CN116904382B - 联产二羟基丙酮和波色因的宿主细胞及方法 - Google Patents

联产二羟基丙酮和波色因的宿主细胞及方法 Download PDF

Info

Publication number
CN116904382B
CN116904382B CN202311008580.4A CN202311008580A CN116904382B CN 116904382 B CN116904382 B CN 116904382B CN 202311008580 A CN202311008580 A CN 202311008580A CN 116904382 B CN116904382 B CN 116904382B
Authority
CN
China
Prior art keywords
host cell
dihydroxyacetone
gene
seq
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311008580.4A
Other languages
English (en)
Other versions
CN116904382A (zh
Inventor
张志乾
吴奕瑞
刘丽花
陈西朋
江翱
郑晓茂
闫修瑜
崔华
吴嵩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tichuang Biotechnology Guangzhou Co ltd
Original Assignee
Tichuang Biotechnology Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tichuang Biotechnology Guangzhou Co ltd filed Critical Tichuang Biotechnology Guangzhou Co ltd
Publication of CN116904382A publication Critical patent/CN116904382A/zh
Application granted granted Critical
Publication of CN116904382B publication Critical patent/CN116904382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01006Glycerol dehydrogenase (1.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01283Methylglyoxal reductase (NADPH-dependent) (1.1.1.283)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01001NAD(P)+ transhydrogenase (B-specific) (1.6.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01002NAD(P)+ Transhydrogenase (AB-specific) (1.6.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种联产二羟基丙酮和波色因的宿主细胞,其中所述宿主细胞进行了如下工程改造:引入了编码NADPH依赖性甲基乙二醛还原酶GRE2的基因,以及编码甘油脱氢酶GDH的基因。还公开了联产二羟基丙酮和波色因的方法。本发明的宿主菌共表达甘油脱氢酶、波色因还原酶和辅因子转化酶,并敲除sthA基因,从而实现辅因子NADPH和NAD+的循环利用。以甘油和1‑C‑(β‑D‑吡喃木糖基)‑丙酮为底物,通过控制甘油的量,最终达到同时高产二羟基丙酮和波色因的目的。这种方法合成玻色因和二羟基丙酮具有产量高、效率快、成本低和安全性好等优势,适用于玻色因和二羟基丙酮的工业化生产。

Description

联产二羟基丙酮和波色因的宿主细胞及方法
技术领域
本发明涉及一种联产二羟基丙酮和波色因的宿主细胞及方法,涉及生物合成技术领域。
背景技术
近年来,随着人们的物质生活越来越丰富,对美的追求也成为日常消费的主流。因此,美妆护肤市场在整个市场中占据了越来越重要的地位。二羟基丙酮和玻色因是美妆市场的两大重要原材料,其生物酶法的合成技术具有效率高、成本低、无毒无害、经济价值高、产品质量高等一系列的优点,因此具有重要的市场价值。
二羟基丙酮(dihydroxyacetone,DHA)是一种有机化合物,无色至浅黄色的液体,具有甜味。在美容行业中,二羟基丙酮被广泛地用于制作自然的晒黑效果,因为它能够与皮肤表面的角质层反应,从而使皮肤看起来更显棕褐色。此外,它还被用于食品、医药和化学制品中。甘油脱氢酶是一种酶,它可以催化甘油的氧化反应。在这个反应中,甘油被氧化为二羟基丙酮以及NADH(还原型辅酶)。通过这个反应,甘油脱氢酶可以合成二羟基丙酮。需要注意的是,甘油脱氢酶合成二羟基丙酮的反应需要有NAD+参与,而NAD+是一种辅酶,需要从其他代谢过程中得到。因此,甘油脱氢酶合成二羟基丙酮的速率和NAD+的浓度有关。
玻色因(Pro-Xylane),又名羟丙基四氢吡喃醇,常用于制备护肤品。它是一种天然多糖,主要来源于植物,如桦树、橡树和云杉等。玻色因可以促进胶原蛋白和弹性纤维的生成,从而改善皮肤的弹性和紧致度,同时还有助于提高皮肤的保湿能力。市面上的玻色因主要来源于植物提取或者化学合成,这些方法成本高、纯度低、操作复杂,且化学合成会导致非理想产物和分离困难等问题。目前玻色因的生物合成主要基于醛酮还原酶催化1-C-(β-D-吡喃木糖基)-丙酮生成,但是这种方法对辅酶的依赖性极强,且成本极高,限制了玻色因的产量和生产成本。
发明内容
本发明公开了一种联产二羟基丙酮和波色因的宿主细胞,其中宿主细胞进行了如下工程改造:引入了编码NADPH依赖性甲基乙二醛还原酶GRE2的基因,以及编码甘油脱氢酶GDH的基因。
优选的,所述宿主细胞还进行了如下工程改造:过表达pntAB基因。
优选的,所述宿主细胞还进行了如下工程改造:抑制sthA基因的表达。
优选的,所述NADPH依赖性甲基乙二醛还原酶GRE2的氨基酸序列如SEQ ID NO:1所示。
优选的,所述甘油脱氢酶GDH的氨基酸序列如SEQ ID NO:3所示。
优选的,pntAB基因的序列如SEQ ID NO:5所示。
优选的,通过CRISPR转座和crRNA的方式敲除sthA基因。
优选的,所述宿主细胞为大肠杆菌,尤其是大肠杆菌BL21、Rossetta、W3110或MG1655。
本发明还公开了一种质粒,构建有启动子介导的GRE2基因、GDH基因以及pntAB基因。质粒载体可以是Pet32a载体,启动子为T7-LacO启动子。
一种联产二羟基丙酮和波色因的方法,其特征在于其步骤包括:
(1)构建上述的宿主细胞;
(2)挑取宿主细胞单克隆,在培养基中进行培养;
(3)将1-C-(β-D-吡喃木糖基)-丙酮和甘油加入培养基中,继续培养,获得二羟基丙酮和波色因。
其中1-C-(β-D-吡喃木糖基)-丙酮可以使用木糖和氯丙酮聚合获得。
本发明构建了联产二羟基丙酮和波色因的宿主菌。在宿主菌中共表达甘油脱氢酶、波色因还原酶和辅因子转化酶,并敲除sthA基因,从而实现辅因子NADPH和NAD+的循环利用。以甘油和1-C-(β-D-吡喃木糖基)-丙酮为底物,通过控制甘油的量,最终达到同时高产二羟基丙酮和波色因的目的。这种方法合成玻色因和二羟基丙酮具有产量高、效率快、成本低和安全性好等优势,适用于玻色因和二羟基丙酮的工业化生产。
附图说明
图1玻色因还原酶Gre2催化模型。
图2 1-C-(β-D-吡喃木糖基)-丙酮合成模型。
图3玻色因还原酶Gre2催化生成玻色因结果。
图4甘油脱氢酶GDH催化模型。
图5Gre2-GDH催化生成玻色因和二羟基丙酮结果。
图6NAD+和NADPH再生体系模型。
图7NAD+和NADPH再生体系模型在Gre2-GDH联产玻色因和二羟基丙酮中的模型。
图8Donor序列的模型。
图9crRNA序列的模型。
具体实施方式
以下结合附图,通过实施例进一步说明本发明,但不作为对本发明的限制。以下提供了本发明实施方案中所使用的具体材料及其来源。但是,应当理解的是,这些仅仅是示例性的,并不意图限制本发明,与如下试剂和仪器的类型、型号、品质、性质或功能相同或相似的材料均可以用于实施本发明。下述实施例中所使用的实验方法如无特别说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
为了实现玻色因的合成,我们在大肠杆菌中引入了羰基还原酶AKR,来自毕赤酵母的NADPH依赖性甲基乙二醛还原酶GRE2广泛应用在各类醛酮类化合物的羰基还原上,因此我们尝试使用Gre2来实现1-C-(β-D-吡喃木糖基)-丙酮到玻色因的催化(见图1)。
玻色因还原酶Gre2的氨基酸序列见SEQ ID NO:1,经大肠杆菌密码子优化后得到SEQ ID NO:2。序列合成于广州艾基生物,并构建到pET28a上。构建好的质粒转染到BL21(DE3)中,涂布在含50mg/L卡那霉素的LB培养基上,37℃过夜培养挑取单克隆,于含50mg/L卡那霉素的LB液体培养基中培养至OD600值达到0.6,加入终浓度为0.05、0.1、0.2、0.5和1mM的IPTG,28℃诱导过夜。
1-C-(β-D-吡喃木糖基)-丙酮使用木糖和氯丙酮进行合成(见图2)。饱和木糖的DMF水溶液(含1M氢氧化钠)中加入1/10体积氯丙酮,在90℃反应过夜。1-C-(β-D-吡喃木糖基)-丙酮产量大概在88%。
将获得的1-C-(β-D-吡喃木糖基)-丙酮按照10%溶于PBS溶液中,加入到上述获得的菌株中,30℃反应12h,HPLC测定玻色因含量。结果见图3,玻色因还原酶Gre2能够将1-C-(β-D-吡喃木糖基)-丙酮还原成玻色因。尽管玻色因还原酶Gre2的表达量逐渐升高,玻色因的产量上升并不明显。我们推测在全细胞催化合成玻色因的过程中,NADPH的浓度不够导致了玻色因产量升高不明显。
实施例2
为了提升玻色因的产量,同时生产二羟基丙酮。我们在大肠杆菌中构建了甘油脱氢酶体系,催化甘油产二羟基丙酮,同时生产NADH(见图4)。我们使用的是大肠杆菌中NADH依赖性的甘油脱氢酶GDH,氨基酸序列见SEQ ID NO:3,经大肠杆菌密码子优化后得到SEQID NO:4。序列合成于广州艾基生物,并构建到pET32a上。构建好的质粒转染到实施例1中BL21(DE3)中,涂布在含50mg/L卡那霉素和氨苄霉素的LB培养基上,37℃过夜培养挑取单克隆,于含50mg/L卡那霉素和氨苄霉素的LB液体培养基中培养至OD600值达到0.6,加入终浓度为0.2mM的IPTG,28℃诱导过夜。将获得的1-C-(β-D-吡喃木糖基)-丙酮和甘油按照10%溶于PBS溶液中,加入到上述获得的菌株中,30℃反应12h,HPLC测定玻色因含量。结果见图5,加入甘油脱氢酶后,甘油可以被催化成二羟基丙酮,玻色因的产量有明显升高。
实施例3
为了提升玻色因和二羟基丙酮的产量。我们在大肠杆菌中构建了NAD+和NADPH再生的体系。首先,通过过表达pntAB(核苷酸序列见SEQ ID NO:5)来消耗NADH再生NADPH,同时消耗NADP+再生NAD+,同时来敲除可溶型吡啶核苷酸转氢酶sthA基因来抑制NADPH转化成NADH,以及抑制NAD+转化成NADP+(见图6)。这样可以在大肠杆菌体内提高NAD+和NADPH的浓度,来实现玻色因和二羟基丙酮底物浓度的提升(见图7)。为了解决这一问题,我们将T7-LacO启动子介导的GRE2、GDH、pntAB构建到Pet32a载体上(见图8)。同时在PSL1142载体(addgene)上插入crRNA-sthA和crRNA-IS168(见图9)(方法参考文献Zhang Y,Sun X,WangQ,Xu J,Dong F,Yang S,Yang J,Zhang Z,Qian Y,Chen J,Zhang J,Liu Y,Tao R,JiangY,Yang J,Yang S.Multicopy Chromosomal Integration Using CRISPR-AssociatedTransposases.ACS Synth Biol.2020Aug 21;9(8):1998-2008.doi:10.1021/acssynbio.0c00073.Epub 2020Jul 2.Erratumin:ACS Synth Biol.2020Oct 16;9(10):2860.PMID:32551502.)。将两个质粒转化到Rosetta(DE3)菌株中,涂布在含50mg/L卡那霉素和氨苄霉素的的LB培养基上,37℃过夜培养挑取单克隆,于含50mg/L卡那霉素和氨苄霉素的LB液体培养基中培养至OD600值达到0.6,加入终浓度为0.2mM的IPTG,28℃诱导过夜。菌株离心后,将获得的1-C-(β-D-吡喃木糖基)-丙酮和甘油按照10%V/V溶于PBS溶液中,加入到上述获得的菌株沉淀中,30℃反应12h,HPLC测定玻色因含量。插入NAD+和NADPH再生体系后,二羟基丙酮和玻色因的产量分别达到37.2g/L和55.1g/L。

Claims (7)

1.一种联产二羟基丙酮和波色因的宿主细胞,其中所述宿主细胞进行了如下工程改造:引入了编码NADPH依赖性甲基乙二醛还原酶GRE2的基因,以及编码甘油脱氢酶GDH的基因,其中GRE2的氨基酸序列如SEQ ID NO:1所示,GDH的氨基酸序列如SEQ ID NO:3所示,所述宿主细胞为大肠杆菌。
2.根据权利要求1所述的宿主细胞,其特征在于所述宿主细胞还进行了如下工程改造:过表达pntAB基因,其中pntAB基因的序列如SEQ ID NO:5所示。
3.根据权利要求2所述的宿主细胞,其特征在于所述宿主细胞还进行了如下工程改造:抑制sthA基因的表达。
4.根据权利要求3所述的宿主细胞,其特征在于通过CRISPR转座和crRNA的方式敲除sthA基因。
5.根据权利要求1-4中任一项所述的宿主细胞,其特征在于所述宿主细胞为大肠杆菌BL21、Rossetta、W3110或MG1655。
6.一种质粒,其特征在于构建有启动子介导的GRE2基因、GDH基因以及pntAB基因,其中GRE2的氨基酸序列如SEQ ID NO:1所示,GDH的氨基酸序列如SEQ ID NO:3所示,pntAB基因的序列如SEQ ID NO:5所示。
7.一种联产二羟基丙酮和波色因的方法,其特征在于其步骤包括:
(1)构建权利要求1-5中任一项所述的宿主细胞;
(2)挑取宿主细胞单克隆,在培养基中进行培养;
(3)将1-C-(β-D-吡喃木糖基)-丙酮和甘油加入培养基中,继续培养,获得二羟基丙酮和波色因。
CN202311008580.4A 2023-07-10 2023-08-11 联产二羟基丙酮和波色因的宿主细胞及方法 Active CN116904382B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023108354446 2023-07-10
CN202310835444 2023-07-10

Publications (2)

Publication Number Publication Date
CN116904382A CN116904382A (zh) 2023-10-20
CN116904382B true CN116904382B (zh) 2024-03-08

Family

ID=88367976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311008580.4A Active CN116904382B (zh) 2023-07-10 2023-08-11 联产二羟基丙酮和波色因的宿主细胞及方法

Country Status (1)

Country Link
CN (1) CN116904382B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350476A (zh) * 2016-08-31 2017-01-25 中国科学院青岛生物能源与过程研究所 联产异戊二烯和1,3‑丙二醇的基因工程菌及构建方法和应用
CN109312373A (zh) * 2016-03-09 2019-02-05 布拉斯肯有限公司 用于共生产乙二醇和三碳化合物的微生物和方法
CN116333907A (zh) * 2022-07-13 2023-06-27 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种芽孢杆菌及其制备玻色因的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312373A (zh) * 2016-03-09 2019-02-05 布拉斯肯有限公司 用于共生产乙二醇和三碳化合物的微生物和方法
CN106350476A (zh) * 2016-08-31 2017-01-25 中国科学院青岛生物能源与过程研究所 联产异戊二烯和1,3‑丙二醇的基因工程菌及构建方法和应用
CN116333907A (zh) * 2022-07-13 2023-06-27 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种芽孢杆菌及其制备玻色因的方法

Also Published As

Publication number Publication date
CN116904382A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
JP7044860B2 (ja) 遺伝子工学菌
CA2529583C (en) Oxidoreductase from pichia capsulata
US20210254109A1 (en) D-Glucaric Acid Producing Bacterium, and Method for Manufacturing D-Glucaric Acid
Xu et al. Biotechnological routes to pyruvate production
WO2007142210A1 (ja) 光学活性アルコールの製造方法
CN106868030B (zh) 重组载体、含有其的工程菌及在产α-酮戊二酸的应用
Huwig et al. Enzymatic synthesis of L-tagatose from galactitol with galactitol dehydrogenase from Rhodobacter sphaeroides D
CN116904382B (zh) 联产二羟基丙酮和波色因的宿主细胞及方法
CN110184288A (zh) 没食子酸和原儿茶酸的制备方法及其反应催化剂的制备方法
CN108410831A (zh) 酮酸还原酶、基因、工程菌及在合成手性芳香2-羟酸中的应用
WO2014003502A1 (ko) 3-하이드록시프로피온산을 생산하는 재조합 미생물 및 이를 이용한 3-하이드록시프로피온산의 생산방법
CN107663517B (zh) 一种l-乳酸催化反应体系及l-乳酸的制备方法
CN116376950A (zh) 一种核酸构建体、细胞和四氢姜黄素的制备方法及应用
KR101919556B1 (ko) 미생물 Acetobacterium woodii를 이용한 포르메이트(formate)의 생산 방법
Feng et al. Whole-cell biotransformation for simultaneous synthesis of allitol and D-gluconic acid in recombinant Escherichia coli
CN112126614B (zh) 一种利用全细胞转化制备覆盆子酮的方法
CN110734936B (zh) 一种多酶级联生产(r/s)-羟基蛋氨酸的方法
JP2008283917A (ja) 乳酸の製造方法
Li et al. Metabolic engineering of Escherichia coli for the production of glyoxylate from xylose
Park et al. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase
KR20200121746A (ko) 2,3-부탄디올 생산용 메탄자화균 형질전환체
US20220220490A1 (en) A method for biologically producing sugar alcohol from agar
KR102028161B1 (ko) 형질전환 미생물을 이용한 2,3-부탄디올 생산방법
KR20200136242A (ko) 포도당으로부터 글리세롤로의 전환률 향상을 위한 유도성 프로모터의 이용
JP2006503559A (ja) D−マンニトールを製造するための方法並びに微生物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant