CN116655387A - 一种高导热碳化硅陶瓷及其制备方法 - Google Patents

一种高导热碳化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN116655387A
CN116655387A CN202310643096.2A CN202310643096A CN116655387A CN 116655387 A CN116655387 A CN 116655387A CN 202310643096 A CN202310643096 A CN 202310643096A CN 116655387 A CN116655387 A CN 116655387A
Authority
CN
China
Prior art keywords
silicon carbide
powder
carbide ceramic
ceramic
biscuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310643096.2A
Other languages
English (en)
Inventor
王东
黄海兴
石威
李伟强
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Huamei New Material Technology Co ltd
Weifang Huamei Intelligent Technology Co ltd
Original Assignee
Shandong Huamei New Material Technology Co ltd
Weifang Huamei Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huamei New Material Technology Co ltd, Weifang Huamei Intelligent Technology Co ltd filed Critical Shandong Huamei New Material Technology Co ltd
Priority to CN202310643096.2A priority Critical patent/CN116655387A/zh
Publication of CN116655387A publication Critical patent/CN116655387A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种碳化硅陶瓷及其制备方法,通过调整碳化硅粉体的粒径和石墨粉体的粒径有效的避免了造粒的工艺,粉体流动性良好,与溶剂粘结剂混合后直接就可以干压或和等静压,此外结合抽气振动并干压等静压后步骤,使碳化硅陶瓷的热导率得到较大提高。

Description

一种高导热碳化硅陶瓷及其制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种高导热碳化硅陶瓷材料及其制备方法。
背景技术
碳化硅(SiC)陶瓷具有高熔点、高硬度、化学稳定性好、耐磨、强度高等优点,广泛的应用于机械密封和轴承、航空航天等领域。同时碳化硅(SiC)材料具有中子吸收截面小、高温力学性能好、热导率高等优点,是核能系统中极具前景的结构材料。随着集成电路、热交换器等行业的迅猛发展,以及近年来对半导体制造设备元器件高热导率、优异抗热震性和耐腐蚀性综合性能要求的提高,高导热碳化硅陶瓷的需求量急剧增长,碳化硅是一种共价键化合物,在室温下其热传导主要通过晶格振动(声子)的传递和散射而进行。
发明内容
发明人在实验中发现,碳化硅单晶的理论室温热导率高达490W·m-1·K-1。目前文献报道的碳化硅陶瓷室温热导率在30-170W·m-1·K-1,远低于碳化硅单晶理论室温热导率,这主要是由于碳化硅陶瓷中存在烧结助剂、晶界、固溶体、晶格氧、气孔等引起声子散射,导致较低的导热性能大大影响了碳化硅陶瓷的应用范围和应用前景。
为克服现有技术的问题,本发明提供了一种高导热碳化硅陶瓷的制备方法,包括以下步骤:
S1、以SiC粉体、石墨粉体为原料,与溶剂、粘结剂混合,得到复合粉体;
S2、成型:将得到的复合粉体放入模具中成型,得到陶瓷素坯;
S3、将得到的陶瓷素坯进行高温脱脂,得到脱脂素坯;
S4、渗硅反应烧结:将该脱脂素坯在高温下对材料进行渗硅烧结处理,得到碳化硅陶瓷。
步骤S1得到的复合粉体为流动性良好的复合粉体。
本发明通过步骤步骤S1得到的复合粉体无需造粒步骤,可以直接进行成型操作。
根据本发明一具体实施方式,在步骤S1中,碳化硅粉体粒径为50-300μm,优选80-200μm;进一步优选为80-150μm;石墨粉体的粒径为10-600μm,优选10-100μm。其中,该石墨粉体为多孔导电石墨粉体。
本发明中,通过调整碳化硅粉体的粒径和石墨粉体的粒径在上述范围内,有效的避免了造粒的工艺,使其所得的复合粉体可以直接进行成型,从而有助于碳化硅陶瓷产品热导率的提升。
根据本发明一具体实施方式,在步骤S1中,其中碳化硅粉体含量为0-100wt%、多孔导电石墨粉的含量为10-100wt%。优选地,碳化硅粉体含量为50-90wt%、石墨粉的含量为10-50wt%。其中,碳化硅粉体与石墨粉体的含量百分比是以碳化硅粉体含量与石墨粉的含量之和为100%计。
根据本发明一具体实施方式,在步骤S1中,溶剂为水、乙醇、对苯磺酸,稀硫酸、盐酸、磷酸、硼酸、草酸、马来酸酐、柠檬酸、苹果酸、苯磺酸、苯酚磺酸中的一种或多种;优选为苯磺酸或苯酚磺酸;更优选为对甲苯磺酸。
根据本发明一具体实施方式,在步骤S1中,粘结剂为聚乙烯醇(PVA)、聚乙烯醇缩丁醛(PVB)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯吡咯烷酮(PVP)、环氧树脂、呋喃树脂、酚醛树脂中的一种或者多种。
根据本发明一具体实施方式,在步骤S1中,粘结剂的添加量为上述复合粉体的0.5wt%-2wt%。
根据本发明一具体实施方式,在步骤S1中,所述溶剂的添加量占粘结剂的20wt%-70wt%。
根据本发明一具体实施方式,在步骤S2中,成型的方式为干压成型或/和等静压成型,优选为先干压成型后再进行等静压成型。
根据本发明一具体实施方式,在步骤S2中,干压成型的压力为15-100MPa,等静压的压力为150-210MPa。
根据本发明一具体实施方式,步骤S2还包括:成型时对粉体进行抽气处理,和/或,对粉体进行低频震动。优选地,成型时对粉体进行抽气处理同时对粉体进行低频震动。
本发明中,通过在成型步骤中,对粉体抽气处理和/或进行低频震动,有助于碳化硅陶瓷产品热导率的提升。进一步优选地,当抽气处理和低频震动同时进行,其热导率更高。
根据本发明一具体实施方式,抽气真空度为1-1100Pa,优选为1000Pa;低频震动频率为15-50Hz,优选30Hz。
根据本发明一具体实施方式,在步骤S3中,脱脂温度不高于1200℃,优选为900-1100℃;脱脂时间为12-48h。
根据本发明一具体实施方式,在步骤S3中,脱脂素坯的气孔率为10%-60%,优选为10-30%;孔径分布为0.01-20μm,优选为1-20μm。
根据本发明一具体实施方式,在步骤S4中,渗硅反应烧结的温度为1450-1750℃,时间为60-120分钟。
本发明的第二目的是提供一种采用上述制备方法制备得到的碳化硅陶瓷,该碳化硅陶瓷的热导率为180-200W·m-1·K-1
根据本发明一具体实施方式,碳化硅陶瓷的密度2.95-3.10g·cm-3,抗弯强度220-400MPa,弹性模量300-450GPa,韧性2.0-4.2MPam1/2
有益效果:
与现有技术相比,本发明的优点在于:本发明中,通过调整碳化硅粉体的粒径和石墨粉体的粒径有效的避免了造粒的工艺,粉体流动性良好,与溶剂粘结剂混合后直接就可以干压或和等静压,此外结合抽气振动并干压等静压等操作,这些因素协同作用下可以很大程度提高碳化硅陶瓷的热导率。
具体实施方式
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围,下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)粉体原料制备:将D50为150μm的碳化硅粉、D50为10μm的多孔导电石墨粉,与溶剂水混合、混合时间为30s,混合均匀,再加入酚醛树脂1wt%混合,混合60s,得到流动性良好的复合粉体,其中碳化硅粉的含量为90wt%,多孔导电C粉的含量为10wt%,溶剂的添加量为树脂含量为50wt%;
(2)成型:将得到的复合粉体放入模具中干压成型,成型压力为40Mpa,随后进行等静压成型,成型压力为200Mpa,抽气真空度为1000Pa,振动频率为30Hz;
(3)脱脂:将得到的陶瓷素坯进行高温脱脂,脱脂温度1200℃,时间为12h;得到的样品气孔率为12%,平均孔径为1μm,
(4)渗硅反应烧结:在1600℃对材料进行渗硅处理,时间为1h,得到高强高热导的碳化硅陶瓷材料,物理性能见表1:
实施例2
(1)粉体原料制备:将D50为120μm的碳化硅粉、D50为100μm的多孔导电石墨粉,与溶剂对苯磺酸混合、混合时间为30s,混合均匀,再加入呋喃树脂1wt%混合,混合60s,得到流动性良好的复合粉体,其中碳化硅粉的含量为60wt%,多孔导电C粉的含量为40wt%,溶剂的添加量为树脂含量为50wt%;
(2)成型:将得到的复合粉体放入模具中干压成型,成型压力为100Mpa;抽气真空度为1000Pa;
(3)脱脂:将得到的陶瓷素坯进行高温脱脂,脱脂温度1200℃,时间为24h;得到的样品气孔率为20%,平均孔径为5μm;
(4)渗硅反应烧结:在1750℃对材料进行渗硅处理,时间为1h,得到高强高热导碳化硅陶瓷材料,其物理性能见表1:
实施例3
(1)粉体原料制备:将D50为80μm的碳化硅粉、与溶剂对苯磺酸混合、混合均匀,混合时间为30s,再加入酚醛树脂2wt%混合,混合120s,得到流动性良好的复合粉体,溶剂的添加量为树脂含量为50wt%;
(2)成型:将得到的复合粉体放入模具中干压成型,成型压力为40Mpa,随后进行等静压成型,成型压力为150Mpa;振动频率为30Hz;
(3)脱脂:将得到的陶瓷素坯进行高温脱脂,脱脂温度1200℃,时间为48h;得到的样品气孔率为30%,平均孔径为10μm,
(4)渗硅反应烧结:在1550℃对材料进行渗硅处理,时间为2h;得到高强高热导的碳化硅陶瓷材料。物理性能见表1:
对比例1
其他条件与实施例1相同,不同之处在于:碳化硅粉的粒径D50为5um、多孔导电石墨粉的粒径D50为1um。
对比例2
其他条件与实施例1相同,不同之处在于:在成型的过程中,不对粉体进行抽气和低频震动处理。
对比例3
其他条件与对比例1相同,不同之处在于成型前进行了造粒操作。
表1
由表1的数据可以看出,通过分析实施例1-3和对比例1-3可以发现,采用本申请的特定粒径的SiC粉体和石墨粉体,并结合抽气处理和/或低频震动步骤,可以提升陶瓷材料的热导率;此外,通过分析对比例3可知,采用本申请的技术方案,可以克服现有技术中的采用粒径较低的粉体并结合造粒的技术方案中由于晶界存在而导致的热导率较低的缺陷。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

1.一种碳化硅陶瓷的制备方法,其特征在于,包括以下步骤:
S1、以碳化硅粉体、石墨粉体为原料,与溶剂、粘结剂混合,得到复合粉体;
S2、成型:将得到的所述复合粉体放入模具中成型,得到陶瓷素坯;
S3、将得到的所述陶瓷素坯进行脱脂,得到脱脂素坯;
S4、渗硅反应烧结:将所述脱脂素坯进行渗硅烧结处理,得到所述碳化硅陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,在所述步骤S1中,碳化硅粉体粒径为50-300μm,优选80-200μm;石墨粉体的粒径为10-600μm,优选10-100μm。
3.根据权利要求1所述的制备方法,其特征在于,在所述步骤S2中,所述成型的方式为干压成型或/和等静压成型,优选为先干压成型后再进行等静压成型。
4.根据权利要求1所述的制备方法,其特征在于,步骤S2还包括:成型时对粉体进行抽气处理,和/或,对粉体进行低频震动处理。
5.根据权利要求4所述的制备方法,其特征在于,成型时对粉体进行抽气处理同时对粉体进行低频震动。
6.根据权利要求4或5所述的制备方法,其特征在于,所述抽气真空度为1-1100pa,优选为1000pa;所述低频震动频率为15-50Hz,优选30Hz。
7.根据权利要求1所述的制备方法,其特征在于,在所述步骤S3中,所述脱脂素坯的气孔率为10%-60%,优选为10-30%;孔径分布为0.01-20μm,优选为1-20μm。
8.根据权利要求1所述的制备方法,其特征在于,在所述步骤S4中,所述渗硅反应烧结的温度为1450-1750℃,时间为60-120分钟。
9.根据权利要求1-8任一项所述制备方法制备得到的碳化硅陶瓷。
10.根据权利要求9所述的碳化硅陶瓷,其特征在于,所述碳化硅陶瓷的热导率为180-200W·m-1·K-1
CN202310643096.2A 2023-06-01 2023-06-01 一种高导热碳化硅陶瓷及其制备方法 Pending CN116655387A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310643096.2A CN116655387A (zh) 2023-06-01 2023-06-01 一种高导热碳化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310643096.2A CN116655387A (zh) 2023-06-01 2023-06-01 一种高导热碳化硅陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN116655387A true CN116655387A (zh) 2023-08-29

Family

ID=87721954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310643096.2A Pending CN116655387A (zh) 2023-06-01 2023-06-01 一种高导热碳化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116655387A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335172A (ja) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd 多孔質炭化珪素焼結体の製造方法
US20040183232A1 (en) * 2003-03-18 2004-09-23 Ngk Insulators, Ltd. High thermal conductive material having high thermal conductivity and process for producing the same
CN102951634A (zh) * 2012-11-21 2013-03-06 成都炭素有限责任公司 超大规格等静压石墨及其生产方法
CN104926313A (zh) * 2015-06-29 2015-09-23 山东大学 一种高热导率反应烧结碳化硅陶瓷材料及其制备方法
CN106478105A (zh) * 2016-09-26 2017-03-08 西安交通大学 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法
CN109020552A (zh) * 2017-12-28 2018-12-18 中国人民解放军国防科技大学 SiC基复相陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335172A (ja) * 1998-05-26 1999-12-07 Tokai Konetsu Kogyo Co Ltd 多孔質炭化珪素焼結体の製造方法
US20040183232A1 (en) * 2003-03-18 2004-09-23 Ngk Insulators, Ltd. High thermal conductive material having high thermal conductivity and process for producing the same
CN102951634A (zh) * 2012-11-21 2013-03-06 成都炭素有限责任公司 超大规格等静压石墨及其生产方法
CN104926313A (zh) * 2015-06-29 2015-09-23 山东大学 一种高热导率反应烧结碳化硅陶瓷材料及其制备方法
CN106478105A (zh) * 2016-09-26 2017-03-08 西安交通大学 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN109020552A (zh) * 2017-12-28 2018-12-18 中国人民解放军国防科技大学 SiC基复相陶瓷及其制备方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李红霞主编: "《耐火材料手册》", 31 January 2021, 冶金工业出版社, pages: 294 *

Similar Documents

Publication Publication Date Title
CN103553691B (zh) 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN105503254B (zh) 一种钛酸钡泡沫陶瓷及其制备方法
CN102030556B (zh) 一种金刚石/碳化硅陶瓷基复合材料的制备方法
TWI699346B (zh) 碳化矽質複合體之製造方法
CN109811177A (zh) 一种高导电高强度银-石墨烯复合材料的制备方法
CN103302294A (zh) 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN111302809B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法
WO2020057096A1 (zh) 一种原位碳化硅-铁硅复合材料及其制备方法
CN112941431B (zh) 一种细颗粒金刚石铜基复合散热材料的粉末冶金制备方法
CN112877562B (zh) 一种硼掺杂石墨烯增强铜基复合材料及其制备方法
CN113880557A (zh) AL2O3-cBN基陶瓷刀具材料及其制备方法
CN111876625B (zh) 一种AlNMg复合材料及其制备方法
CN113862540A (zh) 一种添加max相的钼合金及其制备方法
CN116655387A (zh) 一种高导热碳化硅陶瓷及其制备方法
CN109467442B (zh) 一种氮化硅陶瓷及其制备方法
CN114516756B (zh) 一种碳化硅复合陶瓷材料及其制备方法和应用
CN109437955B (zh) 一种基于聚碳硅烷改性的刹车材料快速制备方法
JP6617153B2 (ja) アルミニウム合金−炭化珪素質複合体の製造方法
CN103981398A (zh) 一种高性能金属陶瓷覆层材料及其制备方法
CN111099897A (zh) 一种碳化硅复合材料及其制备方法
JP6452969B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
CN112919923B (zh) 金属基复合材料及其制备方法和应用
CN115521151A (zh) 一种碳化硅/碳化钽增韧陶瓷的放电等离子烧结方法
JP3942280B2 (ja) 六方晶窒化ほう素焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Wang Dong

Inventor after: Shi Wei

Inventor after: Li Weiqiang

Inventor after: Wang Qiang

Inventor before: Wang Dong

Inventor before: Huang Haixing

Inventor before: Shi Wei

Inventor before: Li Weiqiang

Inventor before: Wang Qiang

CB03 Change of inventor or designer information