silicon oxide wafer was cut into a size of 1 ⁇ 1 cm 2 using a silicon wafer cutter to obtain a silicon wafer to be used in the embodiment of the present invention.
  • the step S01 further includes an operation of cleaning the silicon wafer, and the cleaning is performed according to the following method:
  • the silicon wafer to be used is sequentially ultrasonicated by acetone solution, isopropanol (or ethanol) for 3-5 minutes, ultrasonicated with deionized water for 3-8 min, and quickly dried with high purity nitrogen for use.
  • the method before the preparation of the cadmium telluride nanocrystal layer, the method further comprises partially hydroxylating the substrate, and the method for partially hydroxylating comprises:
  • Hydrogen peroxide and concentrated sulfuric acid were added to the above silicon wafer, and then heated at 100 to 200 ° C for 1-3 hours. After the completion of the heating, the substrate was taken out and washed to obtain a partially hydroxylated silica layer 2.
  • the cleaned silicon wafer is placed in a clean beaker, and an appropriate amount of hydrogen peroxide (concentration: 30%) is added to the beaker through a measuring cylinder, and then 2-3 times the volume of hydrogen peroxide is used to concentrate sulfuric acid (concentration is 98%) slowly added to the beaker, then the beaker is placed on a hot plate for 1-3 hours, wherein the heating temperature is set to 100-200 ° C; finally, the silicon wafer is taken out and rinsed with ultrapure water, dried with nitrogen to obtain The partially hydroxylated silica layer 2 is ready for use.
  • hydrogen peroxide concentration: 30%
  • the Si-O bond in the silica is opened by using hydrogen peroxide and concentrated sulfuric acid to form a hydroxyl group, and the partially hydroxylated silica layer is hydroxylated only in the surface layer of the silica layer, the silica
  • the thickness of the hydroxylated portion of the layer is the thickness of several atomic layers.
  • the thickness of the partially hydroxylated silicon dioxide layer is substantially the same as the thickness of the non-hydroxylated silicon dioxide layer.
  • the preparation method of the present invention further comprises disposing a positively charged polymer layer 3 on the partially hydroxylated silicon dioxide layer 2, and the method for preparing the positively charged polymer layer 3 includes :
  • the substrate provided with the partially hydroxylated silica layer is placed in an aqueous solution containing a positively charged polymer for 0.1-2 h, then taken out, washed and dried, after the partially hydroxylated silica A positively charged polymer layer is obtained on the layer.
  • the substrate prepared with the partially hydroxylated silica layer prepared above is placed in a solution of polydiallyldimethylammonium chloride at room temperature for 0.1-2 hours, and then taken out for ultrapure. The water was rinsed off and dried with nitrogen to give a layer of polydiallyldimethylammonium chloride.
  • the mass fraction of PDDA in the aqueous solution of polydiallyldimethylammonium chloride (PDDA) is from 0.7% to 1.1%. Specifically, the mass fraction of PDDA in the aqueous solution of polydiallyldimethylammonium chloride (PDDA) was 0.9%.
  • the preparation method of the cadmium telluride nanocrystal aqueous solution in the step S02 comprises:
  • step S02 after the immersion is completed, the silicon wafer is taken out and rinsed with ultrapure water and blown dry with nitrogen.
  • the size of the cadmium telluride nanocrystals in the cadmium telluride nanocrystal aqueous solution is 2-4 nm.
  • the size of the cadmium telluride nanocrystal of the present invention varies with the preparation process parameters.
  • the preparation method of the black phosphor flakes comprises:
  • the black phosphorus single crystal block was stuck to the tape, and the tape was repeatedly peeled off 10-20 times to obtain a black phosphorus sheet 51, and the obtained black phosphorus sheet was transferred onto the organic film 8, followed by black phosphorus on the organic film 8.
  • the sheet 51 is transferred onto the cadmium telluride nanocrystal layer 4 to form a black phosphorus sheet layer.
  • the tape is a Scotch tape.
  • the organic film 8 comprises a polydimethylsiloxane (PDMS) film.
  • PDMS polydimethylsiloxane
  • step S03 the black phosphorus single crystal block can be obtained or obtained according to a conventional method.
  • a layer of photoresist 9 (PMMA) is spin-coated over the black phosphor flakes 51 and over the cadmium telluride nanocrystal layer 4 not covered by the black phosphor flakes 51 (model number) It is 950, A4-A10), the rotation speed is 2000-4000 rpm, and it is baked on a hot plate for 1-5 minutes, and the drying temperature is 50-180 °C.
  • the photoresist-coated sample was subjected to electron beam exposure, and a specific electrode pattern 11 was obtained by a developing process.
  • the electrode pattern 11 is two through holes that penetrate the photoresist and expose a portion of the black phosphor flakes.
  • an electrode material is deposited over the via hole, and the electrode material fills the via hole and contacts the black phosphor flake to form a source electrode 6 and a drain electrode 7.
  • the deposition is performed by a method such as thermal evaporation or magnetron sputtering.
  • a chromium layer 12 having a thickness of 5-10 nm is first deposited, and then a gold layer 13 having a thickness of 20-80 nm is deposited to form a composite electrode.
  • the sample of the evaporated chromium/gold electrode is placed in an organic solvent such as acetone to be used for stripping the photoresist, and placed on a hot plate for heating for 10-30 minutes, wherein the temperature of the heating plate is set to 30- At 50 ° C, finally take out the sample and quickly dry it with high purity nitrogen.
  • an organic solvent such as acetone
  • the obtained cadmium telluride nanocrystal composite wide-band black phosphorus photodetector is tested by a semiconductor characteristic analyzer.
  • the invention provides a preparation method of a wide-band black phosphorus photodetector with a cadmium telluride nanocrystal composite.
  • the method is simple and practical, and the prepared black phosphorus photodetector can simultaneously detect visible light and infrared light efficiently; Controlling the particle size of the synthesized cadmium telluride nanocrystals directly controls the detector's efficient response to specific wavelengths of light in the visible range. This greatly expands the application of black phosphorus photodetectors and is extremely practical.
  • a wide-band black phosphorus photodetector composited with cadmium telluride nanocrystals comprising a p-type or n-type doped silicon layer, a partially hydroxylated silicon dioxide layer, and a polydiallyldimethyl chloride layer laminated in sequence
  • An ammonium layer, a cadmium telluride nanocrystal layer, a black phosphorus flake, a source and a drain disposed at opposite ends of the black phosphor flake and respectively contacting the black phosphor flake, and a channel formed between the source and the drain The structure exposes a portion of the black phosphorus flakes.
  • the thickness of the silicon layer is 300 ⁇ m
  • the thickness of the partially hydroxylated silicon dioxide layer is 300 nm
  • the thickness of the black phosphorus thin film is 10 nm
  • the combination of the source and the drain are respectively a 5 nm thick chromium layer and a 40 nm thick gold layer. electrode.
  • a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite comprising the following steps:
  • the silicon wafer to be used prepared in the step (2) is placed in an aqueous solution of PDDA having a mass fraction of 0.9% and immersed for 0.1 hour, and then taken out and rinsed with ultrapure water, dried with nitrogen, and then placed in a deuterated solution. Soaked in cadmium nanocrystal aqueous solution for 4h. Finally, it was taken out and rinsed with ultrapure water and dried with nitrogen for use.
  • the preparation method of the cadmium telluride nanocrystal aqueous solution comprises the following steps:
  • Electron beam exposure and development the photoresist-coated sample was subjected to electron beam exposure, and a specific electrode pattern was obtained by a developing process.
  • a wide-band black phosphorus photodetector composited with cadmium telluride nanocrystals comprising a p-type or n-type doped silicon layer, a partially hydroxylated silicon dioxide layer, and a polydiallyldimethyl chloride layer laminated in sequence
  • An ammonium layer, a cadmium telluride nanocrystal layer, a black phosphorus flake, a source and a drain disposed at opposite ends of the black phosphor flake and respectively contacting the black phosphor flake, and a channel formed between the source and the drain The structure exposes a portion of the black phosphorus flakes.
  • the thickness of the silicon layer is 500 ⁇ m
  • the thickness of the partially hydroxylated silicon dioxide layer is 500 nm
  • the thickness of the black phosphorus thin film is 5 nm
  • the composite of the 10 nm thick chromium layer and the 80 nm thick gold layer is formed by lamination of the source and the drain, respectively. electrode.
  • a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite comprising the following steps:
  • the silicon wafer to be used in the step (2) is placed in an aqueous solution of PDDA having a mass fraction of 0.9% for 2 hours, and then taken out and rinsed with ultrapure water, dried with nitrogen, and then placed in a cadmium telluride nanometer. Soak in the aqueous solution for 10 h. Finally, it was taken out and rinsed with ultrapure water and dried with nitrogen for use.
  • the preparation method of the cadmium telluride nanocrystal aqueous solution comprises the following steps:
  • Electron beam exposure and development the photoresist-coated sample was subjected to electron beam exposure, and a specific electrode pattern was obtained by a developing process.
  • a wide-band black phosphorus photodetector composited with cadmium telluride nanocrystals comprising a p-type or n-type doped silicon layer, a partially hydroxylated silicon dioxide layer, and a polydiallyldimethyl chloride layer laminated in sequence
  • An ammonium layer, a cadmium telluride nanocrystal layer, a black phosphorus flake, a source and a drain disposed at opposite ends of the black phosphor flake and respectively contacting the black phosphor flake, and a channel formed between the source and the drain The structure exposes a portion of the black phosphorus flakes.
  • the thickness of the silicon layer is 400 ⁇ m
  • the thickness of the partially hydroxylated silicon dioxide layer is 200 nm
  • the thickness of the black phosphorus thin film is 2 nm
  • the combination of the source and the drain are respectively a 7 nm thick chromium layer and a 20 nm thick gold layer. electrode.
  • a method for preparing a broadband black phosphorus photodetector with a cadmium telluride nanocrystal composite comprising the following steps:
  • the preparation method of the cadmium telluride nanocrystal aqueous solution comprises the following steps:
  • Electron beam exposure and development the photoresist-coated sample was subjected to electron beam exposure, and a specific electrode pattern was obtained by a developing process.
  • Example 1 The cadmium telluride nanocrystal composite wide-band black phosphorus photodetector prepared in Example 1 was tested for visible to near-infrared light detection, and the test method comprises the following steps:
  • a wide-band black phosphorus photodetector having a cadmium telluride nanocrystal composite prepared in Example 1 was taken, and a silicon dioxide layer was cut at one corner of the silicon wafer with a silicon knife.
  • the drain probe selects the voltage scan mode, the scan range is -1V-1V, the source voltage is set to 0V, and the gate voltage is 0V (the gate voltage can also be set to -60V). Any value between 60V).
  • Fig. 3 is a photocurrent response characteristic curve of a laser of different wavelengths of a detector with a power of 50 mW/cm 2 . It can be seen from the figure that since the 405 nm laser can excite the cadmium telluride nanocrystals prepared in Example 1 to emit green fluorescence, which increases the interaction between light and the detector, the detector has a higher 405 nm laser. High photocurrent responsivity; on the other hand, since the photoelectric response wavelength corresponding to the selected thickness of black phosphorus is in the infrared band, the detector also has a good photocurrent for lasers in the infrared band, such as 1064 nm and 1550 nm lasers. Responsiveness. In summary, the detector can achieve high-efficiency photodetection of wide-band wavelengths in both visible and infrared light bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法,该光电探测器包括基底、依次设置在基底上的碲化镉纳米晶层和黑磷薄片层,以及间隔设置在黑磷薄片层上的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分黑磷薄片层。该探测器可实现同时对可见光和红外光的探测,并且其制备方法简单易操作。

Description

碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法
本发明要求2018年4月17日递交的申请号为201810340838.3,发明名称为“碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及光电探测领域,具体涉及一种碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法。
背景技术
光电探测器是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起的被照射材料电导率改变的一种物理现象。光电探测器用途广泛,涵盖军事和国民经济的各个领域,如在可见光和近红外波段主要用于射线测量和探测、工业自动控制、光度计量等。目前科学研究和工业生产领域利用新型二维材料半导体形成的高效光电探测器正在迅猛发展。
以石墨烯为代表的二维材料由于自身特殊的电学和光学性能,在电子和光电子领域具有巨大的潜在应用。在这些二维材料中,二维黑磷光电探测器由于带隙可调且可以探测到中红外光波段,而受到极大关注。但是黑磷无法通过带隙调控等方法同时满足可见光和红外光的宽波段高效光电探测。使得其在相关领域的应用受到了很大限制。
发明内容
为解决上述问题,本发明提供了一种能同时高效探测可见光和红外光的新 型光电探测器。
本发明第一方面提供了一种碲化镉纳米晶复合的宽波段黑磷光电探测器,其包括基底、依次设置在所述基底上的碲化镉纳米晶层和黑磷薄片层,以及间隔设置在所述黑磷薄片层上的源极和漏极,所述源极和所述漏极之间形成的沟道结构暴露出部分所述黑磷薄片层。
其中,所述黑磷薄片层的厚度为2-30nm。
其中,所述黑磷薄片层的厚度为2-10nm。
其中,所述黑磷薄片层的厚度为10-30nm。
其中,所述碲化镉纳米晶层中的碲化镉纳米晶的尺寸为2-4nm。
其中,所述碲化镉纳米晶层由单层的碲化镉纳米晶形成。
其中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器还包括设置在所述基底与所述碲化镉纳米晶层之间的带正电的聚合物层。
其中,所述带正电的聚合物层的材料为聚二烯丙基二甲基氯化铵。
其中,所述碲化镉纳米晶层带负电,所述带正电的聚合物层与所述碲化镉纳米晶层紧密结合。
其中,所述源极和所述漏极之间暴露出的所述黑磷薄片层沿第一方向的长度为1-10μm,沿第二方向的长度为1-15μm。
其中,所述基底包括硅层和设置在所述硅层上的部分羟基化的二氧化硅层,所述硅层的厚度为300-500μm,电阻率为1-10Ω·cm;所述部分羟基化的二氧化硅层的厚度为200-500nm。
其中,所述源极和所述漏极的材质为金、钛、铝、铬、钨和镍中的至少一种。
其中,所述源极和漏极均为由铬层和金层层叠形成的复合电极。
其中,所述铬层与所述黑磷薄片层接触,所述铬层的厚度为5-10nm,所述 金层的厚度为20-80nm。
其中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器的探测波长为400nm-1550nm。
本发明第一方面提供的碲化镉纳米晶复合的宽波段黑磷光电探测器,包括碲化镉纳米晶层和设置在所述碲化镉纳米晶层上的黑磷薄片层,所述碲化镉纳米晶层增加了光与探测器的相互作用,可以调控探测器对可见光波段内特定波长光的高效响应,从而使得光电探测器可以实现同时对可见光和红外光的探测。
本发明第二方面提供了一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,其包括:
提供基底;
将所述基底放入到碲化镉纳米晶水溶液中浸泡4-10h,在所述基底上制得碲化镉纳米晶层;
将黑磷薄片转移到所述碲化镉纳米晶层上,形成黑磷薄片层;
在所述黑磷薄片层上方以及未被所述黑磷薄片层覆盖的所述碲化镉纳米晶层上方旋涂光刻胶,经曝光和显影后,形成电极图案;
沉积电极材料,随后剥离光刻胶,形成源极和漏极,得到碲化镉纳米晶复合的宽波段黑磷光电探测器。
其中,在制备碲化镉纳米晶层之前,所述制备方法还包括对所述基底进行部分羟基化,具体操作包括:
提供所述基底,所述基底包括硅层和设置在所述硅层上的二氧化硅层;
向所述基底加入过氧化氢和浓硫酸,然后在100-200℃加热1-3小时,加热结束后,取出基底并清洗,得到部分羟基化的二氧化硅层。
其中,在制备碲化镉纳米晶层之前,所述制备方法还包括在所述部分羟基 化的基底上设置带正电的聚合物层,具体操作包括:
将设有所述部分羟基化的二氧化硅层的基底置于含有带正电的聚合物的水溶液中浸泡0.1-2h,然后取出,清洗和干燥后,在所述部分羟基化的二氧化硅层上得到带正电的聚合物层。
其中,所述含有带正电的聚合物的水溶液为质量分数为0.7%-1.1%的聚二烯丙基二甲基氯化铵水溶液。
其中,将设有所述带正电的聚合物层的基底放入到所述碲化镉纳米晶水溶液中浸泡4-10h,碲化镉纳米晶自组装在所述带正电的聚合物层上,在所述带正电的聚合物层上制得所述碲化镉纳米晶层。
本发明提出了一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,方法简单实用,制得的黑磷光电探测器可以同时高效地探测可见光和红外光。
综上,本发明有益效果包括以下几个方面:
1、本发明提供的碲化镉纳米晶复合的宽波段黑磷光电探测器,可以实现同时对可见光和红外光的探测;
2、本发明提供的碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法简单易操作。
附图说明
图1为本发明一实施方式提供的碲化镉纳米晶复合的宽波段黑磷光电探测器的结构示意图;
图2为本发明一实施方式提供的碲化镉纳米晶复合的宽波段黑磷光电探测器制备方法流程图;
图3为本发明实施例1中碲化镉纳米晶复合的宽波段黑磷光电探测器的光 电探测测试结果。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
请参阅图1,本发明实施方式第一方面提供了一种碲化镉纳米晶复合的宽波段黑磷光电探测器,包括基底10、依次设置在所述基底10上的碲化镉纳米晶层4和黑磷薄片层5,以及间隔设置在所述黑磷薄片层5上的源极6和漏极7,所述源极6和所述漏极7之间形成的沟道结构暴露出部分所述黑磷薄片层5。
本发明实施方式中,所述基底10包括硅层1和设置在所述硅层1上的部分羟基化的二氧化硅层2,所述硅层1的厚度为300-500μm,电阻率为1-10Ω·cm。所述部分羟基化的二氧化硅层2中的二氧化硅被部分羟基化,所述部分羟基化的二氧化硅层2的厚度为200-500nm。可选地,所述基底1为p型或n型掺杂的单抛氧化硅片,所述硅片包括硅部分和二氧化硅部分,其中,硅部分对应于硅层1,二氧化硅部分对应于部分羟基化的二氧化硅层2。
本发明实施方式中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器还包括设置在所述基底10与所述碲化镉纳米晶层4之间的带正电的聚合物层3。即所述带正电的聚合物层3设置在所述基底10上,所述碲化镉纳米晶层4设置在所述带正电的聚合物层3上。可选地,所述带正电的聚合物层3设置在所述部分羟基化的二氧化硅层2上。可选地,所述带正电的聚合物层的材料为带正电的聚合物,且所述聚合物不影响探测器的正常工作。进一步可选地,所述带正电的聚合物层的材料为聚二烯丙基二甲基氯化铵(PDDA)。可选地,所述带正电的 聚合物层3为通过将基底10置于含有所述带正电的聚合物的溶液中浸泡得到。可选地,所述带正电的聚合物层3厚度较薄,仅为0.1nm左右。可选地,所述带正电的聚合物层3部分覆盖在所述基底10的表面。
本发明实施方式中,所述碲化镉纳米晶层4中的碲化镉纳米晶的尺寸为2-4nm。可选地,所述碲化镉纳米晶的尺寸为2nm、3nm或4nm。可选地,所述碲化镉纳米晶层4为单层的碲化镉纳米晶形成,即所述碲化镉纳米晶层4的厚度也可为2-4nm。可选地,所述碲化镉纳米晶层4部分覆盖在所述基底10的表面。可选地,所述碲化镉纳米晶层4部分覆盖在所述带正电的聚合物层3的表面。
可选地,当所述基底10包括部分羟基化的二氧化硅层时,部分羟基化的二氧化硅带负电,带正电的聚二烯丙基二甲基氯化铵可以吸附在部分羟基化的二氧化硅层上。然后再在带正电的聚二烯丙基二甲基氯化铵层上设置带负电的碲化镉纳米晶,从而使碲化镉纳米晶自组装在所述聚二烯丙基二甲基氯化铵层上,使得碲化镉纳米晶与所述聚二烯丙基二甲基氯化铵层紧密结合形成碲化镉纳米晶层。
本发明实施方式中,所述黑磷薄片层的厚度为2-30nm。可选地,所述黑磷薄片层5中的黑磷薄片是从黑磷单晶块通过撕胶带的方法得到的。可选地,所述黑磷薄片层由一整块黑磷薄片形成的。可选地,所述黑磷薄片的厚度为2-30nm。可选地,所述黑磷薄片的厚度为10-30nm。可选地,所述黑磷薄片的厚度为2-10nm。具体地,所述黑磷薄片的厚度为2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm或30nm。
本发明实施方式中,所述源极6和漏极7的材质为金、钛、铝、铬、钨和 镍中的至少一种。可选地,所述源极6和漏极7均为由铬层和金层层叠形成的复合电极,其中,所述铬层与所述黑磷薄片层接触,所述铬层的厚度为5-10nm,所述金层的厚度为20-80nm。所述源极6和所述漏极7连接外部电源。可选地,所述源极6和所述漏极7设置在所述黑磷薄片层相对设置的两端。可选地,所述源极6和所述漏极7与所述黑磷薄片层实现接触即可,至于接触的面积不做特殊限定。可选地,所述源极6和所述漏极7中的一部分与所述黑磷薄片层部分接触,另一部分与碲化镉纳米晶层4接触。
请参照图1,本发明实施方式中,所述源极和所述漏极之间暴露出的所述黑磷薄片层沿第一方向的长度(即图1中L)为1-10μm,沿第二方向的长度(即图1中W)为1-15μm,其中,所述第一方向为垂直于所述源极和所述漏极延伸方向的方向,所述第二方向为平行于所述源极和所述漏极延伸方向的方向,即所述第一方向与所述第二方向垂直。在所述长度L和长度W的条件下,得到的光电探测器性能良好。可选地,所述长度L为3μm,长度W为10μm。
本发明实施方式中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器可以实现同时对可见光和红外光的探测。可选地,所述碲化镉纳米晶复合的宽波段黑磷光电探测器的探测波长为400nm-1550nm。
本发明实施方式提供的碲化镉纳米晶复合的宽波段黑磷光电探测器,包括碲化镉纳米晶层和设置在所述碲化镉纳米晶层上的黑磷薄片层,所述碲化镉纳米晶层增加了光与探测器的相互作用,可以调控探测器对可见光波段内特定波长光的高效响应,从而使得光电探测器可以实现同时对可见光和红外光的探测,为一种宽波段黑磷光电探测器。本实施方式提供的光电探测器能够很好的应用于需要同时探测可见光和近红外光的领域,比如红外遥感,红外成像等。这样可以极大降低探测系统的复杂程度和整体功耗。
本发明实施方式第二方面提供了一种碲化镉纳米晶复合的宽波段黑磷光 电探测器的制备方法,包括:
S01、提供基底;
S02、将所述基底放入到碲化镉纳米晶水溶液中浸泡4-10h,在所述基底上制得碲化镉纳米晶层;
S03、将黑磷薄片转移到所述碲化镉纳米晶层上,形成黑磷薄片层;
S04、在所述黑磷薄片层上方以及未被所述黑磷薄片层覆盖的所述碲化镉纳米晶层上方旋涂光刻胶,经曝光和显影后,形成电极图案;
S05、沉积电极材料,随后剥离光刻胶,形成源极和漏极,得到碲化镉纳米晶复合的宽波段黑磷光电探测器。
请参阅图2,本发明实施方式中,步骤S01中,提供p型或n型掺杂的具有二氧化硅层的硅片作为基底,所述硅片包括两层,分别为硅层1和二氧化硅层,所述硅层1的厚度为300-500μm,电阻率为1-10Ω·cm,所述二氧化硅层的厚度为200-500nm。具体地,用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片切成1×1cm 2大小,得到本发明实施方式待使用的硅片。
本发明实施方式中,步骤S01中还包括对所述硅片进行清洗的操作,所述清洗按照以下方法操作:
将待使用的硅片依次通过丙酮溶液、异丙醇(或为乙醇)分别超声3-5分钟,再用去离子水超声3-8min,并用高纯氮气快速吹干待用。
本发明实施方式中,在制备碲化镉纳米晶层之前还包括对基底进行部分羟基化,所述部分羟基化的方法包括:
向上述所述硅片加入过氧化氢和浓硫酸,然后在100-200℃加热1-3小时,加热结束后,取出基底并清洗,得到部分羟基化的二氧化硅层2。
具体地,将上述清洗过的硅片放入干净的烧杯中,用量筒取适量过氧化氢(浓度为30%)加入烧杯中,再取2-3倍过氧化氢体积的浓硫酸(浓度为98%) 缓慢加入烧杯中,然后将烧杯置于加热板上加热1-3小时,其中加热温度设置为100-200℃;最后取出硅片用超纯水冲洗干净、用氮气吹干,即得到部分羟基化的二氧化硅层2待用。
采用过氧化氢和浓硫酸将二氧化硅中的Si-O键打开形成羟基,所述部分羟基化的二氧化硅层为仅在二氧化硅层的表层进行了羟基化,所述二氧化硅层中被羟基化部分的厚度为几个原子层的厚度。因此,部分羟基化的二氧化硅层厚度和未被羟基化的二氧化硅层的厚度基本相同。
本发明实施方式中,本发明的制备方法还包括在所述部分羟基化的二氧化硅层2上设置带正电的聚合物层3,所述带正电的聚合物层3的制备方法包括:
将设有所述部分羟基化的二氧化硅层的基底置于含有带正电的聚合物的水溶液中浸泡0.1-2h,然后取出,清洗和干燥后,在所述部分羟基化的二氧化硅层上得到带正电的聚合物层。
具体地,将上述制得的设有所述部分羟基化的二氧化硅层的基底在常温下置于聚二烯丙基二甲基氯化铵水溶液中浸泡0.1-2h,然后取出用超纯水冲洗干净、用氮气吹干,得到聚二烯丙基二甲基氯化铵层。
可选地,所述聚二烯丙基二甲基氯化铵(PDDA)水溶液中PDDA的质量分数为0.7%-1.1%。具体地,所述聚二烯丙基二甲基氯化铵(PDDA)水溶液中PDDA的质量分数为0.9%。
本发明实施方式中,所述步骤S02中的碲化镉纳米晶水溶液的制备方法包括:
(1)、根据化学方程式:2Te+4NaBH 4+7H 2O=Na 2B 4O 7+2NaHTe+14H 2↑,制得碲氢化钠(NaHTe);
(2)、将巯基丙酸(MPA)、氯化镉(CdCl 2)加入到超纯水中,并用NaOH溶液调节溶液pH值至7.5-11.5,然后加入碲氢化钠(NaHTe),并剧烈脱氧搅拌 10-60分钟,得到前驱体;
(3)、取适量前驱体放入圆底烧瓶中,圆底烧瓶上方紧密连接球形冷凝管并通入冷凝水,加热套将前驱体加热至微沸状态同时不停搅拌并保持0.2-20h,待自然冷却取出,即得到碲化镉纳米晶水溶液。
本发明实施方式中,步骤S02中,浸泡结束后,取出硅片用超纯水冲洗干净并用氮气吹干。
本发明实施方式中,所述碲化镉纳米晶水溶液中碲化镉纳米晶的尺寸为2-4nm。本发明碲化镉纳米晶的尺寸随着制备工艺参数的变化而变化。
本发明实施方式中,步骤S03中,所述黑磷薄片的制备方法包括:
将黑磷单晶块粘到胶带上,反复撕胶带10-20次,得到黑磷薄片51,再将得到的黑磷薄片转移到有机薄膜8上,随后将所述有机薄膜8上的黑磷薄片51转移到所述碲化镉纳米晶层4上,形成黑磷薄片层。
可选地,所述胶带为Scotch胶带。所述有机薄膜8包括聚二甲基硅氧烷(PDMS)薄膜。通过撕胶带的方法可以得到厚度较薄的黑磷薄片,同时该方法简单易操作。
本发明实施方式中,步骤S03中,所述黑磷单晶块可按照常规方法制得或获得。
本发明实施方式中,步骤S03中,在所述黑磷薄片51上方以及未被所述黑磷薄片51覆盖的碲化镉纳米晶层4上方旋涂一层光刻胶9(PMMA)(型号为950,A4-A10),转速为2000-4000转/分钟,并在加热板上烘1-5分钟,烘干温度为50-180℃。将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案11。可选地,所述电极图案11为穿透所述光刻胶且暴露出部分所述黑磷薄片的两个通孔。
本发明实施方式中,步骤S05中,在所述通孔上方进行沉积电极材料,所 述电极材料填充所述通孔并与所述黑磷薄片相接触,形成源极6和漏极7。可选地,通过热蒸镀或磁控溅射等方法进行沉积。可选地,首先沉积5-10nm厚度的铬层12,然后再沉积20-80nm厚度的金层13以形成复合电极。沉积结束之后,将蒸镀好铬/金电极的样品放入如丙酮等有机溶剂中浸泡用于剥离光刻胶,并放置在加热板上加热10-30分钟,其中加热板温度设置为30-50℃,最后取出样品用高纯氮气快速吹干即可。
本发明实施方式中,取制得的碲化镉纳米晶复合的宽波段黑磷光电探测器,利用半导体特性分析仪进行相关性能测试。
本发明提出了一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,方法简单实用,制得的黑磷光电探测器可以同时高效地探测可见光和红外光;同时,可以通过控制合成的碲化镉纳米晶的粒径,直接调控探测器对可见光波段内特定波长光的高效响应。这极大地拓展了黑磷光电探测器的应用,极具实用价值。
实施例1:
一种碲化镉纳米晶复合的宽波段黑磷光电探测器,包括依次层叠的p型或n型掺杂的硅层、部分羟基化的二氧化硅层、聚二烯丙基二甲基氯化铵层、碲化镉纳米晶层、黑磷薄片,设置在黑磷薄片相对设置的两端且分别与黑磷薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分黑磷薄片。硅层的厚度为300μm,部分羟基化的二氧化硅层的厚度为300nm,黑磷薄片的厚度为10nm,源极和漏极分别为5nm厚的铬层和40nm厚的金层层叠形成的复合电极。
一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为300μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为300nm)切成1×1cm 2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声5min并用高纯氮气快速吹干待用。
(2)部分羟基化硅片;将(1)中的待用硅片放入干净的烧杯中,用量筒取适量过氧化氢(浓度为30%)加入烧杯中,再取2倍过氧化氢体积的浓硫酸(浓度为98%)缓慢加入烧杯中,然后将烧杯置于加热板上加热1小时,其中加热温度设置为200℃。最后取出硅片用超纯水冲洗干净、用氮气吹干,即得到部分羟基化的硅片待用。
(3)自组装碲化镉纳米晶。将步骤(2)制得的待用硅片放入到质量分数为0.9%的PDDA水溶液中浸泡0.1h,然后取出用超纯水冲洗干净、用氮气吹干,随后将其放入到碲化镉纳米晶水溶液中浸泡4h。最后取出用超纯水冲洗干净并用氮气吹干待用。
其中,该碲化镉纳米晶水溶液的制备方法包括以下步骤:
A.根据化学方程式:2Te+4NaBH 4+7H 2O=Na 2B 4O 7+2NaHTe+14H 2↑,制得碲氢化钠(NaHTe);
B.将23.7ml、5.7×10 -2mol/L的巯基丙酸(MPA)水溶液、5.57ml、0.1mol/L的氯化镉(CdCl 2)水溶液加入到装有400ml超纯水的锥形瓶中,并用0.1mol/L的NaOH溶液调节溶液pH值至9.1,然后加入碲氢化钠(NaHTe),并在N 2条件下剧烈脱氧搅拌30分钟,得到前驱体;
C.取110ml前驱体放入250ml单口圆底烧瓶中,圆底烧瓶上方紧密连接球形冷凝管并通入冷凝水,加热套将前驱体加热至微沸状态同时不停搅拌并保持1h,待自然冷却取出,即得到在紫外光激发下发绿色荧光的碲化镉纳米晶水溶液,该碲化镉纳米晶水溶液中碲化镉纳米晶的尺寸约为2nm。
(4)制备黑磷薄片;首先,取少量黑磷单晶块粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为10nm的黑磷薄片。再将撕好的样品转移到聚二甲基硅氧烷(以下简称“PDMS”)薄膜上,再将PDMS薄膜上的样品转移到(3)中得到的待用硅片上。
(5)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为3000转/分钟,并在加热板上烘5分钟,烘干温度为120℃。
(6)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(7)镀膜;通过热蒸镀的方法先后蒸镀5nm厚的铬层和40nm厚的金层,形成源极和漏极。
(8)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热10分钟,其中加热板温度设置为50℃,最后取出样品用高纯氮气快速吹干即可。
实施例2:
一种碲化镉纳米晶复合的宽波段黑磷光电探测器,包括依次层叠的p型或n型掺杂的硅层、部分羟基化的二氧化硅层、聚二烯丙基二甲基氯化铵层、碲化镉纳米晶层、黑磷薄片,设置在黑磷薄片相对设置的两端且分别与黑磷薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分黑磷薄片。硅层的厚度为500μm,部分羟基化的二氧化硅层的厚度为500nm,黑磷薄片的厚度为5nm,源极和漏极分别为10nm厚的铬层和80nm厚的金层层叠形成的复合电极。
一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为500μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为500nm)切成1×1cm 2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声3min并用高纯氮气快速吹干待用。
(2)部分羟基化硅片;将(1)中的待用硅片放入干净的烧杯中,用量筒取适量过氧化氢(浓度为30%)加入烧杯中,再取3倍过氧化氢体积的浓硫酸(浓度为98%)缓慢加入烧杯中,然后将烧杯置于加热板上加热3小时,其中加热温度设置为100℃。最后取出硅片用超纯水冲洗干净、用氮气吹干,即得到部分羟基化的硅片待用。
(3)自组装碲化镉纳米晶。将步骤(2)中的待用硅片放入到质量分数为0.9%的PDDA水溶液中浸泡2h,然后取出用超纯水冲洗干净、用氮气吹干,随后将其放入到碲化镉纳米晶水溶液中浸泡10h。最后取出用超纯水冲洗干净并用氮气吹干待用。
其中,该碲化镉纳米晶水溶液的制备方法包括以下步骤:
A.根据化学方程式:2Te+4NaBH 4+7H 2O=Na 2B 4O 7+2NaHTe+14H 2↑,制得碲氢化钠(NaHTe);
B.将23.7ml、5.7×10 -2mol/L的巯基丙酸(MPA)水溶液、5.57ml、0.1mol/L的氯化镉(CdCl 2)水溶液加入到装有400ml超纯水的锥形瓶中,并用0.1mol/L的NaOH溶液调节溶液pH值至9.1,然后加入碲氢化钠(NaHTe),并在N 2条件下剧烈脱氧搅拌30分钟,得到前驱体;
C.取110ml前驱体放入250ml单口圆底烧瓶中,圆底烧瓶上方紧密连接球形冷凝管并通入冷凝水,加热套将前驱体加热至微沸状态同时不停搅拌并保持3h,待自然冷却取出,即得到在紫外光激发下发橙色荧光的碲化镉纳米晶水溶液。该碲化镉纳米晶水溶液中碲化镉纳米晶的尺寸约为3nm。
(4)制备黑磷薄片;首先,取少量黑磷单晶块粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为5nm的黑磷薄片。再将撕好的样品转移到聚二甲基硅氧烷(PDMS)薄膜上,最后将PDMS薄膜上的样品转移到步骤(3)中清洗干净的待用硅片上。
(5)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为2000转/分钟,并在加热板上烘1分钟,烘干温度为180℃。
(6)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(7)镀膜;通过热蒸镀的方法先后蒸镀10nm厚的铬层和80nm厚的金层,形成源极和漏极。
(8)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热30分钟,其中加热板温度设置为30℃,最后取出样品用高纯氮气快速吹干即可。
实施例3:
一种碲化镉纳米晶复合的宽波段黑磷光电探测器,包括依次层叠的p型或n型掺杂的硅层、部分羟基化的二氧化硅层、聚二烯丙基二甲基氯化铵层、碲化镉纳米晶层、黑磷薄片,设置在黑磷薄片相对设置的两端且分别与黑磷薄片接触的源极和漏极,源极和漏极之间形成的沟道结构暴露出部分黑磷薄片。硅层的厚度为400μm,部分羟基化的二氧化硅层的厚度为200nm,黑磷薄片的厚度为2nm,源极和漏极分别为7nm厚的铬层和20nm厚的金层层叠形成的复合电极。
一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,包括以下步骤:
(1)清洗硅片;用硅片刀将商业用标准4英寸p型或n型掺杂的单抛氧化硅片(硅部分的厚度为400μm,电阻率为1-10Ω·cm,SiO 2部分的厚度为200nm)切成1×1cm 2大小,通过丙酮溶液、异丙醇(异丙醇也可以采用乙醇替代)分别超声5分钟,再用去离子水超声8min并用高纯氮气快速吹干待用。
(2)部分羟基化硅片;将(1)中的待用硅片放入干净的烧杯中,用量筒取适量过氧化氢(浓度为30%)加入烧杯中,再取2.5倍过氧化氢体积的浓硫酸(浓度为98%)缓慢加入烧杯中,然后将烧杯置于加热板上加热2小时,其中加热温度设置为150℃。最后取出硅片用超纯水冲洗干净、用氮气吹干,即得到部分羟基化的硅片待用。
(3)自组装碲化镉纳米晶。将(2)中的待用硅片放入到质量分数为0.9%的PDDA水溶液中浸泡1h,然后取出用超纯水冲洗干净、用氮气吹干,随后将其放入到碲化镉纳米晶水溶液中浸泡6h。最后取出用超纯水冲洗干净并用氮气吹干待用。
其中,该碲化镉纳米晶水溶液的制备方法包括以下步骤:
A.根据化学方程式:2Te+4NaBH 4+7H 2O=Na 2B 4O 7+2NaHTe+14H 2↑,制得碲氢化钠(NaHTe);
B.将23.7ml、5.7×10 -2mol/L的巯基丙酸(MPA)水溶液、5.57ml、0.1mol/L的氯化镉(CdCl 2)水溶液加入到装有400ml超纯水的锥形瓶中,并用0.1mol/L的NaOH溶液调节溶液pH值至9.1,然后加入碲氢化钠(NaHTe),并在N 2条件下剧烈脱氧搅拌30分钟,得到前驱体;
C.取110ml前驱体放入250ml单口圆底烧瓶中,圆底烧瓶上方紧密连接球形冷凝管并通入冷凝水,加热套将前驱体加热至微沸状态同时不停搅拌并保持8h,待自然冷却取出,即得到在紫外光激发下发红色荧光的碲化镉纳米晶水溶液。该碲化镉纳米晶水溶液中碲化镉纳米晶的尺寸约为4nm。
(4)制备黑磷薄片;首先,取少量黑磷单晶块粘到胶带(如Scotch胶带)上,反复撕10-20次,得到厚度为2nm的黑磷薄片。再将撕好的样品转移到聚二甲基硅氧烷(PDMS)薄膜上,最后将PDMS薄膜上的样品转移到步骤(3)中清洗干净的待用硅片上。
(5)旋涂烘干;在上述硅片表面旋涂一层光刻胶PMMA(A4),转速为2000转/分钟,并在加热板上烘5分钟,烘干温度为50℃。
(6)电子束曝光、显影;将涂有光刻胶的样品进行电子束曝光,并通过显影工艺得到特定的电极图案。
(7)镀膜;通过热蒸镀的方法先后蒸镀7nm厚的铬层和20nm厚的金层,形成源极和漏极。
(8)去金;将蒸镀好铬/金电极的样品放入丙酮中浸泡,并放置在加热板上加热20分钟,其中加热板温度设置为40℃,最后取出样品用高纯氮气快速吹干即可。
实施例4:
将实施例1制得的碲化镉纳米晶复合的宽波段黑磷光电探测器进行可见光至近红外光探测的测试,测试方法包括以下步骤:
(1)取实施例1中制作好的碲化镉纳米晶复合的宽波段黑磷光电探测器,用硅片刀在硅片的一个角划开二氧化硅层。
(2)将其放在半导体特性分析仪配套的探针平台上,通过配套的CCD成像系统找到探测器的准确位置。
(3)选取探针平台配套的两个探针分别接触到探测器的源、漏电极,选取另一探针接触步骤(1)中通过划开二氧化硅层而暴露出的硅层,当作探测器的背栅电极。
(4)打开半导体特性分析仪测试软件,漏极探针选择电压扫描模式,扫描范围为-1V-1V,设置源极电压为0V,栅极电压为0V(栅极电压也可以设置为-60V至60V之间的任意数值)。
(5)运行测试软件,得到探测器在无光条件下电学测试图。
(6)分别引入405nm、532nm、655nm、808nm、1064nm、1550nm激光,垂直照射在该光电探测器上,运行测试软件,分别得到探测器对应功率密度为50mW/cm 2时、不同波长的入射激光的电学测试图。
图3为探测器对功率为50mW/cm 2的不同波长激光的光电流响应特性曲线。由图可以看出,由于405nm的激光能够激发实施例1中制备得到的碲化镉纳米晶使其发绿色荧光,增加了光与探测器的相互作用,故该探测器对405nm的激光具有较高的光电流响应度;另一方面,由于所选择厚度的黑磷对应的光电响应波长处于红外波段,故该探测器对红外波段的激光,如1064nm、1550nm的激光也具有很好的光电流响应度。综上,该探测器可以实现同时对可见光和红外光波段的宽波段高效光电探测。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种碲化镉纳米晶复合的宽波段黑磷光电探测器,其中,其包括基底、依次设置在所述基底上的碲化镉纳米晶层和黑磷薄片层,以及间隔设置在所述黑磷薄片层上的源极和漏极,所述源极和所述漏极之间形成的沟道结构暴露出部分所述黑磷薄片层。
  2. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述黑磷薄片层的厚度为2-30nm。
  3. 如权利要求2所述的宽波段黑磷光电探测器,其中,所述黑磷薄片层的厚度为2-10nm。
  4. 如权利要求2所述的宽波段黑磷光电探测器,其中,所述黑磷薄片层的厚度为10-30nm。
  5. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述碲化镉纳米晶层中的碲化镉纳米晶的尺寸为2-4nm。
  6. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述碲化镉纳米晶层由单层的碲化镉纳米晶形成。
  7. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器还包括设置在所述基底与所述碲化镉纳米晶层 之间的带正电的聚合物层。
  8. 如权利要求7所述的宽波段黑磷光电探测器,其中,所述带正电的聚合物层的材料为聚二烯丙基二甲基氯化铵。
  9. 如权利要求7所述的宽波段黑磷光电探测器,其中,所述碲化镉纳米晶层带负电,所述带正电的聚合物层与所述碲化镉纳米晶层紧密结合。
  10. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述源极和所述漏极之间暴露出的所述黑磷薄片层沿第一方向的长度为1-10μm,沿第二方向的长度为1-15μm。
  11. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述基底包括硅层和设置在所述硅层上的部分羟基化的二氧化硅层,所述硅层的厚度为300-500μm,电阻率为1-10Ω·cm;所述部分羟基化的二氧化硅层的厚度为200-500nm。
  12. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述源极和所述漏极的材质为金、钛、铝、铬、钨和镍中的至少一种。
  13. 如权利要求12所述的宽波段黑磷光电探测器,其中,所述源极和漏极均为由铬层和金层层叠形成的复合电极。
  14. 如权利要求13所述的宽波段黑磷光电探测器,其中,所述铬层与所述 黑磷薄片层接触,所述铬层的厚度为5-10nm,所述金层的厚度为20-80nm。
  15. 如权利要求1所述的宽波段黑磷光电探测器,其中,所述碲化镉纳米晶复合的宽波段黑磷光电探测器的探测波长为400nm-1550nm。
  16. 一种碲化镉纳米晶复合的宽波段黑磷光电探测器的制备方法,其中,其包括:
    提供基底;
    将所述基底放入到碲化镉纳米晶水溶液中浸泡4-10h,在所述基底上制得碲化镉纳米晶层;
    将黑磷薄片转移到所述碲化镉纳米晶层上,形成黑磷薄片层;
    在所述黑磷薄片层上方以及未被所述黑磷薄片层覆盖的所述碲化镉纳米晶层上方旋涂光刻胶,经曝光和显影后,形成电极图案;
    沉积电极材料,随后剥离光刻胶,形成源极和漏极,得到碲化镉纳米晶复合的宽波段黑磷光电探测器。
  17. 如权利要求16所述的宽波段黑磷光电探测器的制备方法,其中,在制备碲化镉纳米晶层之前,所述制备方法还包括对所述基底进行部分羟基化,具体操作包括:
    提供所述基底,所述基底包括硅层和设置在所述硅层上的二氧化硅层;
    向所述基底加入过氧化氢和浓硫酸,然后在100-200℃加热1-3小时,加热结束后,取出基底并清洗,得到部分羟基化的二氧化硅层。
  18. 如权利要求17所述的宽波段黑磷光电探测器的制备方法,其中,在 制备碲化镉纳米晶层之前,所述制备方法还包括在所述部分羟基化的基底上设置带正电的聚合物层,具体操作包括:
    将设有所述部分羟基化的二氧化硅层的基底置于含有带正电的聚合物的水溶液中浸泡0.1-2h,然后取出,清洗和干燥后,在所述部分羟基化的二氧化硅层上得到带正电的聚合物层。
  19. 如权利要求18所述的宽波段黑磷光电探测器的制备方法,其中,所述含有带正电的聚合物的水溶液为质量分数为0.7%-1.1%的聚二烯丙基二甲基氯化铵水溶液。
  20. 如权利要求18所述的宽波段黑磷光电探测器的制备方法,其中,将设有所述带正电的聚合物层的基底放入到所述碲化镉纳米晶水溶液中浸泡4-10h,碲化镉纳米晶自组装在所述带正电的聚合物层上,在所述带正电的聚合物层上制得所述碲化镉纳米晶层。
PCT/CN2018/101416 2018-04-17 2018-08-21 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法 WO2019200791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810340838.3 2018-04-17
CN201810340838.3A CN108550640B (zh) 2018-04-17 2018-04-17 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
WO2019200791A1 true WO2019200791A1 (zh) 2019-10-24

Family

ID=63515218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101416 WO2019200791A1 (zh) 2018-04-17 2018-08-21 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法

Country Status (2)

Country Link
CN (1) CN108550640B (zh)
WO (1) WO2019200791A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109648095B (zh) * 2018-12-13 2021-12-14 兰州大学 锑纳米片及其剥离方法、以及柔性光探测器及其制备方法
CN114914315B (zh) * 2022-05-19 2024-07-09 华东师范大学 一种基于深能级缺陷态的CdTe宽光谱探测器及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702775A (zh) * 2016-03-18 2016-06-22 电子科技大学 一种基于黑磷/二硫化钼异质结能量带隙可调的光探测器
CN105742394A (zh) * 2016-02-29 2016-07-06 北京邮电大学 一种基于黑磷/石墨烯异质结构的紫外探测器及其制备方法
JP2016151558A (ja) * 2015-02-19 2016-08-22 富士通株式会社 ガスセンサ
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679876A (zh) * 2016-03-18 2016-06-15 电子科技大学 基于黑磷/二硫化钼异质结的光探测器
CN107285289B (zh) * 2016-04-01 2019-07-05 中国科学院苏州纳米技术与纳米仿生研究所 具有高光电响应率的黑磷晶体、其制备方法及应用
US9915567B2 (en) * 2016-06-28 2018-03-13 Excelitas Technologies Singapore Pte. Ltd. Unreleased thermopile infrared sensor using material transfer method
CN206003782U (zh) * 2016-08-31 2017-03-08 鸿之微科技(上海)有限公司 光电池器件
CN106328720A (zh) * 2016-09-07 2017-01-11 鲍小志 一种石墨烯‑黑磷异质结光电探测器及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151558A (ja) * 2015-02-19 2016-08-22 富士通株式会社 ガスセンサ
CN105742394A (zh) * 2016-02-29 2016-07-06 北京邮电大学 一种基于黑磷/石墨烯异质结构的紫外探测器及其制备方法
CN105702775A (zh) * 2016-03-18 2016-06-22 电子科技大学 一种基于黑磷/二硫化钼异质结能量带隙可调的光探测器
CN106024861A (zh) * 2016-05-31 2016-10-12 天津理工大学 二维黑磷/过渡金属硫族化合物异质结器件及其制备方法

Also Published As

Publication number Publication date
CN108550640A (zh) 2018-09-18
CN108550640B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Aftab et al. Emerging Trends in 2D TMDs Photodetectors and Piezo‐Phototronic Devices
CN101866975B (zh) 一种半导体传感器及制备方法
Liu et al. Suspended MoS2 photodetector using patterned sapphire substrate
CN111025690B (zh) 一种用于全光调制的石墨烯等离激元器件及制备方法
CN107732017A (zh) 一种等离激元结构衬底及其制备和应用
WO2019200791A1 (zh) 碲化镉纳米晶复合的宽波段黑磷光电探测器及其制备方法
Vishwakarma et al. Quantum-coupled borophene-based heterolayers for excitonic and molecular sensing applications
Sarkar et al. Surface engineered hybrid core–shell Si‐nanowires for efficient and stable broadband photodetectors
CN115360259A (zh) 硒化镍钽/硒化钨异质结光电探测器及其制备方法
Zhang et al. Facilely Achieved Self‐Biased Black Silicon Heterojunction Photodiode with Broadband Quantum Efficiency Approaching 100%
CN104659152B (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
Liu et al. Photolithographically constructed single ZnO nanowire device and its ultraviolet photoresponse
CN109103275A (zh) 基于二维碲纳米片的固体光探测器及其制备方法
Forcherio et al. Localized plasmonic fields of nanoantennas enhance second harmonic generation from two-dimensional molybdenum disulfide
Serra et al. Organic single crystal patterning method for micrometric photosensors
CN207611774U (zh) 一种近红外光电探测器
CN111129199A (zh) 一种石墨烯/硫化铅/钙钛矿光电探测器及其制备方法
WO2019085595A1 (zh) 一种近红外光电探测器及其制备方法
He et al. Pt nanoparticles enhanced TiO2 on ultra-violet photo-detection: Hot-electron injection effect over near-field enhancement
Valluzzi et al. Optical and electrical properties of TiO2/Co/TiO2 multilayer films grown by DC magnetron sputtering
Xie et al. High‐Performance Broadband Flexible Photodetectors Based on Ti3C2Tx MXene/Pyramidal Thin Si Heterostructures with Light Trapping Effect for Heart Rate Detection
Miseikis et al. Perfecting the growth and transfer of large single-crystal CVD graphene: a platform material for optoelectronic applications
CN116825878B (zh) 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用
CN112103353A (zh) 一种基于磷硒化锰(MnPSe3)的光电晶体管
Banerjee et al. Broadband nanoplasmonic photodetector fabricated in ambient condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915066

Country of ref document: EP

Kind code of ref document: A1