CN116808843A - 负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 - Google Patents
负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 Download PDFInfo
- Publication number
- CN116808843A CN116808843A CN202311104942.XA CN202311104942A CN116808843A CN 116808843 A CN116808843 A CN 116808843A CN 202311104942 A CN202311104942 A CN 202311104942A CN 116808843 A CN116808843 A CN 116808843A
- Authority
- CN
- China
- Prior art keywords
- polyvinyl chloride
- nano tube
- ultrafiltration membrane
- carbon nano
- mno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 239000012528 membrane Substances 0.000 title claims abstract description 70
- 239000004800 polyvinyl chloride Substances 0.000 title claims abstract description 51
- 229920000915 polyvinyl chloride Polymers 0.000 title claims abstract description 50
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 39
- 239000011159 matrix material Substances 0.000 title claims abstract description 27
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 65
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 239000008367 deionised water Substances 0.000 claims abstract description 29
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 29
- 238000005266 casting Methods 0.000 claims abstract description 26
- 239000011521 glass Substances 0.000 claims abstract description 26
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 238000001291 vacuum drying Methods 0.000 claims abstract description 8
- 239000012286 potassium permanganate Substances 0.000 claims abstract description 7
- 238000001704 evaporation Methods 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229920001223 polyethylene glycol Polymers 0.000 claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 8
- 238000009832 plasma treatment Methods 0.000 claims description 8
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 8
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000002048 multi walled nanotube Substances 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000009423 ventilation Methods 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000002079 double walled nanotube Substances 0.000 claims description 4
- 229940068918 polyethylene glycol 400 Drugs 0.000 claims description 4
- 239000002109 single walled nanotube Substances 0.000 claims description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 238000005191 phase separation Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 3
- 238000001816 cooling Methods 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000007790 scraping Methods 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 12
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 abstract description 6
- 239000003361 porogen Substances 0.000 abstract description 4
- 238000011084 recovery Methods 0.000 abstract description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 abstract description 2
- 229940098773 bovine serum albumin Drugs 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002090 nanochannel Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
- B01D71/0212—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/301—Polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开一种负载MnO2‑X碳纳米管‑聚氯乙烯混合基质超滤膜及其制备方法,包括以下步骤:将低温等离子体处理的碳纳米管加入盛有去离子水的烧杯中,再加入与碳纳米管同等质量的高锰酸钾;然后转移至水热反应釜中反应,烘干得到负载MnO2‑X碳纳米管;将负载MnO2‑X碳纳米管加入盛有溶剂的烧杯中,超声分散,再加入聚氯乙烯和致孔剂,置真空干燥箱得到铸膜液;将铸膜液缓慢倒在洁净的玻璃板上,用刮膜器刮成厚度约200µm的液膜,在空气中蒸发后完全浸没于去离子水中;待膜从玻璃板上完全脱落后,取出用去离子水浸泡,干燥后即得。本发明制备的混合基质超滤膜具有亲水性好、通量高、牛血清蛋白截留率高、通量恢复率高的特点。
Description
技术领域
本发明涉及超滤膜制备技术领域,具体涉及一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及其制备方法。
背景技术
超滤膜是指截留溶质的分子量大于500道尔顿、孔径在2-100纳米之间的分离膜,具有操作压力低、设备体积小、运行成本低、能耗低、独特的分离原理和传输选择性、分离效率高和环保等优势,已广泛应用于饮用水生产、废水处理、生物蛋白质的纯化和浓缩等领域。
然而在膜过滤过程中,水中的胶体粒子、微粒或溶质大分子与膜存在机械作用或者物理化学作用而引起在膜孔内或膜表面沉积、吸附、造成膜孔堵塞,使膜的渗透通量和分离特性产生不可逆变化的现象,称之为膜污染。对膜进行超亲水改性是提高膜的抗污染能力的策略之一。超亲水改性的抗污染机理是提高水化层的厚度和密度,阻碍污染物与膜的接触。
聚氯乙烯(PVC)具有良好的机械强度、稳定的物理和化学性质、价格低廉(其价格不足聚砜、聚醚砜、聚酰亚胺和聚偏氟乙烯的十分之一)、耐酸碱,是目前应用最广泛的膜材料。 因此,聚氯乙烯比其他聚合物在膜制造领域具有更大的优势。但是聚氯乙烯因为自身C-Cl键导致极强的疏水性,使其容易受到污染,因此提高聚氯乙烯膜的亲水性势在必行。采用共混改性的方法提高聚氯乙烯膜的亲水性,具有简单方便,易于实现,是近年来研究热点。
碳纳米管具有高比表面积、高强度和高稳定性,又具有导电、导热,耐腐蚀性,作为复合材料增强体,可表现出良好的强度、弹性、可加工性、易加工性及各向同性,因此在制备超滤膜过程中掺杂碳纳米管能对膜的性能带来卓越提升,但是未功能化的碳纳米管存在分散性和亲水性差等问题。
本发明首先通过低温等离子体处理碳纳米管,再将低温等离子体处理过的碳纳米管表面通过简单水热反应负载上缺位二氧化锰(MnO2-X),MnO2-X外表面有丰富的氧空位,因此MnO2-X的亲水能力比MnO2更强,从而改善碳纳米管的亲水性和分散性。最后将负载上MnO2-X的碳纳米管和聚氯乙烯共混,同时利用有机-无机之间界面相容性较弱,在亲水性的MnO2-X颗粒周围自发形成纳米通道,为水的渗透提供了额外通道,从而克服了trade-off上限,增加渗透通量。
本发明专利将负载MnO2-X的碳纳米管掺杂到聚氯乙烯聚合物中,提高聚氯乙烯超滤膜的亲水性;同时利用高分子量的聚乙二醇中的羟基与MnO2-X形成氢键,主链与聚氯乙烯分子链缠绕,提高有机-无机界面的相容性,制备高渗透、耐污染的混合基质超滤膜。
发明内容
本发明提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及其制备方法,解决现有的超滤膜中掺杂碳纳米管时碳纳米管存在分散性和亲水性差等问题。
为解决上述技术问题,本发明所采取的技术方案是:
本发明提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及其制备方法,包括以下步骤:
步骤(1):将1-3g碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟,排除管道里面的气体,并使碳纳米管在管路中运动起来;打开射频电源,调节氧气流量10-20ml/min,放电电压为30-60V,放电10-20min;得到低温等离子体处理的碳纳米管,置于密封袋中,保存在干燥器中备用;
步骤(2):将步骤(1)制备的0.1-0.4g低温等离子体处理的碳纳米管加入到盛有60ml去离子水的烧杯中,超声分散30 min,再加入与碳纳米管同等质量的高锰酸钾,继续超声分散溶解30min;然后将上述混合溶液转移至100ml水热反应釜中,200℃温度下,反应6h,最后在60℃烘干得到负载MnO2-X碳纳米管;化学反应式见式(1):
4MnO4 −+ 3C + H2O→4MnO2−x+ CO3 2−+ 2HCO3 − (1)
步骤(3):将负载MnO2-X碳纳米管加入盛有溶剂的烧杯中,超声分散30min,再依次加入聚氯乙烯和致孔剂,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24h得到铸膜液。
步骤(4):将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度200µm的液膜,在空气中蒸发10-15s后将玻璃板完全浸没于30℃的恒温去离子水中,发生非溶剂致相分离;待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48h,干燥1h后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。
其中,所述碳纳米管为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管中的一种。
其中,所述碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm。
其中,步骤(3)中,所述铸膜液中各原料组分按质量百分比分别为:负载MnO2-X碳纳米管0.1-2%、溶剂75-84%、聚氯乙烯颗粒14-23%、致孔剂 0.6-3%。
其中,所述致孔剂由聚乙二醇400和聚乙二醇20000 组成,聚乙二醇400在铸膜液中的质量百分比为0.1-2%,聚乙二醇20000在铸膜液中的质量百分比为0.5-1%。
其中,步骤(3)中,所述聚氯乙烯聚合度为1300-1600,分子量为81000-100000;
其中,步骤(3)中,所述溶剂为N,N二甲基甲酰胺、N,N二甲基乙酰胺、N-甲基吡咯烷酮中的一种。
本发明并提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜,是采用上述的制备方法制成。
本发明提供的技术方案,与现有技术相比,具有以下有益效果:
(1)碳纳米管在水中团聚不利于分散,先对其进行低温等离子体处理,能大幅提高碳纳米管在水溶液中的分散性,有利于后续水热反应;再通过水热反应将碳纳米管表面负载上MnO2-X,继续提高碳纳米管在铸膜液中的分散性,最大限度的发挥碳纳米管的优异性能。
(2)MnO2-X显著提高了超滤膜的亲水性和抗污染性;高分子量的聚乙二醇(PEG20000)中OH与MnO2-X形成氢键,主链与聚氯乙烯分子链缠绕,提高有机-无机界面的相容性,同时利用有机-无机界面形成的纳米通道,为水的渗透提供了额外通道,从而克服了trade-off上限,由此本发明制备的混合基质超滤膜具有亲水性好、通量高、牛血清蛋白截留率高、通量恢复率高的特点。
附图说明
图1 为低温等离子体处理的碳纳米管扫描电镜图(SEM);
图2 为负载MnO2-X 的碳纳米管扫描电镜图(SEM);
图3 为实施例1膜的扫描电镜上表面图;
图4 为实施例1膜的扫描电镜截面图。
具体实施方式
下面将结合本发明具体实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中,聚氯乙烯聚合度为1300-1600,分子量为81000-100000。
实施例1
本实施例提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,包括以下步骤:
(1)将1g的单壁碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟,排除管道里面的气体,并使碳纳米管在管路中充分运动起来;打开射频电源,调节氧气流量10ml/min,放电电压为60V,放电10 min得到低温等离子体处理的碳纳米管;得到低温等离子体处理的碳纳米管扫描电镜图如图1所示。
(2)将0.1 g低温等离子体处理的碳纳米管加入到盛有60 ml去离子水的烧杯中,超声分散30 min,再加入0.1 g的高锰酸钾,继续超声分散溶解30 min。然后将上述混合溶液转移至100 ml水热反应釜中,200℃温度下,反应6 h,60℃烘干得到负载MnO2-X碳纳米管。负载MnO2-X 的碳纳米管扫描电镜图如图2所示。
(3)将0.1 g负载MnO2-X的碳纳米管加入到盛有80 g N,N二甲基甲酰胺溶液的烧杯中,超声分散30 min,再依次加入18 g 聚氯乙烯、1.4g PEG400、0.5g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24 h得到铸膜液。
(4)将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发10 s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。扫描电镜上表面图如图3所示;扫描电镜截面图如图4所示。
本实施例的单壁碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm。
实施例2
本实施例提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,包括以下步骤:
(1)将2g多壁碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟排除管道里面的气体,并使碳纳米管在管路中充分运动起来;打开射频电源,调节氧气流量20 ml/min,放电电压为50 V,放电15 min。得到低温等离子体处理的碳纳米管。
(2)将2g低温等离子体处理的碳纳米管加入到盛有60 ml去离子水的烧杯中,超声分散30 min,再加入2 g的高锰酸钾,继续超声分散溶解30 min。然后将上述混合溶液转移至100 ml水热反应釜中,200℃温度下,反应6 h,60℃烘干得到负载MnO2-X碳纳米管。
(3)将2g负载MnO2-X的碳纳米管加入到盛有76 g N,N二甲基乙酰胺溶液的烧杯中,超声分散30 min,再依次加入19 g 聚氯乙烯、2.0 g PEG400、1.0g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24 h得到铸膜液。
(4)将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发15 s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。
本实施例多壁碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm。
实施例3
本实施例提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,包括以下步骤:
(1)将2 g多壁碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟排除管道里面的气体,并使碳纳米管在管路中充分运动起来;打开射频电源,调节氧气流量20 ml/min,放电电压为40 V,放电20 min。得到低温等离子体处理的碳纳米管。
(2)将1.2 g低温等离子体处理的碳纳米管加入到盛有60 ml去离子水的烧杯中,超声分散30 min,再加入1.2g的高锰酸钾,继续超声分散溶解30 min。然后将上述混合溶液转移至100 ml水热反应釜中,200℃温度下,反应6 h,60℃烘干得到负载MnO2-X碳纳米管。
(3)将1.2 g负载MnO2-X的碳纳米管加入到盛有75 g N,N二甲基乙酰胺溶液的烧杯中,超声分散30 min,再依次加入23g 聚氯乙烯、0.1 g PEG400、0.7 g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24 h得到铸膜液。
(4)将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发15 s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。
本实施例的多壁碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm。
实施例4
本实施例提供一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,包括以下步骤:
(1)将1 g的双壁碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟,排除管道里面的气体,并使碳纳米管在管路中充分运动起来;打开射频电源,调节氧气流量10 ml/min,放电电压为30 V,放电20 min。得到低温等离子体处理的碳纳米管。
(2)将0.70 g低温等离子体处理的碳纳米管加入到盛有60 ml去离子水的烧杯中,超声分散30 min,再加入0.70 g的高锰酸钾,继续超声分散溶解30 min。然后将上述混合溶液转移至100 ml水热反应釜中,200℃温度下,反应6 h,60℃烘干得到负载MnO2-X碳纳米管。
(3)将0.70g负载MnO2-X的碳纳米管加入到盛有84g N-甲基吡咯烷酮溶液的烧杯中,超声分散30 min,再依次加入14g 聚氯乙烯、0.2 g PEG400、1.1 g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24 h得到铸膜液。
(4)将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发15s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。
本实施例的双壁碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm
对比例1:在80 g N,N二甲基甲酰胺溶液的烧杯中,依次加入18 g 聚氯乙烯、1.5gPEG400、0.5g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24 h得到铸膜液。将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发15 s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到聚氯乙烯超滤膜。
对比例2:在82 g N,N二甲基乙酰胺溶液的烧杯中,依次加入16 g 聚氯乙烯、1.5g PEG400、0.5 g PEG20000,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24h得到铸膜液。将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200 µm的液膜,在空气中蒸发15 s后将玻璃板完全浸没于30℃的恒温去离子水中,待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48 h,干燥后得到聚氯乙烯超滤膜。
相关测试:
纯水通量的测定:采用Millipore XFUF04701型死端过滤超滤杯,体积为90 ml,有效过流面积为15 cm2,所有膜片在室温下均在0.15 MPa下用去离子水压实至通量稳定。然后在0.1MPa下,记录1 min内通过膜的去离子水的体积,按照式(2)计算膜的纯水通量J 0:
J 0 =V/(At) (2)
其中,V为渗透水体积,A为膜有效面积,t为测定时间。
BSA截留率测定:将去离子水换成1.0 g×L-1的BSA溶液,在0.1MPa下过滤一段时间后测试膜对BSA的截留率R,按照式(3)计算;
(3)
其中,C p和C f分别是透过液和原料液中BSA的浓度,浓度用紫外-可见分光光度法测量,吸附波长在280 nm。
水通量恢复率测定:将经过BSA污染的超滤膜用去离子水清洗30 min,接着再0.1MPa下用去离子水再次测试超滤膜的纯水通量J 1,则超滤膜的通量恢复率FRR,按照式(4)计算:
(4)
将实施例1-4得到的超滤膜与对比例1-2进行对比测试,测试结果如表1:
表1不同实施例性能测试结果
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (8)
1.一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于包括以下步骤:
步骤(1):将1-3g碳纳米管放入低温等离子体处理装置的石英管中,通入氧气,保持通气10分钟,排除管道里面的气体,并使碳纳米管在管路中运动起来;打开射频电源,调节氧气流量10-20ml/min,放电电压为30-60V,放电10-20min;得到低温等离子体处理的碳纳米管,置于密封袋中,保存在干燥器中备用;
步骤(2):将步骤(1)制备的0.1-0.4g低温等离子体处理的碳纳米管加入到盛有60ml去离子水的烧杯中,超声分散30 min,再加入与碳纳米管同等质量的高锰酸钾,继续超声分散溶解30min;然后将上述混合溶液转移至100ml水热反应釜中,200℃温度下,反应6h,最后在60℃烘干得到负载MnO2-X碳纳米管;化学反应式见式(1):
4MnO4 − + 3C + H2O→4MnO2−x + CO3 2− + 2HCO3 − (1)
步骤(3):将负载MnO2-X碳纳米管加入盛有溶剂的烧杯中,超声分散30min,再依次加入聚氯乙烯和致孔剂,在60℃下加热搅拌至溶液均匀后冷却,置于真空干燥箱脱泡24h得到铸膜液;
步骤(4):将铸膜液缓慢倾倒在洁净的玻璃板上,用刮膜器刮成厚度为200µm的液膜,在空气中蒸发10-15s后将玻璃板完全浸没于30℃的恒温去离子水中,发生非溶剂致相分离;待膜从玻璃板上完全脱落后,将膜取出用去离子水浸泡48h,干燥1h后得到负载MnO2-X 的碳纳米管-聚氯乙烯混合基质超滤膜。
2.根据权利要求1所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:所述碳纳米管为单壁碳纳米管、双壁碳纳米管和多壁碳纳米管中的一种。
3.根据权利要求1所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:所述碳纳米管纯度≥98%、外径在10-30nm 之间、长度<5µm。
4.根据权利要求1所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:步骤(3)中,所述铸膜液中各原料组分按质量百分比分别为:负载MnO2-X碳纳米管0.1-2%、溶剂75-84%、聚氯乙烯颗粒14-23%、致孔剂 0.6-3%。
5.根据权利要求4所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:所述致孔剂由聚乙二醇400和聚乙二醇20000 组成,聚乙二醇400在铸膜液中的质量百分比为0.1-2%,聚乙二醇20000在铸膜液中的质量百分比为0.5-1%。
6.根据权利要求1所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:步骤(3)中,所述聚氯乙烯聚合度为1300-1600,分子量为81000-100000。
7.根据权利要求1所述的一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜的制备方法,其特征在于:步骤(3)中,所述溶剂为N,N二甲基甲酰胺、N,N二甲基乙酰胺、N-甲基吡咯烷酮中的一种。
8.一种负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜,其特征在于是采用权利要求1-7任一项所述的制备方法制成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311104942.XA CN116808843B (zh) | 2023-08-30 | 2023-08-30 | 负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311104942.XA CN116808843B (zh) | 2023-08-30 | 2023-08-30 | 负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116808843A true CN116808843A (zh) | 2023-09-29 |
CN116808843B CN116808843B (zh) | 2023-11-21 |
Family
ID=88122557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311104942.XA Active CN116808843B (zh) | 2023-08-30 | 2023-08-30 | 负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116808843B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119034499A (zh) * | 2024-10-29 | 2024-11-29 | 新乡学院 | 负载MnO2-X短切碳纤维-聚丙烯腈混合基质超滤膜及其制备方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208878A (ja) * | 1995-02-02 | 1996-08-13 | Shin Etsu Polymer Co Ltd | 多孔質膜とその製造方法 |
JP2010065151A (ja) * | 2008-09-11 | 2010-03-25 | Fujifilm Corp | 三次元網目状構造を有する多孔質膜 |
US20100233812A1 (en) * | 2008-03-28 | 2010-09-16 | Nanyang Technological University The Board of Trustees of the Leland Stanford Junior University | Membrane made of a nanostructured material |
CN101923960A (zh) * | 2010-08-18 | 2010-12-22 | 东华大学 | 一种瓣状二氧化锰纳米晶包覆碳纳米管复合电极材料的制备方法 |
CN102267693A (zh) * | 2011-07-06 | 2011-12-07 | 天津理工大学 | 一种碳纳米管的低温制备方法 |
KR101197100B1 (ko) * | 2011-08-02 | 2012-11-07 | 인하대학교 산학협력단 | 알파상 이산화망간/탄소나노튜브 복합체를 이용한 공기전극의 제조방법 및 이에 따라 제조되는 공기전극 |
CN103120902A (zh) * | 2012-11-13 | 2013-05-29 | 高润宝 | 碳纳米管、纳米二氧化硅共改性聚乙烯醇复合超滤膜的制备方法 |
CN103896242A (zh) * | 2012-12-28 | 2014-07-02 | 天津富纳源创科技有限公司 | 提高碳纳米管膜异向性的方法 |
CN104787748A (zh) * | 2015-04-28 | 2015-07-22 | 南京工业大学 | 一种垂直生长的开口碳纳米管薄膜的制备方法 |
CN105126646A (zh) * | 2015-08-28 | 2015-12-09 | 西南石油大学 | 一种二氧化钛/埃洛石纳米管共混聚偏氟乙烯超滤膜及制备方法 |
CN105478018A (zh) * | 2015-12-25 | 2016-04-13 | 西南石油大学 | 一种功能化多壁碳纳米管共混超滤膜的制备方法 |
CN110492082A (zh) * | 2019-08-28 | 2019-11-22 | 中北大学 | 一种二氧化锰/碳纳米管复合材料、制备方法和应用 |
CN111606309A (zh) * | 2020-06-30 | 2020-09-01 | 江苏理工学院 | 一种用于提取碲的复合分离膜及其制备方法 |
CN113113624A (zh) * | 2021-04-06 | 2021-07-13 | 南京工业大学 | 一种以碳纳米管为载体的纳米铂催化剂及其制备方法 |
-
2023
- 2023-08-30 CN CN202311104942.XA patent/CN116808843B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08208878A (ja) * | 1995-02-02 | 1996-08-13 | Shin Etsu Polymer Co Ltd | 多孔質膜とその製造方法 |
US20100233812A1 (en) * | 2008-03-28 | 2010-09-16 | Nanyang Technological University The Board of Trustees of the Leland Stanford Junior University | Membrane made of a nanostructured material |
JP2010065151A (ja) * | 2008-09-11 | 2010-03-25 | Fujifilm Corp | 三次元網目状構造を有する多孔質膜 |
CN101923960A (zh) * | 2010-08-18 | 2010-12-22 | 东华大学 | 一种瓣状二氧化锰纳米晶包覆碳纳米管复合电极材料的制备方法 |
CN102267693A (zh) * | 2011-07-06 | 2011-12-07 | 天津理工大学 | 一种碳纳米管的低温制备方法 |
KR101197100B1 (ko) * | 2011-08-02 | 2012-11-07 | 인하대학교 산학협력단 | 알파상 이산화망간/탄소나노튜브 복합체를 이용한 공기전극의 제조방법 및 이에 따라 제조되는 공기전극 |
CN103120902A (zh) * | 2012-11-13 | 2013-05-29 | 高润宝 | 碳纳米管、纳米二氧化硅共改性聚乙烯醇复合超滤膜的制备方法 |
CN103896242A (zh) * | 2012-12-28 | 2014-07-02 | 天津富纳源创科技有限公司 | 提高碳纳米管膜异向性的方法 |
CN104787748A (zh) * | 2015-04-28 | 2015-07-22 | 南京工业大学 | 一种垂直生长的开口碳纳米管薄膜的制备方法 |
CN105126646A (zh) * | 2015-08-28 | 2015-12-09 | 西南石油大学 | 一种二氧化钛/埃洛石纳米管共混聚偏氟乙烯超滤膜及制备方法 |
CN105478018A (zh) * | 2015-12-25 | 2016-04-13 | 西南石油大学 | 一种功能化多壁碳纳米管共混超滤膜的制备方法 |
CN110492082A (zh) * | 2019-08-28 | 2019-11-22 | 中北大学 | 一种二氧化锰/碳纳米管复合材料、制备方法和应用 |
CN111606309A (zh) * | 2020-06-30 | 2020-09-01 | 江苏理工学院 | 一种用于提取碲的复合分离膜及其制备方法 |
CN113113624A (zh) * | 2021-04-06 | 2021-07-13 | 南京工业大学 | 一种以碳纳米管为载体的纳米铂催化剂及其制备方法 |
Non-Patent Citations (2)
Title |
---|
尉立华;王瑞;徐磊;: "氧等离子处理时间对碳纳米管表面功能化的影响", 化工新型材料, no. 11 * |
杨明辉;: "多壁碳纳米管对聚砜复合膜的性能影响探究", 广州化工, no. 13 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119034499A (zh) * | 2024-10-29 | 2024-11-29 | 新乡学院 | 负载MnO2-X短切碳纤维-聚丙烯腈混合基质超滤膜及其制备方法 |
CN119034499B (zh) * | 2024-10-29 | 2025-02-18 | 新乡学院 | 负载MnO2-X短切碳纤维-聚丙烯腈混合基质超滤膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116808843B (zh) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111939775B (zh) | 一种耐溶剂反渗透复合膜的制备方法 | |
WO2019149018A1 (zh) | 一种还原氧化石墨烯膜的制备方法 | |
CN113559724B (zh) | 一种基于氮硫共掺杂多孔碳球混合基质膜的制备方法及应用 | |
CN116808843B (zh) | 负载MnO2-X碳纳米管-聚氯乙烯混合基质超滤膜及制备方法 | |
CN109126480B (zh) | 一种金属有机框架纳米片改性正渗透膜及其制备方法和应用 | |
CN104841294B (zh) | 一种硅烷偶联剂修饰的亲水性pes/go复合膜及其制备方法 | |
CN112387131A (zh) | 一种聚合物微孔膜、其制备方法及应用 | |
CN108499363A (zh) | 原位合成纳米二氧化硅改性pvdf疏水微孔膜的方法 | |
CN101513593A (zh) | 亲水性聚氯乙烯膜及其制备方法 | |
CN102974236B (zh) | 一种掺杂活性炭和纳米氧化锌的复合平板聚砜膜及其制备方法 | |
WO2025025369A1 (zh) | 一种交联氧化石墨烯/共价有机框架纳滤膜及其制备方法 | |
CN102172478A (zh) | 一种用于膜蒸馏的疏水性陶瓷中空纤维膜及制备方法 | |
CN113117525A (zh) | 一种氨基功能化单壁碳纳米管改性聚酰胺纳滤膜及其制备方法与应用 | |
CN101721926A (zh) | 磺化含二氮杂萘酮结构共聚芳醚砜复合纳滤膜及其制备方法 | |
CN115920667A (zh) | 一种高稳定陶瓷基亚纳米孔石墨烯复合膜及精密分离应用 | |
CN112742222A (zh) | 一种pvc脂肪族两性离子交换膜的制备方法 | |
CN112619438B (zh) | 一种耐甲醇聚酰胺反渗透膜及其制备方法 | |
CN107213796A (zh) | 一种含改性氧化石墨烯的新型聚醚酰亚胺纳滤膜的制备方法 | |
CN113522038B (zh) | 一种用于去除水中污染物的复合膜制备方法及应用 | |
CN106345316B (zh) | 一种抗酸性腐蚀的微孔滤膜 | |
WO2024109592A1 (zh) | 反渗透膜的制备方法和由其制备的反渗透膜 | |
CN113797768A (zh) | 一种氧化二硫化钼掺杂哌嗪聚酰胺复合陶瓷纳滤膜及其制备方法 | |
CN119034499B (zh) | 负载MnO2-X短切碳纤维-聚丙烯腈混合基质超滤膜及其制备方法 | |
CN112844077A (zh) | 一种pe微孔膜为基材的反渗透膜及其制备方法 | |
CN115260494B (zh) | 一种聚酰亚胺及其薄层复合膜、制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |