CN116979060A - 一种单晶型高熵富锂正极材料、制备方法及其应用 - Google Patents

一种单晶型高熵富锂正极材料、制备方法及其应用 Download PDF

Info

Publication number
CN116979060A
CN116979060A CN202311073480.XA CN202311073480A CN116979060A CN 116979060 A CN116979060 A CN 116979060A CN 202311073480 A CN202311073480 A CN 202311073480A CN 116979060 A CN116979060 A CN 116979060A
Authority
CN
China
Prior art keywords
lithium
entropy
equal
rich
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311073480.XA
Other languages
English (en)
Inventor
赵佳雨
苏岳锋
吴锋
陈来
董锦洋
郝佳男
李文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202311073480.XA priority Critical patent/CN116979060A/zh
Publication of CN116979060A publication Critical patent/CN116979060A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种单晶型高熵富锂正极材料、制备方法及其应用,属于锂离子电池技术领域。所述材料的化学式为Li1+x(M1yM2z)1‑xO2‑wAw,其中0.1≤x≤0.25,0<y<1,0<z<1,y+z=1,0<w≤0.5,M1为具有氧化还原活性的低价金属Mn、Ni、Co、Fe和Cr中的两种以上,M2为高价d0元素中Mo、V、Nb、Ti和W中的两种以上,A为阴离子F、S和Se中的一种以上;所述单晶型高熵富锂正极材料的粒径为0.7μm≤d≤5μm。采用溶胶凝胶法制备得到。通过单晶化、高熵化结构设计得到的富锂正极材料,避免了不可逆氧释放,首效大大提高,以及在循环过程中的结构退化以及性能衰减均得到缓解。

Description

一种单晶型高熵富锂正极材料、制备方法及其应用
技术领域
本发明涉及一种单晶型高熵富锂正极材料、制备方法及其应用,属于锂离子电池技术领域。
背景技术
随着化石能源消耗殆尽与电子产品的快速发展,人们对锂离子电池的性能指标提出了更高的要求。锂离子电池具有能量密度高、循环寿命长等优点,其能量密度与寿命往往依赖于正负极材料的电化学性能。在现有正极材料体系,富锂锰基正极材料具有超高比容量(250mAh·g-1)和高工作电压(4.8V)而被人广泛关注,但其压实密度较低,不利于实现高能量密度,且在循环中存在着不可逆的氧损失、电压衰减以及结构退化问题,制约了其商业化发展。
正极材料单晶化已经成为研究的热点,单晶正极相较于传统多晶正极材料具有更高的机械强度与压实密度,同时由于表面积降低,缓解了循环过程中存在的副反应和结构退化问题。但其制备工艺通常需要上千度的高温以促进晶粒生长,这对经济成本和安全性均是较大的挑战。近年来,高熵氧化物(HEO)在能源应用方面展现出巨大潜力,如电催化活性、电化学储能等,无论是直接应用作为电池负极材料,还是对正极材料进行高熵化掺杂,均具有较好的性能。但其合成的材料多为层状或岩盐结构,且仍然存在结构易破坏的问题。
发明内容
有鉴于此,本发明的目的在于提供一种单晶型高熵富锂正极材料、制备方法及其应用。通过单晶化、高熵化结构设计得到的富锂正极材料,避免了不可逆氧释放,首效大大提高,以及在循环过程中的结构退化以及性能衰减均得到缓解。
为实现上述目的,本发明的技术方案如下。
一种单晶型高熵富锂正极材料,所述材料的化学式为Li1+x(M1yM2z)1-xO2-wAw,其中0.1≤x≤0.25,0<y<1,0<z<1,y+z=1,0<w≤0.5,M1为具有氧化还原活性的低价金属Mn、Ni、Co、Fe和Cr中的两种以上,M2为高价d0元素中Mo、V、Nb、Ti和W中的两种以上,A为阴离子F、S和Se中的一种以上;用p1、p2、p3…pn表示阳离子的摩尔含量,n为大于等于5的自然数;用q1、q2、q3…qm表示阴离子的摩尔含量,m大于等于2的自然数;摩尔熵满足,且元素的价态与比例满足分子化合价的要求;所述单晶型高熵富锂正极材料的粒径为0.7μm≤d≤5μm。
优选的,所述单晶型高熵富锂正极材料的粒径为1~2μm。
优选的,所述单晶型高熵富锂正极材料的比表面积为1~50m2·g-1
优选的,所述单晶型高熵富锂正极材料为岩盐无序结构,所述单晶型高熵富锂正极材料为Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0.1O1.95F0.05,Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.98S0.02
本发明提供一种单晶型高熵富锂正极材料的制备方法,方法步骤包括:
(1)溶解:按化学计量比并根据锂盐、M1金属盐、M2金属盐、含有A阴离子物质的溶解性,将可溶于醇类溶剂的物质溶于醇类溶剂中,搅拌均匀得到A液;将酸性条件下可溶的物质与络合剂共同溶于醇类溶剂中,搅拌均匀得到B液;
(2)合成:将B液逐滴加入A液中,搅拌均匀,并水浴加热恒温蒸发得到凝胶;将凝胶转入干净的坩埚中,-20~-50℃下真空冷冻干燥12~24h,将干燥后的产物进行研磨得到均匀前驱体粉末;
(3)煅烧:将0.5~1g前驱体粉末在4~6MPa压力下保持5~10min压制成块体,氧气氛围中,600~750℃下高温煅烧8~12h,保温结束后进行液氮淬火冷却,将冷却后材料进行高能球磨,得到一种单晶型高熵富锂正极材料。
优选的,步骤(1)中,所述醇类溶剂为乙醇或甲醇;水浴温度根据醇类溶剂的沸点决定,如乙醇沸点75℃左右,则水浴温度在70℃适宜。更优选的,所述醇类溶剂为乙醇。
优选的,步骤(1)中,在A液和B液中金属盐的总浓度均为0.2~2mol/L,更优选为0.5~1mol/L。
优选的,步骤(1)中,所述金属盐为醋酸盐、硝酸盐、铵盐或醇盐。更优选的,所述金属盐为醋酸盐。
优选的,步骤(1)中,所述含有A阴离子的盐为氟化铵、硫粉、或硒粉。优选为醇可溶物质。
优选的,步骤(1)中,A元素与Li摩尔比k满足,0<k≤0.45;
优选的,步骤(1)中,络合剂为柠檬酸、草酸、酒石酸或柠檬酸铵,络合剂与金属离子的总摩尔数比为1.1~1.5:1,最优选为的1.2:1。
优选的,步骤(2)中,真空冷冻干燥温度为-30~-40℃,时间为16~20h。
优选的,步骤(3)中,高温煅烧升温速率2~4℃/min,高温煅烧在管式炉中进行,氧气气体流量控制在100~250mL/min。
优选的,步骤(3)中,高能球磨速度为300~600r/min,球磨时间为2~4h。
一种本发明所述单晶型高熵富锂正极材料的应用,所述材料作为锂离子电池正极材料使用。
有益效果
1. 本发明提供了一种单晶型高熵富锂正极材料,单晶化材料具有较小的比表面积和较大的压实密度与机械强度,使得材料循环稳定性增强;多元素高熵化使得材料熵稳定性增强,且易于形成岩盐无序结构,具有3D的锂传输轨道,4d、5d高价元素的引入由于键强较强的M-O键,还能起到稳定晶格氧的作用,随之提高材料首效与循环性能,有利于锂离子电池应用。
2. 本发明采用一步溶胶凝胶法合成了单晶正极材料,溶胶凝胶法能合成均匀的纳米级颗粒,与传统的共沉淀法制备的大颗粒材料相比,纳米级颗粒生长成单晶颗粒所需温度更低,在能耗与安全性方面更具优势。采用真空冷冻干燥相比于高温烘干,有利于更好的维持凝胶颗粒之间的分散均匀,避免在高温烘干过程中出现颗粒团聚或元素分布不均的情况。通过压制成块煅烧,增加纳米颗粒之间的接触并且施加一定的压力,有利于材料在高温下生长的得到较大的粒径单晶材料。如若不进行压制,在高温下颗粒会生长,但均小于500nm,难以达到满足单晶要求的粒径。单晶对于晶粒生长条件要求较高,本方案采用压制成片的方式促进其生长,为避免材料过于致密传热/氧化受阻,在高温煅烧中煅烧温度以及保温时间需要加以配合,给晶体生长提供充分条件。高温煅烧后淬火,快速降温,有助于材料维持高温下的混乱度,实现无序高熵化。如若材料进行随炉降温,得到的材料有序度增加,仍为层状正极材料,难以得到离子传输更有利的无序岩盐结构。进一步地,煅烧过程中通过控制升温速率和氧气流量可使晶体结构更加均匀。本发明所述制备方法环境友好,无需超高温长时间煅烧过程,有助于降低生产成本,实现产业化。
附图说明
图1为实施例1中制备的单晶型高熵正极材料Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.9 8S0.02的扫描电子显微镜测试(SEM)图。
图2为实施例2中制备的单晶型高熵富锂正极材料Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0. 1O1.95F0.05的局部SEM和EDS图。
图3为实施例3中制备的单晶型高熵富锂正极材料Li1.2Ti0.1Mn0.5Ni0.275V0.1Mo0. 1O1.95F0.05的X射线衍射(XRD)图。
图4为实施例1-3制备的单晶型高熵富锂正极材料的首周充放电曲线对比图。
图5为实施例1-3制备的单晶型高熵富锂正极材料的循环性能对比图。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
以下实施例中:
电池组装:将活性材料与乙炔黑、PVDF(聚偏氟乙烯)按照8:1:1的质量比混合,加入NMP研磨为浆料,用刮刀涂覆在铝箔上,进行烘干,裁片制成正极片;然后在氩气手套箱(水<0.01 ppm,氧<0.01 ppm)中组装成CR2025型扣式半电池,其中正极即为上述正极片,对电极为锂片,隔膜为Celgard 2500,电解液是以体积比为1:1:1的碳酸二甲酯、碳酸二乙酯、碳酸乙酯为溶剂,以1mol/L的LiPF6为溶质制成的溶液。
扫描电子显微镜(SEM)测试:FEI Quanta,荷兰,EDS配件。
粉末X射线衍射(XRD)测试:使用的X射线衍射仪是日本理学公司生产的IV-185型号衍射仪。
电池循环性能测试:LAND CT 2001A测试仪购自武汉市蓝电电子有限公司。
实施例1
(1)溶解:按Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.98S0.02的化学计量比将乙酸锂、钛酸四丁酯、乙酸锰、乙酸镍、乙醇铌、硝酸铁溶解于乙醇溶液中,搅拌均匀得到A液;按摩尔比1.2:1将柠檬酸络合剂以及硫粉溶解在乙醇溶液中,搅拌均匀得到B液;
(2)合成:将B液逐滴加入A液中,搅拌均匀,并水浴70℃加热恒温蒸发得到凝胶;将凝胶转入干净的坩埚中,于-40℃真空冷冻状态下干燥18 h,将干燥后的产物进行研磨得到均匀前驱体粉末;
(3)煅烧:将0.7g前驱体粉末在4.5MPa下保持10min,压制成块体,进行高温煅烧,2℃/min升温至650℃保温8h,氧气流量200mL/min。保温结束后用液氮进行淬火冷却,将冷却后材料在300r/min转速下进行高能球磨4h得到最终正极材料。
如图1所示,所述材料Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.98S0.02具有多面体结构,粒径分布在0.5-2μm左右,分布较为均匀。
将其组装成半电池进行测试,测试截止电压为1.5-4.8V,首周0.05 C倍率下进行活化,容量可达264.4mAh/g,库伦效率高达97.84%;随后在0.1 C倍率下进行循环测试,循环20周容量保持率为66.18%。说明所述单晶型高熵Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.98S0.02正极材料具备较高的首周库伦效率和循环性能。
实施例2
(1)溶解:按Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0.1O1.95F0.05的化学计量比将乙酸锂、钛酸四丁酯、乙酸锰、乙酸镍、乙醇铌、氟化铵溶解于乙醇中,搅拌均匀得到A液;按摩尔比1.2:1将柠檬酸络合剂以及钼酸铵溶解在乙醇中,搅拌均匀得到B液;
(2)合成:将B液逐滴加入A液中,搅拌均匀,并水浴70℃加热恒温蒸发得到凝胶;将凝胶转入干净的坩埚中,于-40℃真空冷冻状态下干燥18h,将干燥后的产物进行研磨得到均匀前驱体粉末;
(3)煅烧:将1g前驱体粉末在5MPa下保持6min压制成块体,进行高温煅烧,5℃/min升温至750℃保温6h,氧气流量100mL/min。保温结束后用液氮进行淬火冷却,将冷却后材料在300r/min转速下进行高能球磨5h得到最终正极材料。
如图2所示,所述材料Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0.1O1.95F0.05粒径约为1μm左右,所含元素与设计相符,并且在整个颗粒中分布均匀。
将其组装成半电池进行测试,测试截止电压为1.5-4.8V,首周0.05 C倍率下进行活化,容量可达259.1mAh/g,库伦效率高达95.65%;随后在0.1 C倍率下进行循环测试,循环20周容量保持率为52.77%。说明所述单晶型高熵Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0.1O1.95F0.05正极材料具备较高的首周库伦效率和循环性能。
实施例3
(1)溶解:按Li1.2Ti0.1Mn0.5Ni0.275V0.1Mo0.1O1.95F0.05的化学计量比将乙酸锂、钛酸四丁酯、乙酸锰、乙酸镍、氟化铵溶解于乙醇中,搅拌均匀得到A液;按摩尔比1.2:1将柠檬酸络合剂、钼酸铵和偏钒酸铵溶解在乙醇中,搅拌均匀得到B液;
(2)合成:将B液逐滴加入A液中,搅拌均匀,并水浴70℃加热恒温蒸发得到凝胶;将凝胶转入干净的坩埚中,于-40℃真空冷冻状态下干燥18h,将干燥后的产物进行研磨得到均匀前驱体粉末;
(3)煅烧:将0.5g前驱体粉末在5.5MPa下保持4min,压制成块体,进行高温煅烧,3℃/min升温至650℃保温8h,氧气流量150mL/min。保温结束后液氮进行淬火冷却,将冷却后材料在300r/min转速下进行高能球磨4h得到最终正极材料。
如图3所示,所述材料Li1.2Ti0.1Mn0.5Ni0.275V0.1Mo0.1O1.95F0.05结晶度较高,与所含元素的锂氧化合物特征峰吻合较好,杂质较少。
将其组装成半电池进行测试,测试截止电压为1.5-4.8V,首周0.05 C倍率下进行活化,容量可达249.9mAh/g,库伦效率高达98.12%;随后在0.1 C倍率下进行循环测试,循环20周容量保持率为66.47%。说明所述单晶型高熵Li1.2Ti0.1Mn0.5Ni0.275V0.1Mo0.1O1.95F0.05正极材料具备较高的首周库伦效率和循环性能。
综上所述,发明包括但不限于以上实施例,凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

Claims (10)

1.一种单晶型高熵富锂正极材料,其特征在于:所述材料的化学式为Li1+x(M1yM2z)1- xO2-wAw,其中0.1≤x≤0.25,0<y<1,0<z<1,y+z=1,0<w≤0.5,M1为具有氧化还原活性的低价金属Mn、Ni、Co、Fe和Cr中的两种以上,M2为高价d0元素中Mo、V、Nb、Ti和W中的两种以上,A为阴离子F、S和Se中的一种以上;用p1、p2、p3…pn表示阳离子的摩尔含量,n为大于等于5的自然数;用q1、q2、q3…qm表示阴离子的摩尔含量,m大于等于2的自然数;摩尔熵满足,且元素的价态与比例满足分子化合价的要求;所述单晶型高熵富锂正极材料的粒径为0.7μm≤d≤5μm。
2.如权利要求1所述的一种单晶型高熵富锂正极材料,其特征在于:所述单晶型高熵富锂正极材料的粒径为1~2μm。
3.如权利要求1所述的一种单晶型高熵富锂正极材料,其特征在于:所述单晶型高熵富锂正极材料的比表面积为1~50m2·g-1
4.如权利要求1所述的一种单晶型高熵富锂正极材料,其特征在于:所述单晶型高熵富锂正极材料为岩盐无序结构,所述单晶型高熵富锂正极材料为Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Mo0.1O1.95F0.05,Li1.2Ti0.1Mn0.4Ni0.375Nb0.1Fe0.1O1.98S0.02
5.一种如权利要求1~4任意一项所述的单晶型高熵富锂正极材料的制备方法,其特征在于:方法步骤包括:
(1)按化学计量比并根据锂盐、M1金属盐、M2金属盐、含有A阴离子物质的溶解性,将可溶于醇类溶剂的物质溶于醇类溶剂中,搅拌均匀得到A液;将酸性条件下可溶的物质与络合剂共同溶于醇类溶剂中,搅拌均匀得到B液;
(2)将B液逐滴加入A液中,搅拌均匀,并水浴加热恒温蒸发得到凝胶;将凝胶转入干净的坩埚中,-20~-50℃下真空冷冻干燥12~24h,将干燥后的产物进行研磨得到均匀前驱体粉末;
(3)将0.5~1g前驱体粉末在4~6MPa压力下保持5~10min压制成块体,氧气氛围中,600~750℃下高温煅烧8~12h,保温结束后进行液氮淬火冷却,将冷却后材料进行高能球磨,得到一种单晶型高熵富锂正极材料。
6.如权利要求5所述的一种单晶型高熵富锂正极材料的制备方法,其特征在于:步骤(1)中,所述醇类溶剂为乙醇或甲醇;
在A液和B液中金属盐的总浓度均为0.2~2mol/L;
所述金属盐为醋酸盐、硝酸盐、铵盐或醇盐;
所述含有A阴离子的盐为氟化铵、硫粉、或硒粉;
A元素与Li摩尔比k满足,0<k≤0.45;
络合剂为柠檬酸、草酸、酒石酸或柠檬酸铵,络合剂与金属离子的总摩尔数比为1.1~1.5:1。
7.如权利要求5所述的一种单晶型高熵富锂正极材料的制备方法,其特征在于:步骤(2)中,真空冷冻干燥温度为-30~-40℃,时间为16~20h。
8.如权利要求5所述的一种单晶型高熵富锂正极材料的制备方法,其特征在于:步骤(3)中,高温煅烧升温速率2~4℃/min,高温煅烧在管式炉中进行,氧气气体流量控制在100~250mL/min。
9.如权利要求5所述的一种单晶型高熵富锂正极材料的制备方法,其特征在于:步骤(3)中,高能球磨速度为300~600r/min,球磨时间为2~4h。
10.一种如权利要求1~4任意一项所述的单晶型高熵富锂正极材料的应用,其特征在于:所述材料作为锂离子电池正极材料使用。
CN202311073480.XA 2023-08-24 2023-08-24 一种单晶型高熵富锂正极材料、制备方法及其应用 Pending CN116979060A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311073480.XA CN116979060A (zh) 2023-08-24 2023-08-24 一种单晶型高熵富锂正极材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311073480.XA CN116979060A (zh) 2023-08-24 2023-08-24 一种单晶型高熵富锂正极材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116979060A true CN116979060A (zh) 2023-10-31

Family

ID=88473130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311073480.XA Pending CN116979060A (zh) 2023-08-24 2023-08-24 一种单晶型高熵富锂正极材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116979060A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174911A (zh) * 2023-11-01 2023-12-05 宁德时代新能源科技股份有限公司 正极材料、正极材料的制备方法、锂离子电池、用电装置
CN117878295A (zh) * 2024-03-12 2024-04-12 河北省科学院能源研究所 一种复合正极活性材料及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174911A (zh) * 2023-11-01 2023-12-05 宁德时代新能源科技股份有限公司 正极材料、正极材料的制备方法、锂离子电池、用电装置
CN117174911B (zh) * 2023-11-01 2024-04-12 宁德时代新能源科技股份有限公司 正极材料、正极材料的制备方法、锂离子电池、用电装置
CN117878295A (zh) * 2024-03-12 2024-04-12 河北省科学院能源研究所 一种复合正极活性材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110233250B (zh) 一种单晶颗粒三元正极材料的制备方法
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
CN109713297B (zh) 一种一次颗粒定向排列的高镍正极材料及其制备方法
CN116979060A (zh) 一种单晶型高熵富锂正极材料、制备方法及其应用
CN111453776B (zh) 一种锂离子电池富锂锰基正极材料的磷、钨共掺杂改性制备方法
CN102623705B (zh) 一种锂离子电池正极材料LiFePO4/C及其制备方法和应用
JP7408794B2 (ja) リチウム二次電池正極活物質、その製造方法、及びこれを含むリチウム二次電池
CN109817904B (zh) 一种高电压长循环高镍单晶正极材料及其制备方法和应用
CN105024067B (zh) 锂离子电池及其复合掺杂改性正极活性材料及制备方法
CN110600708A (zh) 一种分步掺杂金属离子及碳包覆磷酸铁锂正极材料的制备方法
CN113422033A (zh) 一种钇离子掺杂氧化钇包覆改性的富锂锰基正极材料、制备方法及应用
CN108448109A (zh) 一种层状富锂锰基正极材料及其制备方法
KR102585694B1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
CN111816864B (zh) 一种富锂层状氧化物复合正极材料及其制备方法和应用
CN101404328A (zh) 一种锂离子电池正极材料的制备方法
CN115832257A (zh) 一种磷酸锰铁锂正极材料、制备方法及其应用
CN115863631A (zh) 一种磷酸盐正极材料及其制备方法与应用
CN110148737B (zh) 一种富锂锰基电极材料及其制备方法
CN100490221C (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN102201574A (zh) 一种含氧空位硅酸亚铁锂与碳复合正极材料及制备方法
CN114715957B (zh) 铌包覆镍钴锰三元前驱体及制备方法及应用
CN114864949B (zh) 一种正极材料及其制备方法和应用
CN114649526B (zh) 一种内高外低梯度掺杂的富锂锰基层状材料及其制备方法
CN114300664B (zh) 一种表面包覆硒酸锂的富锂单晶正极材料及其制备方法和应用
CN113603141B (zh) 一种复合正极材料、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination