CN116590231A - 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法 - Google Patents

一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法 Download PDF

Info

Publication number
CN116590231A
CN116590231A CN202310397634.4A CN202310397634A CN116590231A CN 116590231 A CN116590231 A CN 116590231A CN 202310397634 A CN202310397634 A CN 202310397634A CN 116590231 A CN116590231 A CN 116590231A
Authority
CN
China
Prior art keywords
solution
chitosan
cell culture
silk fibroin
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310397634.4A
Other languages
English (en)
Inventor
陈亮
柯重伟
曹志鹏
韩善亮
李亮
李溪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIFTH PEOPLE'S HOSPITAL OF SHANGHAI
Original Assignee
FIFTH PEOPLE'S HOSPITAL OF SHANGHAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIFTH PEOPLE'S HOSPITAL OF SHANGHAI filed Critical FIFTH PEOPLE'S HOSPITAL OF SHANGHAI
Priority to CN202310397634.4A priority Critical patent/CN116590231A/zh
Publication of CN116590231A publication Critical patent/CN116590231A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
    • C12N2533/92Amnion; Decellularised dermis or mucosa
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Insects & Arthropods (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,包括以下步骤:S1丝素蛋白溶液提取:S2壳聚糖溶液的制备:称取2~5g壳聚糖粉末加入pH值为4~5、1~3%m/m冰醋酸溶液中,配制成2~5%的壳聚糖醋酸溶液;S3结肠脱细胞基质的制备:S4丝素蛋白‑壳聚糖‑细胞外基质水凝胶材料的构建。并且以此方法构建了肠道水凝胶支架材料。采用不同质量比丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备出孔隙率高、孔径适宜,吸水率高、吸附性强,稳定性能较好的支架材料。相比于其它体外肿瘤细胞培养方法,能很好的模拟体内肿瘤细胞的三维生长环境,可用于体外肿瘤细胞的培养;相比于动物培养,具有较低的培养成本,本发明凝胶材料具有良好的应用前景。

Description

一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法
技术领域
本发明涉及生物技术领域,具体涉及一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法。
背景技术
肠道肿瘤的发展具有多阶段性、多种因素相互影响、多种生物途径的特点,其涉及的机制非常的复杂。目前对肠癌细胞培养的研究主要集中在2D层面,但是其中肠癌的生长过程同体内真实的肿瘤生长存在差异性,导致其研究层面存在局限性,这一点不如三维体系。这主要表现在以下几方面:一是单层细胞培养在揭示肠道肿瘤生物学行为方面同体内肿瘤真实的生理活性存在显著的差异性。三维水凝胶培养体系中细胞的恶性程度更高,其更加接近体内的结构环境;二是细胞在二维培养体系下生长无法长时间保持肠道肿瘤细胞的生物学特性,研究发现随着时间的延长,细胞的骨架发生重构、极性出现改变。多孔水凝胶载体不仅为肠道肿瘤细胞提供生长支撑,促进肠道肿瘤细胞的粘附和迁移,保障细胞之间营养物质的交换,同时还原了肿瘤内部细胞的真实生长环境,避免剪切力对细胞的损伤及营养物质缺失导致细胞的凋亡,使得细胞的活力增加;三是传统二维培养面积较为局限,细胞培养费时费力,培养效率较低;四是二维培养在细胞因子分泌、增殖相关蛋白表达等生化改变不同于体内。所以利用传统细胞培养皿培养的细胞和体内肿瘤生物学行为具有较大的差异;五是目前常用的水凝胶构建的材料包括胶原蛋白I型、明胶以及提取动物来源的基质,这些来自生物基的源材料容易携带动物来源的病原体,从而导致实验存在不可预知的风险。因此,本领域亟需制备一种用于肠道肿瘤细胞培养的三维培养基体系,来解决现有技术中的缺陷。
发明内容
针对上述技术的缺陷,本发明提供了一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法。
为了实现上述技术目的,本发明采用了以下技术方案:
本发明的第一方面提供了一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,包括以下步骤:
S1丝素蛋白溶液提取:
S11:将蚕茧壳剪成碎片后加入浓度为0.3~1.0g/100mL的碳酸钠溶液浸没蚕茧壳煮沸3遍以上,每次至少1个小时,然后自来水洗2-3次,再用去离子水冲洗2~4次,然后于50~70℃下烘干,烘干后的样品溶于8~10mol/L溴化锂的水溶液中,室温下充分搅拌进行溶解,冷却至室温后过滤,去除杂质,滤液装入截流分子量为3000~5000Da透析袋透析袋中用去离子水透析2~5天,每6~8小时换一次液,制得丝素蛋白溶液;进一步的,所述样品和溴化锂的质量比为1:6~1:10;优选的,烘干温度为65℃;优选的,透析袋截流分子量3500Da;
S2壳聚糖溶液的制备:称取2~5g壳聚糖粉末加入pH值为4~5、1~3%m/m冰醋酸溶液中,配制成2~5%m/m的壳聚糖醋酸溶液;
S3结肠脱细胞基质的制备:取裸鼠的结肠组织,流水中冲洗,并用镊子将结肠外的结缔组织、脂肪、淋巴结等钝性剥离后去除,反复用PBS进行清洗,将处理好的结肠横断剪成长条管状,黏膜层外翻,用1~3g/100mL SDS和0.25~1g/100mL EDTA溶液浸泡,室温下摇床振荡10~15h,每3~6h换液1次,获得清洗后结肠组织,再用PBS浸泡洗涤10~15次,浸入0.5~2g/100mL Triton X 100和0.25~1g/100mL EDTA,室温振荡10~15h,每2~4h换液1次,然后再用PBS冲洗10~15次,制得结肠脱细胞基质,PBS浸泡下4~8℃冰箱保存,然后用液氮冷萃,置于研钵中研磨成粉,制得脱细胞基质粉末。
S4丝素蛋白-壳聚糖-细胞外基质水凝胶材料的构建:
S41交联支架:取S1制备的丝素蛋白溶液、S2制备的壳聚糖溶液以及S3制备的脱细胞基质粉末按照重量份数1:1:0.5~1:1:2进行混合均匀,置于磁力搅拌机中进行搅拌,然后浸入含30~60mmol/L EDC、15~20mmol/L NHS的95v/v%乙醇水溶液中交联20~30h,形成交联液,然后将所述交联液加入细胞培养板中,放入-30~-10℃冰箱中预冻20~30h,再放进-90~-70℃低温冰箱中冷冻20~30h,最后放入冷冻干燥机冷冻干燥40~60h,采用低温等离子消毒,即得;优选的,所述EDC为50mmol/L;优选的,所述NHS为18mmol/L;优选的,交联24h;优选的,放入-20℃冰箱中预冻24h,再放进-80℃低温冰箱中冷冻48h;
本发明的第二方面提供了采用上述任一种方法制备的用于肠道肿瘤细胞培养的水凝胶支架;
进一步的,所述水凝胶内部分布均匀的孔隙结构,所述凝胶支架材料孔径为68μm~310μm;
进一步的,所述凝胶支架材料的孔隙率为68.69~91.91%;更进一步的,所述凝胶支架材料的孔隙率为68.69~91.91%;
本发明的第三方面提供了上述任一种肠道肿瘤细胞培养的水凝胶支架材料的使用方法,包括以下步骤:
将所述支架材料在细胞培养液中浸泡36~72小时,然后放入细胞培养板中,将适宜浓度的肿瘤细胞悬液滴加在上述材料上,再将上述培养板置入振荡器上振荡5~20min,使得细胞均匀地接种在支架材料上,然后置于培养箱中,进行培养。
附图说明
图1是本发明三维支架材料结构示意以及细胞生物学行为研究图;
图2是本发明三维支架的微观结构示意图;
图3是本发明三维支架孔隙率;
图4是本发明三维支架降解率;
图5是本发明三维支架吸水率;
图6是细胞在本发明三维支架中的增殖情况
有益效果
本发明提供了一种用于肠道肿瘤细胞培养水凝胶的构建方法,并以此方法构建了肠道水凝胶支架材料。本发明采用不同质量比丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备的支架材料孔隙率高、孔径适宜,吸水率高、吸附性强,稳定性能较好,可塑性较强,相比于其它体外肿瘤细胞培养方法,能很好的模拟体内肿瘤细胞的三维生长环境,可用于体外肿瘤细胞的培养;相比于动物培养,具有较低的培养成本,本发明凝胶材料具有良好的应用前景。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲述的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,包括以下步骤:S1丝素蛋白溶液提取:S11:将蚕茧壳剪成碎片后加入浓度为0.5g/100mL的碳酸钠溶液浸没蚕茧壳煮沸3遍以上,每次至少1个小时,然后自来水洗2次,再用去离子水冲洗2次,然后于60℃下烘干,烘干后的样品溶于8~10mol/L溴化锂的水溶液中,所述样品和溴化锂的质量比为1:6,室温下充分搅拌进行溶解,冷却至室温后过滤,去除杂质,滤液装入截流分子量为3000Da透析袋透析袋中用去离子水透析5天,每6小时换一次液,制得丝素蛋白溶液;测定丝素蛋白溶液的浓度:取3个称量瓶洗净编号后放入65℃烘箱中烘干,冷却后称重,记为M1;各取10ml丝素蛋白液放入称量瓶,称重为M2;继续放入到65℃的烘箱中24h取出,冷却后称重为M3。按公式计算出丝素蛋白溶液浓度%=(M3-M1)/(M2-M1)*100%,取三者平均值,实验中得出丝素蛋白浓度。
S2壳聚糖溶液的制备:称取2g壳聚糖粉末加入pH值为4~5、1m/m%冰醋酸溶液中,配制成2%m/m的壳聚糖醋酸溶液;
S3结肠脱细胞基质的制备:取裸鼠的结肠组织,流水中冲洗,并用镊子将结肠外的结缔组织、脂肪、淋巴结等钝性剥离后去除,反复用PBS进行清洗,将处理好的结肠横断剪成长条管状,黏膜层外翻,用1.5g/100mLSDS和0.25g/100mLEDTA溶液浸泡,室温下摇床振荡12h,每3h换液1次,获得清洗后结肠组织,再用PBS浸泡洗涤10~15次,浸入0.5g/100mLTriton X 100和0.25g/100mLEDTA,室温振荡10h,每3h换液1次,然后再用PBS冲洗10次,制得结肠脱细胞基质,PBS浸泡下4℃冰箱保存,然后用液氮冷萃,置于研钵中研磨成粉,制得脱细胞基质粉末。
S4丝素蛋白-壳聚糖-细胞外基质水凝胶材料的构建:
S41交联支架:取S1制备的丝素蛋白溶液、S2制备的壳聚糖溶液以及S3制备的脱细胞基质粉末按照重量份数1:1:0.5进行混合均匀,置于磁力搅拌机中进行搅拌,然后浸入含40mmol/L EDC、15mmol/L NHS的95v/v%乙醇水溶液中交联20h,形成交联液,然后将所述交联液加入细胞培养板中,放入-30~℃冰箱中预冻20h,再放进-90℃低温冰箱中冷冻20h,最后放入冷冻干燥机冷冻干燥40h,采用低温等离子消毒,即得。
实施例2
一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,包括以下步骤:
S1丝素蛋白溶液提取:S11:将蚕茧壳剪成碎片后加入浓度为0.5%的碳酸钠溶液浸没蚕茧壳煮沸3遍以上,每次至少1个小时,然后自来水洗3次,再用去离子水冲洗4次,然后于70℃下烘干,烘干后的样品溶于10mol/L溴化锂的水溶液中,所述样品和溴化锂的质量比为1:10,室温下充分搅拌进行溶解,冷却至室温后过滤,去除杂质,滤液装入截流分子量为4000Da透析袋中用去离子水透析5天,每8小时换一次液,制得丝素蛋白溶液;5.取3个称量瓶洗净编号后放入65℃烘箱中烘干,冷却后称重,记为M1。测定丝素蛋白溶液的浓度:各取10ml丝素蛋白液放入称量瓶,称重为M2。继续放入到65℃的烘箱中24h取出,冷却后称重为M3,按公式计算出丝素蛋白溶液浓度%=(M3-M1)/(M2-M1)*100%,取三者平均值,实验中得出丝素蛋白浓度为3%。
S2壳聚糖溶液的制备:称取5g壳聚糖粉末加入pH值为4~5、3m/m%冰醋酸溶液中,配制成5%m/m的壳聚糖醋酸溶液;
S3结肠脱细胞基质的制备:取裸鼠的结肠组织,流水中冲洗,并用镊子将结肠外的结缔组织、脂肪、淋巴结等钝性剥离后去除,反复用PBS进行清洗,将处理好的结肠横断剪成长条管状,黏膜层外翻,用3%SDS和1%EDTA溶液浸泡,室温下摇床振荡15h,每6h换液1次,获得清洗后结肠组织,再用PBS浸泡洗涤15次,浸入2% Triton X 100和1%EDTA,室温振荡15h,每4h换液1次,然后再用PBS冲洗15次,制得结肠脱细胞基质,PBS浸泡下6℃冰箱保存,然后用液氮冷萃,置于研钵中研磨成粉,制得脱细胞基质粉末。
S4丝素蛋白-壳聚糖-细胞外基质水凝胶材料的构建:
S41交联支架:取S1制备的丝素蛋白溶液、S2制备的壳聚糖溶液以及S3制备的脱细胞基质粉末按照重量份数1:1:2进行混合均匀,置于磁力搅拌机中进行搅拌,然后浸入含60mmol/L EDC、20mmol/L NHS的95v/v%乙醇水溶液中交联30h,形成交联液,然后将所述交联液加入细胞培养板中,放入-10℃冰箱中预冻30h,再放进-70℃低温冰箱中冷冻30h,最后放入冷冻干燥机冷冻干燥50h,采用低温等离子消毒,即得。
实施例3
一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,包括以下步骤:
S1丝素蛋白溶液提取:S11:将蚕茧壳剪成碎片后加入浓度为0.5%的碳酸钠溶液浸没蚕茧壳煮沸3遍以上,每次至少1个小时,然后自来水洗3次,再用去离子水冲洗3次,然后于65℃下烘干,烘干后的样品溶于9mol/L溴化锂的水溶液中,所述样品和溴化锂的用量比为质量比为1:8,室温下充分搅拌进行溶解,冷却至室温后过滤,去除杂质,滤液装入截流分子量为3500Da透析袋中用去离子水透析3天,每8小时换一次液,制得丝素蛋白溶液;测定丝素蛋白溶液的浓度:取3个称量瓶洗净编号后放入65℃烘箱中烘干,冷却后称重,记为M1;各取10ml丝素蛋白液放入称量瓶,称重为M2;继续放入到65℃的烘箱中24h取出,冷却后称重为M3。按公式计算出丝素蛋白溶液浓度%=(M3-M1)/(M2-M1)*100%,取三者平均值,实验中得出丝素蛋白浓度为3%;
S2壳聚糖溶液的制备:称取5g壳聚糖粉末加入pH值为4~5、1m/m%冰醋酸溶液中,配制成3%m/m的壳聚糖醋酸溶液;
S3结肠脱细胞基质的制备:取裸鼠的结肠组织,流水中冲洗,并用镊子将结肠外的结缔组织、脂肪、淋巴结等钝性剥离后去除,反复用PBS进行清洗,将处理好的结肠横断剪成长条管状,黏膜层外翻,用2%SDS和0.5%EDTA溶液浸泡,室温下摇床振荡12h,每6h换液1次,获得清洗后结肠组织,再用PBS浸泡洗涤10~15次,浸入1% Triton X 100和0.25%EDTA,室温振荡12h,每3h换液1次,然后再用PBS冲洗12次,制得结肠脱细胞基质,PBS浸泡下6℃冰箱保存,然后用液氮冷萃,置于研钵中研磨成粉,制得脱细胞基质粉末。
S4丝素蛋白-壳聚糖-细胞外基质水凝胶材料的构建:
S41交联支架:取S1制备的丝素蛋白溶液、S2制备的壳聚糖溶液以及S3制备的脱细胞基质粉末按照重量份数1:1:1进行混合均匀,置于磁力搅拌机中进行搅拌,然后浸入含50mmol/L EDC、18mmol/L NHS的95v/v%乙醇水溶液中交联24h,形成交联液,然后将所述交联液加入细胞培养板中,放入-20℃冰箱中预冻24h,再放进-80℃低温冰箱中冷冻24h,最后放入冷冻干燥机冷冻干燥48h,采用低温等离子消毒,即得。
实验例
采用实施例3的方法制备了一种肠道肿瘤细胞培养的水凝胶支架材料的使用方法,包括以下步骤:将所述支架材料在细胞培养液中浸泡48小时,然后放入24孔板中,将一定浓度的肠道肿瘤细胞悬液用100μL的移液枪滴加在材料上,将适宜浓度的肿瘤细胞悬液滴加在上述材料上,再将上述培养板置入振荡器上振荡10min,使得细胞均匀地接种在支架材料上,在边缘加入培养液200μl,浸没支架材料,然后置于培养箱中,进行培养。并开展实验。
(1)对三维支架结构分析及细胞生物学行为研究:通过冷冻干燥法制备多重复合型高分子支架材料,荧光图像显示横截面孔径大小约40~60μm,电镜显示肠癌细胞种植在三维复合支架材料的形态特征,如图1所示。通过调整各组分浓度、比例得到特定孔隙结构的复合型支架材料,为细胞的生长提供空间支撑结构。图1-1多孔支架材料结构示意图;图1-2支架孔隙结构特点;图1-3细胞种植在支架材料上生长情况。
用外科刀片将实施例3制得的支架切成5mm*5mm的小块,置于扫描电镜样品台上,经过喷金(铂金)处理,然后将样品放入扫描电子显微镜中真空观察,在扫描电子显微镜下观察支架的微观结构和微通道,并拍摄照片;将实施例3制得的支架经过低温等离子灭菌,我们将5*104个细胞接种于24孔板中的每个孔的支架中,然后缓慢摇动24孔培养板,最后在每孔中加入1ml DMEM完全培养基,培养基每天更换一次。将接种细胞的支架用PBS溶液洗三次,用多聚甲醛24小时,用PBS溶液洗3次,置于冷冻干燥机中冻干48h,予上述方法于扫描电镜下观察支架培养细胞的形态及微观结构,并拍摄照片。图2-1和图2-2支架微观结构为多孔网络结果,具有不同的孔径,每个孔又相互连接。图2-3和图2-4细胞不会完全附着在支架上并保持其身体形状。支架中培养的细胞有些整合为球体,即使细胞数量随着时间的推移而增长,它们也不会扩散到支架的内表面。
(3)采用流体置换法(液体置换法)对支架的孔隙度进行测。将支架浸入体积为V0的无水乙醇中。完全浸泡后的无水乙醇和浸泡支架的总体积,记为为V1。取出浸泡后的支架后,剩余无水乙醇的体积,记为V2。孔隙率的计算公式如下:(V0-V2)/(V1-V2)×100%,如图3所示,不同质量比的丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备的支架孔隙率均大于68.69%。当SF:CTS:CEM的质量比达到1:1:1时,支架孔隙率最高,为88.33±3.58%,随着不同脱细胞基质比例的加入,支架的孔隙率不同(P<0.05)。
(4)对支架的降解率进行测定。将支架在干燥环境中的质量为W0,将支架置于37℃的PBS溶液中,分别在1d(Day)、3d、7d和14d取出支架,置于65℃烘箱中干燥12h后并称重,质量记为Wn(n为天数)。对支架的降解率进行测定。降解率的计算公式如下:D=(W0-Wn)/W0×100%。结果反映在图4中,不同配比的丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备的支架实验组支架在14天内都有不同程度的降解;然而,总体趋势相似。第3天为转折点,前3天为快速降解期,后4天为缓慢降解期,7~14天为平台期。
(5)对支架的吸水率进行测定。将支架在干燥环境中的质量为W1,将支架置于37℃的PBS溶液中浸润,取出支架,用滤纸吸除支架表面上的剩余液体,剩余质量记为W2。吸水率的计算公式如下:(W2-W1)/W1×100%,对不同质量比丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备的支架吸水率进行测定。所有支架的吸水率均大于501.9%。当SF:CTS:CEM的质量比达到1:1:1时,支架的吸水率最高,为1072±48%,随着不同脱细胞基质比例的加入,支架的吸水率不同(P<0.05)。
(6)用细胞计数试剂盒(CCK-8)检测细胞在支架中的增殖情况。将103个HCT-116细胞的接种到96孔板中的支架上,在1d、3d和5d检测细胞增殖情况。将10μl CCK-8试剂和90μlDMEM混合物滴入每个孔中,避光孵育90min。震动15min后移除96孔板中的支架,将剩余特体转移至新的96孔板中,于450nm处测试吸光度。对细胞在支架中的增殖情况进行测定。统计发现,第1天支架的细胞增殖无明显差异,而第3天和第5天3D支架的细胞增殖显著高于普通培养定细胞。根据我们的发现,对不同质量比丝素蛋白溶液、壳聚糖溶液以及脱细胞基质粉末制备的支架,细胞在支架中的增殖情况情况不同,在各个时间点增殖细胞比例最高的支架是SF:CTS:CEM的质量比达到1:1:1时的支架。

Claims (5)

1.一种用于肠道肿瘤细胞培养的水凝胶支架材料的制备方法,其特征在于,包括以下步骤:
S1丝素蛋白溶液提取:
S11:将蚕茧壳剪成碎片后加入浓度为0.3~1.0g/100mL的碳酸钠溶液浸没蚕茧壳煮沸3遍以上,每次至少1个小时,然后自来水洗2-3次,再用去离子水冲洗2~4次,然后于50~70℃下烘干,烘干后的样品溶于8~10mol/L溴化锂的水溶液中,室温下充分搅拌进行溶解,冷却至室温后过滤,去除杂质,滤液装入截流分子量为3000~5000Da透析袋透析袋中用去离子水透析2~5天,每6~8小时换一次液,制得丝素蛋白溶液;进一步的,所述样品和溴化锂的质量比为1:6~1:10;优选的,烘干温度为65℃;优选的,透析袋截流分子量3500Da;
S2壳聚糖溶液的制备:称取2~5g壳聚糖粉末加入pH值为4~5、1~3%m/m冰醋酸溶液中,配制成2~5%m/m的壳聚糖醋酸溶液;
S3结肠脱细胞基质的制备:取裸鼠的结肠组织,流水中冲洗,并用镊子将结肠外的结缔组织、脂肪、淋巴结等钝性剥离后去除,反复用PBS进行清洗,将处理好的结肠横断剪成长条管状,黏膜层外翻,用1~3%SDS和0.25~1%EDTA溶液浸泡,室温下摇床振荡10~15h,每3~6h换液1次,获得清洗后结肠组织,再用PBS浸泡洗涤10~15次,浸入0.5~2%Triton X100和0.25~1%EDTA,室温振荡10~15h,每2~4h换液1次,然后再用PBS冲洗10~15次,制得结肠脱细胞基质,PBS浸泡下4~8℃冰箱保存,然后用液氮冷萃,置于研钵中研磨成粉,制得脱细胞基质粉末。
S4丝素蛋白-壳聚糖-细胞外基质水凝胶材料的构建:
S41交联支架:取S1制备的丝素蛋白溶液、S2制备的壳聚糖溶液以及S3制备的脱细胞基质粉末按照重量份数1:1:0.5~1:1:2进行混合均匀,置于磁力搅拌机中进行搅拌,然后浸入含30~60mmol/L EDC、15~20mmol/L NHS的95v/v%乙醇水溶液中交联20~30h,形成交联液,然后将所述交联液加入细胞培养板中,放入-30~-10℃冰箱中预冻20~30h,再放进-90~-70℃低温冰箱中冷冻20~30h,最后放入冷冻干燥机冷冻干燥40~60h,采用低温等离子消毒,即得;优选的,所述EDC为50mmol/L;优选的,所述NHS为18mmol/L;优选的,交联24h;优选的,放入-20℃冰箱中预冻24h,再放进-80℃低温冰箱中冷冻48h。
2.一种用于肠道肿瘤细胞培养的水凝胶支架,其特征在于,由权利要求1所述方法制备。
3.根据权利要求2所述的水凝胶支架,其特征在于,所述水凝胶内部分布均匀的孔隙结构,所述凝胶支架材料孔径为68μm~310μm。
4.根据权利要求3所述的水凝胶支架,其特征在于,所述凝胶支架材料的孔隙率为68.69~91.91%;更进一步的,所述凝胶支架材料的孔隙率为68.69~91.91%。
5.一种权利要求2~4任一项所述肠道肿瘤细胞培养水凝胶支架的使用方法,其特征在于,包括以下步骤:
将所述支架材料在细胞培养液中浸泡36~72小时,然后放入细胞培养板中,将适宜浓度的肿瘤细胞悬液滴加在上述材料上,再将上述培养板置入振荡器上振荡5~20min,使得细胞均匀地接种在支架材料上,然后置于培养箱中,进行培养。
CN202310397634.4A 2023-04-13 2023-04-13 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法 Pending CN116590231A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310397634.4A CN116590231A (zh) 2023-04-13 2023-04-13 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310397634.4A CN116590231A (zh) 2023-04-13 2023-04-13 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法

Publications (1)

Publication Number Publication Date
CN116590231A true CN116590231A (zh) 2023-08-15

Family

ID=87598080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310397634.4A Pending CN116590231A (zh) 2023-04-13 2023-04-13 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法

Country Status (1)

Country Link
CN (1) CN116590231A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116808111A (zh) * 2023-08-21 2023-09-29 长春中医药大学 一种负载中药的水凝胶薄膜、其制备及抗骨肉瘤的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116808111A (zh) * 2023-08-21 2023-09-29 长春中医药大学 一种负载中药的水凝胶薄膜、其制备及抗骨肉瘤的应用
CN116808111B (zh) * 2023-08-21 2023-12-26 长春中医药大学 一种负载中药的水凝胶薄膜、其制备及抗骨肉瘤的应用

Similar Documents

Publication Publication Date Title
CN107988158B (zh) 一种三维肿瘤模型脱细胞多孔支架、构建方法及其应用
KR101474852B1 (ko) 조직공학, 세포 배양 및 세포 운반용 다공성 스캐폴드의 제조방법
JP5219030B2 (ja) 刺激応答性分解ゲル
US20160206780A1 (en) Matrix Scaffold for Three-Dimensional Cell Cultivation, Methods of Construction Thereof and Uses Thereof
CN106075598A (zh) 一种光交联丝胶蛋白水凝胶及其制备方法和应用
CN110975010B (zh) 一种胎盘组织基质材料及其制备方法
US10369252B2 (en) Electrospun three-dimensional nanofibrous scaffolds with interconnected and hierarchically structured pores
CN107899086B (zh) 一种透明质酸寡糖修饰的胶原蛋白纳米纤维血管修复材料及其制备方法
CN109481737B (zh) 一种仿生双层敷料及其制备方法
CN105999414B (zh) 制备人造微环境的方法及其应用
CN105985529A (zh) 一种丝胶蛋白-海藻酸盐复合水凝胶及其制备方法
CN116590231A (zh) 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法
CN105664260A (zh) 基于石墨烯/丝素蛋白的骨组织工程三维多孔支架制备方法
CN112029727A (zh) 脑脱细胞基质颗粒支架及其制备方法和应用
CN113621169B (zh) 一种聚对苯二甲酸乙二醇酯-肺组织脱细胞外基质复合材料的制备方法及其应用
CN104830774B (zh) 一种细胞三维培养支架、其制备方法及用途
CN1411471A (zh) 大孔脱乙酰壳多糖小珠及其制备方法
CN109675112B (zh) 一种人源的脱细胞真皮基质的制备方法
CN111849864A (zh) 一种三维肿瘤模型脱细胞衍生基质支架的构建方法及其应用
CN112111162B (zh) 可快速固化的双网络水凝胶及其制备方法与应用
CN105031724A (zh) 一种组织工程软骨支架及其制备方法
CN104888272A (zh) 一种去细胞主动脉瓣支架及其制备方法和用途
CN109876194B (zh) 一种可调节降解速率的poss-peg杂化水凝胶及其制备方法和其应用
CN107684637B (zh) 一种聚乳酸/羟基磷灰石/脱细胞羊膜复合支架及其构建方法
KR100783228B1 (ko) 세포배양용 폴리비닐알코올-콜라겐 하이드로젤 스캐폴드 및그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination