CN116603535A - 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用 - Google Patents

用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用 Download PDF

Info

Publication number
CN116603535A
CN116603535A CN202310635003.1A CN202310635003A CN116603535A CN 116603535 A CN116603535 A CN 116603535A CN 202310635003 A CN202310635003 A CN 202310635003A CN 116603535 A CN116603535 A CN 116603535A
Authority
CN
China
Prior art keywords
salt
based catalyst
solution
water gas
gas shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310635003.1A
Other languages
English (en)
Inventor
郑兴
李丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202310635003.1A priority Critical patent/CN116603535A/zh
Publication of CN116603535A publication Critical patent/CN116603535A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了用于逆水煤气变换反应的Fe‑M基催化剂的制备方法,具体为:配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;并配置有机溶液;在50~95℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;将催化剂前驱体置于马弗炉中焙烧,冷却,得到Fe‑M基催化剂。本发明的Fe‑M基催化剂在较低温下具有很高的反应活性和极高的CO选择性,可应用于逆水煤气变换反应合成CO工艺,以降低CO2的排放量。经优化后的工艺,最终甲烷含量小于1%乃至0.01%以下,CO2转化率超过55%,CO的选择率接近乃至达到100%。

Description

用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用
技术领域
本发明属于催化剂合成与应用技术领域,具体涉及用于逆水煤气变换反应的Fe-M基催化剂的制备方法,还涉及该Fe-M基催化剂的应用。
背景技术
大量CO2排放引起的温室效应日益严重,CO2的转化和应用研究对降低碳排放,实现碳循环具有重要意义。其中二氧化碳逆水煤气变换反应,通过CO2加氢还原生成CO和水被认为是最有应用前景的反应之一,为此开发具有高效率、高稳定性和高选择性的逆水煤气变化反应催化剂对二氧化碳的利用和能源的生产具有重大的意义。
逆水煤气变化反应是一个可逆反应,适用于水煤气变换反应的催化剂也适用于逆水煤气变化反应,这类催化剂以铜基催化剂为主。但是,逆水煤气变换反应作为吸热反应,高温有利于二氧化碳的转化和一氧化碳的形成,却影响塔曼温度较低的铜基催化剂的分散与活性,所开发的铜基复合催化剂虽然稳定性和选择性提高,但制备复杂,依然存在CO2转化率不高等问题。贵金属催化剂虽然具有较高的活性和稳定性,但是催化剂成本过高限制了工业化生产,同时,贵金属复合例如钴镍复合基催化剂,虽然具有较好的选择性,但反应过程中仍然会生成甲烷副产物,存在逆水煤气变换反应选择性差的问题。已有使用稀土金属Ce等和铁复合的催化剂,虽然取得了较高的CO2转化率和CO的高选择性生成,但其主体使用Ce,铁的使用比例仅为10%左右,使得催化剂成本居高不下。为此,有必要探索价格更加低廉,性质更加稳定,且选择性和活性都高的催化剂。
发明内容
本发明的目的是提供用于逆水煤气变换反应的Fe-M基催化剂的制备方法,在常压和较低温下具有很高的反应活性和极高的CO选择性。
本发明所采用的技术方案是,用于逆水煤气变换反应的Fe-M基催化剂的制备方法,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;并配置有机溶液;
步骤2,在50~95℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中焙烧,冷却,得到Fe-M基催化剂。
本发明的特点还在于,
步骤1中,金属盐M水溶液和铁盐水溶液的浓度均为0.5-3mol/L;金属盐为过渡金属盐、碱金属盐、碱土金属盐、稀土金属盐中的任意一种或者多种。
步骤1中,有机溶液的摩尔浓度是铁盐水溶液摩尔浓度2-5倍。
步骤1中,有机溶液为尿素溶液、柠檬酸、苹果酸、醋酸中的任意一种。
步骤3中,焙烧条件为:以1.0~10℃/min的升温速率从室温升至450℃~700℃焙烧4~10h。
本发明的有益效果是:本发明Fe-M基催化剂合成成本低,制备方法简单,性能稳定,在常压下进行,易于实现工业放大生产;在较低温下具有很高的反应活性和极高的CO选择性,可应用于逆水煤气变换反应合成CO工艺,以降低CO2的排放量。经优化后的工艺,最终甲烷含量小于1%乃至0.01%以下,CO2转化率超过55%,CO的选择率接近乃至达到100%。
附图说明
图1是铁基三组分混合盐在反应前后的XRD图;
图2是H2和CO2混合气体通过铁盐催化剂后形成的气体组分图(一);
图3是H2和CO2混合气体通过铁盐催化剂后形成的气体组分图(二);
图4是H2和CO2混合气体通过铁盐和镍、铬两种盐混合生成的催化剂后形成的气体组分图。
具体实施方式
下面通过附图和具体实施方式对本发明作进一步阐述。
本发明用于逆水煤气变换反应的Fe-M基催化剂的制备方法,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;配置上述铁盐水溶液摩尔浓度2-5倍的有机溶液;
有机溶液为尿素溶液、柠檬酸、苹果酸、醋酸中的任意一种;
金属盐M水溶液和铁盐水溶液的浓度均为0.5-3mol/L;
金属盐为过渡金属盐、碱金属盐、碱土金属盐、稀土金属盐中的任意一种或者多种;
当为铁盐和铬盐时,铁的摩尔量占比>60%,铬的摩尔占比<10%;当为铁盐和锰盐,铁的摩尔占比>70%,锰的摩尔占比<12%;
当为铁盐、铬盐和镍、钾或钠盐,铁的摩尔量占比>70%,铬的摩尔占比<15%,镍、钾或钠的摩尔占比<10%;当为铁盐、锰盐和锌盐,铁的摩尔量占比>65%,锰的摩尔占比<10%,钾或钠的摩尔占比<12%;当为铁盐、铜盐和锌盐,铁的摩尔量占比>75%,铜的摩尔占比<12%,钾或钠的摩尔占比<10%;当为铁盐、锌盐和铬盐,铁的摩尔量占比>70%,锌的摩尔占比<20%,铬的摩尔占比<15%。
当为铁盐、铬盐、钾盐和镧系金属盐,铁的摩尔量占比>80%,铬的摩尔占比<10%,钾的摩尔占比<10%,镧的摩尔比<5%;当为铁盐、铈盐、锰盐和锌盐,铁的摩尔量占比>75%,铈的摩尔占比<8%,锰的摩尔占比<10%,钾的摩尔占比<10%;当为铁盐、铜盐、镧盐和锌盐,铁的摩尔量占比>75%,铜的摩尔占比<15%,镧的摩尔占比<5%,钾的摩尔占比<10%;当为铁盐、锌盐、铈盐和铬盐,铁的摩尔量占比>70%,锌的摩尔占比<10%,铈的摩尔占比<5%,铬的摩尔占比<15%。
当为铁盐、铬盐、钠或钾盐、镁盐和稀土金属盐,铁的摩尔量占比>80%,铬的摩尔占比<10%,钠或钾的摩尔占比<10%,镁的摩尔占比<10%,镧的摩尔比<5%;当为铁盐、钠或钾盐、锰盐、锌盐和碱土金属盐,其中铁的摩尔量占比>75%,铈的摩尔占比<5%,钠或钾的摩尔占比<10%,锰的摩尔占比<10%,锌的摩尔占比<10%;当为铁盐、铜盐、镧盐、锌盐和稀土金属盐的组合,铁的摩尔量占比>80%,铜的摩尔占比<10%,镧的摩尔占比<5%,锌的摩尔占比<10%,稀土金属如铈的摩尔占比<10%;当为铁盐、锌盐、铈盐、铬盐和铜盐,其中铁的摩尔量占比>85%,锌的摩尔占比<10%,铈的摩尔占比<5%,铬的摩尔占比<15%,铜的摩尔占比<10%。
步骤2,在50~95℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中,以1.0~10℃/min的升温速率从室温升至450℃~700℃焙烧4~10h,自然冷却至室温,得到Fe-M基催化剂。
本发明以铁基金属盐为基础,在催化剂中占比70%以上,形成Fea-Mb基催化剂,其中M选自常见的过渡金属元素、碱金属、碱土金属或稀土元素中的一种或一种以上元素,可以包括但不限于:Cu、Ce、Ni、K、Na、Cr、Zn、Zr、Mn等。a、b分别为Fe和M的摩尔分数,且a的取值范围大于60%,b的取值范围总量为小于40%。
本发明采用单步共烧法形成的铁盐为纳米颗粒,稳定性高,表面积大,以大量捕获CO2;同时,引入了Na、K等碱土金属或过渡金属如Cu、Zn等,导致催化剂活性位点多,从而限制了甲烷的生成,所以转化率较高。另外,本发明的催化剂制作简便,绿色环保,催化过程常压下进行,对设备要求低,安全环保。
本发明的Fe-M基催化剂能应用在逆水煤气变换反应过程催化CO2加氢转化为CO中。催化CO2加氢转化为CO反应条件为:反应原料为CO2和H2混合,H2/CO2体积比值为2.0~5.0;反应温度为450~700℃,压力为0~0.2MPa,体积空速为3.0-10.0L/(g.h)。优化后最终CO2的转化率达到65%,甲烷含量小于1%乃至0.01%以下,CO的选择率基本达到100%。
实施例1
本发明用于逆水煤气变换反应的Fe-M基催化剂的制备方法,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;配置上述铁盐水溶液摩尔浓度2倍的有机溶液;
有机溶液为尿素溶液;
金属盐M水溶液和铁盐水溶液的浓度均为0.5mol/L;
金属盐为铁盐、锌盐和铬盐,铁的摩尔量占比>70%,锌的摩尔占比<20%,铬的摩尔占比<15%。
步骤2,在50℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中,以1.0℃/min的升温速率从室温升至450℃焙烧5h,自然冷却至室温,得到Fe-M基催化剂。
实施例2
本发明用于逆水煤气变换反应的Fe-M基催化剂的制备方法,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;配置上述铁盐水溶液摩尔浓度3倍的有机溶液;
有机溶液为柠檬酸溶液;
金属盐M水溶液和铁盐水溶液的浓度均为1mol/L;
金属盐为为铁盐、铬盐、钾盐和镧盐,铁的摩尔量占比>80%,铬的摩尔占比<10%,钾的摩尔占比<10%,镧的摩尔比<5%;
步骤2,在65℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中,以5C/min的升温速率从室温升至600℃焙烧4h,自然冷却至室温,得到Fe-M基催化剂。
实施例3
本发明用于逆水煤气变换反应的Fe-M基催化剂的制备方法,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;配置上述铁盐水溶液摩尔浓度5倍的有机溶液;
有机溶液为醋酸溶液;金属盐M水溶液和铁盐水溶液的浓度均为3mol/L;
金属盐为铁盐、锌盐、铈盐、铬盐和铜盐,其中铁的摩尔量占比>85%,锌的摩尔占比<10%,铈的摩尔占比<5%,铬的摩尔占比<15%,铜的摩尔占比<10%。
步骤2,在95℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中,以10℃/min的升温速率从室温升至700℃焙烧8h,自然冷却至室温,得到Fe-M基催化剂。
图1是铁基三组分混合盐在反应前后的XRD图(组分包括铁:摩尔比>60%,铬:摩尔比<20%,和镍摩尔比<20%),可以看出,催化剂组分中主要含有铁系氧化物,反应开始指的是催化剂未经过加热运行,反应结束指的是通入H2和CO2混合气体并经过600℃和5小时运行后的催化剂图。从图中可以看出,催化剂在该运行条件下运行稳定,有效生成了CO,催化剂形态和种类未发生变化。
图2是H2和CO2混合气体在室温和常压下以20mL/min流量通过铁盐(摩尔占比=100%)催化剂后形成的气体组分图,由图可以看出,在可以检测的成分内,有一定量的CH4和CO生成。(CH4在GC测试中的保留时间5.3分钟左右,CO的保留时间9.3分钟左右);
图3是H2和CO2混合气体在600℃和常压下以20mL/min流量通过铁盐催化剂(铁的摩尔占比=100%)后形成的气体组分图,由图可以看出,在可以检测的成分内,加热到600℃后,有较低浓度CH4(477ppm)和很高浓度的CO(>>13325ppm,实际值超出了探头检测限值)生成。(CH4在GC测试中的保留时间5.3分钟左右,CO的保留时间9.3分钟左右);
图4是H2和CO2混合气体在600℃和常压下以20mL/min流量通过铁盐和镍、铬两种盐混合生成的催化剂(成分如图1的XRD所示)后形成的气体组分图。由图可以看出,在可以检测的成分内,加热到600℃后,有极低浓度CH4(4.8ppm)和很高浓度的CO(>>13773ppm,超出了探头检测限值)生成。说明选择增加了盐的种类后催化剂具有极高的选择性,从而有效降低了CH4的生成,并保证了CO的高效产出(CH4在GC测试中的保留时间5.3分钟左右,CO的保留时间9.3分钟左右)。

Claims (7)

1.用于逆水煤气变换反应的Fe-M基催化剂的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,配制铁盐水溶液和金属盐M水溶液,进行混合,得到混合盐溶液;并配置有机溶液;
步骤2,在50~95℃、pH=7.0的条件下,将混合盐溶液和有机溶液搅拌形成浆状物,得到催化剂前驱体;
步骤3,将催化剂前驱体置于马弗炉中焙烧,冷却,得到Fe-M基催化剂。
2.如权利要求1所述的用于逆水煤气变换反应的Fe-M基催化剂的制备方法,其特征在于,所述步骤1中,金属盐M水溶液和铁盐水溶液的浓度均为0.5-3mol/L;金属盐为过渡金属盐、碱金属盐、碱土金属盐、稀土金属盐中的任意一种或者多种。
3.如权利要求1所述的用于逆水煤气变换反应的Fe-M基催化剂的制备方法,其特征在于,所述步骤1中,有机溶液的摩尔浓度是铁盐水溶液摩尔浓度2-5倍。
4.如权利要求1所述的用于逆水煤气变换反应的Fe-M基催化剂的制备方法,其特征在于,所述步骤1中,有机溶液为尿素溶液、柠檬酸、苹果酸、醋酸中的任意一种。
5.如权利要求1所述的用于逆水煤气变换反应的Fe-M基催化剂的制备方法,其特征在于,所述步骤3中,焙烧条件为:以1.0~10℃/min的升温速率从室温升至450℃~700℃焙烧4~10h。
6.如权利要求1-5任一项所述的Fe-M基催化剂在逆水煤气变换反应过程催化CO2加氢转化为CO中的应用。
7.如权利要求6所述的应用,其特征在于,所述催化CO2加氢转化为CO反应条件为:反应原料为CO2和H2,H2/CO2体积比值为2.0~5.0;反应温度为450~700℃,压力为0~0.2MPa,体积空速为3.0-10.0L/g.h,最终甲烷含量小于1%乃至0.01%以下,CO2转化率超过55%,CO的选择率达到100%。
CN202310635003.1A 2023-05-31 2023-05-31 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用 Pending CN116603535A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310635003.1A CN116603535A (zh) 2023-05-31 2023-05-31 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310635003.1A CN116603535A (zh) 2023-05-31 2023-05-31 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN116603535A true CN116603535A (zh) 2023-08-18

Family

ID=87676292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310635003.1A Pending CN116603535A (zh) 2023-05-31 2023-05-31 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116603535A (zh)

Similar Documents

Publication Publication Date Title
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
CN106512999B (zh) 一种甲烷干气重整催化剂及其制备方法
CN109201096B (zh) Co2加氢制低碳混合醇的催化剂及其用途
CN102350355A (zh) 铁系水煤气变换催化剂及其制备方法
CN115837275A (zh) 一种钙钛矿型高熵氧化物及其制备方法和应用
CN113731429A (zh) 一种甲醇水蒸气重整制氢铜基催化剂及其制备方法和应用
CN117181232A (zh) 一种CuZnCeOx纳米棒催化剂的制备及其在光热协同催化CO2还原中的应用
CN116603535A (zh) 用于逆水煤气变换反应的Fe-M基催化剂的制备方法及应用
CN114192157B (zh) 一种纳米铁基费托合成催化剂及其制备方法和应用
CN115532315A (zh) 一种二氧化碳加氢合成低碳醇催化剂的制备方法及应用
CN107537495A (zh) 一种合成气制乙醇Cu‑Co催化剂的制备方法和应用
CN114713235B (zh) 一种超广Ni(111)晶面的LaCeNiO钙钛矿催化剂及其制备方法和应用
CN107537530A (zh) 用于丁烯氧化脱氢制丁二烯的催化剂及其工艺方法
CN106423195A (zh) 催化剂、其制备方法及应用
CN101530809A (zh) 一种制备合成气的催化剂及制法和应用
CN111470542A (zh) 一种逆水煤气氧化锰催化剂的制备方法
CN109364941A (zh) 一种耐高温高压的铜系变换催化剂及其制备方法
CN115739090B (zh) 一种具有高表面氧空位密度的过渡金属氧化物催化剂的制备方法及其应用
CN115672341B (zh) 一种双功能复合金属氧化物催化剂及其制备方法和应用
CN112090427A (zh) 一种低汽气比一氧化碳高温变换催化剂
CN115069260B (zh) 一种镍基分级多孔重整制氢催化剂及其制备方法和应用
CN118162142A (zh) 一种用于CO2加氢制备混合醇的Fe基催化剂及其制备方法和应用
CN111921530B (zh) 一种碳加氢气化的CaO-多铁系金属复合催化剂及其制备方法
CN112871177B (zh) 六铝酸盐耐高温催化材料在氨分解反应中的应用
CN114477298B (zh) 一种复合氧化物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination