CN116532087A - 置换-吸附型树脂基复合吸附剂、制备方法及其应用 - Google Patents

置换-吸附型树脂基复合吸附剂、制备方法及其应用 Download PDF

Info

Publication number
CN116532087A
CN116532087A CN202310366367.4A CN202310366367A CN116532087A CN 116532087 A CN116532087 A CN 116532087A CN 202310366367 A CN202310366367 A CN 202310366367A CN 116532087 A CN116532087 A CN 116532087A
Authority
CN
China
Prior art keywords
resin
based composite
iron ions
composite adsorbent
dmf solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310366367.4A
Other languages
English (en)
Inventor
王伟伟
聂广泽
桑敏
陈华颉
邹栋
周吉峙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202310366367.4A priority Critical patent/CN116532087A/zh
Publication of CN116532087A publication Critical patent/CN116532087A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种置换‑吸附型树脂基复合吸附剂、制备方法及其应用。所述方法包括树脂预处理、树脂改性、预生长和后合成负载四个步骤,先对D001树脂进行预处理,再用铁离子的DMF溶液浸渍,形成表面改性树脂,将表面改性树脂置于对苯二甲酸的DMF溶液中加热反应,制得树脂表面预生长MIL‑101(Fe)纳米材料的复合材料,最后向体系中加入铁离子的DMF溶液,加热反应,制得树脂基复合吸附剂。本发明的吸附剂的MIL‑101(Fe)负载量可控,对络合物表现出优异的置换解络合和离子再吸附的性能,在处理电镀废水中具有稳定的去除效率。

Description

置换-吸附型树脂基复合吸附剂、制备方法及其应用
技术领域
本发明涉及水处理吸附剂技术领域,涉及一种置换-吸附型树脂基复合吸附剂、制备方法及其应用。
背景技术
重金属废水主要来源于采矿、电镀、冶金、电池等行业。重金属离子易与废水中共存的有机添加剂(配体)形成稳定的金属-有机配合物(络合态),导致废水具有成分复杂、水溶性强、结构稳定、难以生物降解且易被生物吸收富集等特点,毒性具有持续性。
目前,对络合态重金属废水的处理方法主要包括化学混凝法、氧化还原法、吸附法及离子交换法等。化学混凝法受沉淀物溶解度、药剂种类、操作条件等多种因素影响存在处理极限,导致出水重金属残留浓度较高。特别地,传统的吸附、沉淀法无法使金属-有机配体键断裂,更无法将破络释放的重金属离子回收资源化。氧化法或还原法虽然能够对重金属络合物进行破络,使重金属游离出来,但在处理过程中需要加入大量的化学试剂,存在着二次污染和处理效果不理想等问题。因此,需要继续开发络合态重金属废水处理新材料和新工艺,同时实现金属-有机配体解络与金属回收资源化。
置换破络法是利用含铁化合物中的铁离子(如Fe2+、Fe3+)与配体具有更强的络合能力,可以在不破坏配体的情况下(如EDTA),使重金属离子解络合并游离出来,经后续的沉淀或吸附处理后,可实现对重金属污染物的高效去除。然而,铁离子置换技术对铁的投加量和pH的要求较高,实际成本较大,且由于需要加入大量的沉淀剂,导致产生大量的铁泥。
金属有机框架材料(MOFs)因其具有独特的多孔结构、大比表面积、多金属位点、结构多样且易于修修饰等特点,在气体吸附、存储和分离、电极材料、催化领域中得到了广泛的应用。特别地,在MOFs的后合成反应中,MOFs骨架中的金属离子和配体可以发生双交换,如Fe基MOFs材料(MIL-101(Fe)),从而形成新的MOFs结构,其本质上利用了金属离子之间的置换作用和配体与金属离子的配位稳定性。然而,和其他大部分MOFs材料一样,MIL-101(Fe)通常以粉体的形式存在,这些极细颗粒在分离过程中不利于加工操作和回收再生,且稳定性差,难以投入实际工程应用。
中国专利申请CN201611216476公开了一种多孔树脂-金属有机框架复合小球吸附剂,尽管多孔树脂作为载体能与金属盐化合物在反应溶液中进行吸附或离子交换,并经原位沉积可以制备得到多孔树脂-金属有机框架复合吸附剂。然而,该方法的反应过程繁琐,难以实现对MOFs纳米材料负载量的有效调控,本质上是由于纳米材料的异相成核速率远小于其均相成核的速率,进而导致纳米材料难以有效负载在树脂载体上。此外,该方法制得的复合吸附剂难以满足对重金属络合物污染物的高效脱除的需求。进一步地,由于复合吸附剂中MOFs有效负载量低,导致含有氨基基团或羧基基团的树脂在应用过程中,受pH的影响较大,进而导致MOFs的结构塌陷。且树脂其自身优异的吸附和离子交换功能容易受到抑制。
发明内容
本发明的目的在于提供一种置换-吸附型树脂基复合吸附剂、制备方法及其应用。
实现本发明目的的技术方案是:
置换-吸附型树脂基复合吸附剂的制备方法,包括如下步骤:
S1:树脂预处理
将D001树脂依次用饱和食盐水、氢氧化钠溶液、稀盐酸和水进行反复浸泡预处理,最后冲洗树脂;
S2:树脂改性
将预处理后的树脂加入到铁离子的N,N-二甲基甲酰胺(DMF)溶液中,经恒温摇匀处理和水洗后,形成表面改性的树脂;
S3:预生长
将表面改性的树脂置于对苯二甲酸的DMF溶液中,经80~140℃加热和搅拌反应,制得树脂表面预生长MIL-101(Fe)纳米材料的复合材料;
S4:后合成负载
向S3体系中投加铁离子的DMF溶液,继续80~140℃加热和搅拌反应,经过滤、洗涤、干燥处理后,制得树脂基复合吸附剂。
进一步地,S1中,D001树脂是在大孔结构的苯乙烯-二乙烯苯共聚体上带有磺酸基(-SO3H)的强酸性阳离子交换树脂,D001树脂的粒径为0.40-0.70mm、0.50-0.75mm或0.65-0.90mm。
进一步地,S1中,氢氧化钠溶液浓度为2~4%,稀盐酸的浓度为3~5%,浸泡次数为2~4次,浸泡时间为6~24小时,冲洗至排出水的pH为3~5,这样预处理后的树脂交换能力较强。
进一步地,S2中,铁离子的DMF溶液的铁源为氯化亚铁、氯化铁、硝酸铁、硫酸亚铁铵、硫酸铁铵中的一种或两种以上的任意组合,铁离子的浓度为5~40mmol/L,恒温摇匀的温度为25~50℃,处理时间为0.5~24小时,铁离子的有效交换量高。
进一步地,S3中,表面改性树脂的投加量为5~50g/L,对苯二甲酸的浓度为5~40mmol/L,加热方式为油浴,反应时间为6~24小时,形成的MIL-101(Fe)晶种在载体上的分布均匀。
进一步地,S4中,铁离子的DMF溶液中铁源为氯化亚铁、氯化铁、硝酸铁、硫酸亚铁铵、硫酸铁铵中的一种或两种以上的任意组合,铁离子的浓度为1~10mmol/L,加热方式为油浴,反应时间为6~24小时。该步骤有助于调控MIL-101(Fe)在树脂载体上的负载量。
本发明提供上述制备方法制得的树脂基复合吸附剂。
进一步地,本发明提供上述树脂基复合材料在电镀废水吸附处理中的应用。
进一步地,所述的电镀废水为常见的电镀废水,例如含柠檬酸配体、酒石酸配体或单宁酸等羧酸类配体产生的含铜或含镍废水。
与现有技术相比,本发明具有以下优点:
(1)充分利用了钠型阳离子型交换树脂的离子交换容量大、效率高的特点,提高了铁离子在树脂载体上的均匀分布和吸附量;
(2)合成过程中采用了晶种预生长法制备得到的MIL-101(Fe)纳米晶,有助于后合成步骤中负载量的可控调节;
(3)选用阳离子型交换树脂作为载体,在调控晶种生长方面具有可调的孔道和表面选择性,其后合成负载过程中负载量易于提高,且合成方法简单、条件温和、易于批量化生产;
(4)制备得到的树脂基复合材料既具有MIL-101(Fe)金属-配体双交换的功能,又发挥了阳离子树脂对金属阳离子的选择性吸附功能,对重金属络合物具有良好的置换再吸附的优异性能,在电镀废水深度处理中具有较高的处理效率和较宽的适用性。
附图说明
图1为实施例1制备得到的树脂基复合材料XRD图;
图2为实施例4制备得到树脂基复合材料与树脂在去除柠檬酸铜中的性能;
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
实施例1
基于离子交换和晶种生长的策略制备置换-吸附型树脂基复合材料,包括如下步骤:
S1:树脂预处理
将粒径为0.40-0.70mm的D001树脂载体按次序用饱和食盐水、2%氢氧化钠溶液、3%稀盐酸和清水进行反复浸泡预处理,浸泡次数为2次,浸泡时间为6小时,最后冲洗树脂至排出水的pH为3;
S2:树脂改性
将预处理后的树脂加入到氯化亚铁的DMF溶液中,其中氯化亚铁的浓度为5mmol/L,经25℃恒温摇匀处理0.5小时和水洗后,形成表面改性的树脂;
S3:预生长
按5g/L的投加量,将表面改性的树脂置于5mmol/L对苯二甲酸配体的DMF溶液中,经80℃加热搅拌反应6小时后,制备得到树脂表面预生长MIL-101(Fe)纳米材料的复合材料;
S4:后合成负载
向S3体系中投加氯化亚铁的DMF溶液,其中铁离子的浓度为1mmol/L,继续80℃加热和搅拌反应6小时后,经过滤、洗涤、40℃干燥处理后,制得D001树脂负载MIL-101(Fe)的复合材料(简称树脂基复合吸附剂),并标记为1号。
利用X射线衍射仪(XRD)对其进行结构表征,如图1所示。结果表明,MIL-101(Fe)成功负载到了D001树脂上。通过对其进行消解处理后,利用电感耦合等离子色谱对其负载量进行表征。结果表明,其MIL-101(Fe)的有效负载量为2.0wt%。
将1号树脂基复合吸附剂投加到电镀废水中,电镀废水为含柠檬酸配体的含铜废水(CA-Cu),CA-Cu的浓度为10ppm,pH=3。通过与D001树脂进行对比,负载MIL-101(Fe)的树脂复合吸附剂的吸附去除能力显著提升,从原来的70%提升到了95%以上。且1号样品具有较强的抗阴离子离子干扰特性,经5次循环反应后依然保持较好的稳定性,MIL-101(Fe)的脱落率<0.01%。
对比例1
本对比例与实施例1基本相同,唯一不同的是在S1中,D001树脂载体的预处理次序为饱和食盐水、稀盐酸、氢氧化钠溶液和清水进行反复浸泡,最后冲洗树脂。制备得到的树脂基复合吸附剂标记为2号,2号复合吸附剂的MIL-101(Fe)负载量为0.07wt%,对含柠檬酸配体的含铜废水的去除效率为75%,具体数据见表1。说明D001树脂的预处理顺序会影响最终制得的树脂基复合吸附剂的去除效率。
对比例2
本对比例与实施例1基本相同,唯一不同的是在S1中,将D001树脂载体换成阴离子型交换树脂(D201)。制备得到的树脂基复合吸附剂标记为3号,3号复合吸附剂的MIL-101(Fe)负载量为0.5wt%,对含柠檬酸配体的含铜废水的去除效率为80%,具体数据见表1。说明树脂类型的选择会影响最终制得的树脂基复合吸附剂的去除效率。
对比例3
本对比例与实施例1基本相同,唯一不同的是在S3中,预生长所用的溶剂为甲醇。制备得到的树脂基复合吸附剂标记为4号,4号复合吸附剂的MIL-101(Fe)负载量为0.9wt%,对含柠檬酸配体的含铜废水的去除效率为85%,具体数据见表1。说明预生长所用的溶剂的选择会影响最终制得的树脂基复合吸附剂的去除效率。
对比例4
本对比例与实施例1基本相同,唯一不同的是取消了S4的后合成负载工艺。制备得到的树脂基复合吸附剂标记为5号,5号复合吸附剂的MIL-101(Fe)负载量为0.04wt%,对含柠檬酸配体的含铜废水的去除效率为75%,具体数据见表1。说明S4的后合成负载步骤能进一步提高树脂基复合吸附剂的去除效率。
对比例5
本对比例与实施例1基本相同,唯一不同的是在S4中,后合成负载工艺中采用的铁离子为三价铁离子(氯化铁),制备得到的树脂基复合吸附剂标记为6号,6号复合吸附剂的MIL-101(Fe)负载量为0.15wt%,对含柠檬酸配体的含铜废水的去除效率为85%,具体数据见表1。说明后合成负载步骤中铁离子的选择会影响最终制得的树脂基复合吸附剂的去除效率。
对比例6
本对比例与实施例1基本相同,唯一不同的是在S4中,后合成负载工艺中采用的铁离子为1:1的氯化铁和氯化亚铁的混合物,制备得到的树脂基复合吸附剂标记为7号,7号复合吸附剂的MIL-101(Fe)负载量为1.2wt%,对含柠檬酸配体的含铜废水的去除效率为90%,具体数据见表1。说明后合成负载步骤中铁离子的选择会影响最终制得的树脂基复合吸附剂的去除效率,Fe2+和Fe3+混合价态铁离子制得的树脂基复合吸附剂相较于仅由Fe3+浸渍制得的树脂基复合吸附剂的去除效率更高,但略低于由Fe2+浸渍制得的树脂基复合吸附剂。
表1对比例1-6制备得到的树脂基复合材料的性能比较
以上所述仅以用来说明本发明的技术方案,而本发明的保护范围并不仅限于此,任何熟悉本技术的相关领域的技术人员在本发明披露的技术范围内,能够轻易想到的变化、替换都应涵盖在本发明的保护范围之内。因此本发明的保护范围应以权利要求书的保护范围为准。

Claims (9)

1.置换-吸附型树脂基复合吸附剂的制备方法,其特征在于,包括如下步骤:
S1:树脂预处理
将D001树脂依次用饱和食盐水、氢氧化钠溶液、稀盐酸和水进行反复浸泡预处理,最后冲洗树脂;
S2:树脂改性
将预处理后的树脂加入到铁离子的DMF溶液中,经恒温摇匀处理和水洗后,形成表面改性的树脂;
S3:预生长
将表面改性的树脂置于对苯二甲酸的DMF溶液中,经80~140℃加热和搅拌反应,制得树脂表面预生长MIL-101(Fe)纳米材料的复合材料;
S4:后合成负载
向S3体系中投加铁离子的DMF溶液,继续80~140℃加热和搅拌反应,经过滤、洗涤、干燥处理后,制得树脂基复合吸附剂。
2.根据权利要求1所述的制备方法,其特征在于,S1中,D001树脂的粒径为0.40-0.70mm、0.50-0.75mm或0.65-0.90mm。
3.根据权利要求1所述的制备方法,其特征在于,S1中,氢氧化钠溶液浓度为2~4%,稀盐酸的浓度为3~5%,浸泡次数为2~4次,浸泡时间为6~24小时,冲洗至排出水的pH为3~5。
4.根据权利要求1所述的制备方法,其特征在于,S2中,铁离子的DMF溶液的铁源为氯化亚铁、氯化铁、硝酸铁、硫酸亚铁铵、硫酸铁铵中的一种或两种以上的任意组合,铁离子的浓度为5~40mmol/L,恒温摇匀的温度为25~50℃,处理时间为0.5~24小时。
5.根据权利要求1所述的制备方法,其特征在于,S3中,表面改性树脂的投加量为5~50g/L,对苯二甲酸的浓度为5~40mmol/L,加热方式为油浴,反应时间为6~24小时。
6.根据权利要求1所述的制备方法,其特征在于,S4中,铁离子的DMF溶液中铁源为氯化亚铁、氯化铁、硝酸铁、硫酸亚铁铵、硫酸铁铵中的一种或两种以上的任意组合,铁离子的浓度为1~10mmol/L,加热方式为油浴,反应时间为6~24小时。
7.如权利要求1~6任一所述的制备方法制得的树脂基复合吸附剂。
8.如权利要求7所述的树脂基复合材料在电镀废水吸附处理中的应用。
9.根据权利要求8所述的应用,其特征在于,所述的电镀废水为含柠檬酸配体、酒石酸配体或单宁酸配体的含铜或含镍废水。
CN202310366367.4A 2023-04-07 2023-04-07 置换-吸附型树脂基复合吸附剂、制备方法及其应用 Pending CN116532087A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310366367.4A CN116532087A (zh) 2023-04-07 2023-04-07 置换-吸附型树脂基复合吸附剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310366367.4A CN116532087A (zh) 2023-04-07 2023-04-07 置换-吸附型树脂基复合吸附剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116532087A true CN116532087A (zh) 2023-08-04

Family

ID=87444391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310366367.4A Pending CN116532087A (zh) 2023-04-07 2023-04-07 置换-吸附型树脂基复合吸附剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116532087A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144758A2 (ko) * 2011-04-18 2012-10-26 한국화학연구원 다공성 금속-유기 골격 물질의 기능화 방법, 이를 이용한 고체산 촉매 및 이 고체산 촉매를 이용한 알코올의 탈수 방법
CN108976431A (zh) * 2018-06-28 2018-12-11 华南理工大学 一种纸状梯度微纤复合金属有机骨架材料及其制备方法与应用
CN109894085A (zh) * 2019-03-22 2019-06-18 武汉理工大学 单分散酚醛树脂纳米棒原位嵌入mof复合材料的简易普适性制备方法
CN111389384A (zh) * 2020-02-17 2020-07-10 广西大学 一种憎水性石墨炔复合含铁mof吸附剂及其制备方法
CN112958041A (zh) * 2021-02-08 2021-06-15 浙江科技学院 一种核壳结构纳米复合树脂、制备方法及在电镀废水处理中的应用
CN113861499A (zh) * 2020-06-30 2021-12-31 中国科学院大连化学物理研究所 一种金属有机框架化合物复合膜的制备方法及其应用
CN114920949A (zh) * 2022-05-30 2022-08-19 上海交通大学 金属有机框架纳米阵列材料的制备方法及应用
CN115414968A (zh) * 2022-10-12 2022-12-02 湖北绿兴捷资源科技有限公司 一种阳离子交换树脂的预处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144758A2 (ko) * 2011-04-18 2012-10-26 한국화학연구원 다공성 금속-유기 골격 물질의 기능화 방법, 이를 이용한 고체산 촉매 및 이 고체산 촉매를 이용한 알코올의 탈수 방법
CN108976431A (zh) * 2018-06-28 2018-12-11 华南理工大学 一种纸状梯度微纤复合金属有机骨架材料及其制备方法与应用
CN109894085A (zh) * 2019-03-22 2019-06-18 武汉理工大学 单分散酚醛树脂纳米棒原位嵌入mof复合材料的简易普适性制备方法
CN111389384A (zh) * 2020-02-17 2020-07-10 广西大学 一种憎水性石墨炔复合含铁mof吸附剂及其制备方法
CN113861499A (zh) * 2020-06-30 2021-12-31 中国科学院大连化学物理研究所 一种金属有机框架化合物复合膜的制备方法及其应用
CN112958041A (zh) * 2021-02-08 2021-06-15 浙江科技学院 一种核壳结构纳米复合树脂、制备方法及在电镀废水处理中的应用
CN114920949A (zh) * 2022-05-30 2022-08-19 上海交通大学 金属有机框架纳米阵列材料的制备方法及应用
CN115414968A (zh) * 2022-10-12 2022-12-02 湖北绿兴捷资源科技有限公司 一种阳离子交换树脂的预处理方法

Similar Documents

Publication Publication Date Title
US11065610B2 (en) Fenton-like catalytic material with dual reaction centers and preparation method thereof
Chen et al. Recovery and reduction of Au (III) from mixed metal solution by thiourea-resorcinol-formaldehyde microspheres
CN108311117B (zh) 一种用于重金属废水处理的磁性生物炭材料及其制备方法
JP2019193926A (ja) 磁性水熱炭の製造方法及びその応用
Chen et al. Removal of metal-cyanide complexes and recovery of Pt (II) and Pd (II) from wastewater using an alkali–tolerant metal-organic resin
CN112316906A (zh) 一种铁磁性的氨基修饰镧系金属有机骨架材料的制备方法及其吸附除磷的应用
CN114082432B (zh) 一种利用高铁酸盐为铁源制备的铁氮共掺杂多孔碳及其制备方法和应用
CN111408413B (zh) 一种改性氮化碳/Fe基MOF复合材料及其制备方法和应用
Guo et al. Synthesis and application of 8-hydroxyquinoline modified magnetic mesoporous carbon for adsorption of multivariate metal ions from aqueous solutions
Zaman et al. Post synthetic modification of NH2-(Zr-MOF) via rapid microwave-promoted synthesis for effective adsorption of Pb (II) and Cd (II)
CN114768780B (zh) 一种Zn-Fe普鲁士蓝类似物复合材料的制备方法及应用
CN111482182A (zh) 催化剂及其制备方法
CN108525673B (zh) 一种类芬顿固体催化剂及其制备方法和应用
CN112844320B (zh) 一种碳材料包裹尖晶石铁氧化物原位生长MOFs吸附催化复合体及其制备方法与应用
CN112675810B (zh) 一种非晶态高效除磷吸附材料及其制备方法与水处理应用
Xiao et al. Disodium N, N-bis-(dithiocarboxy) ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II)
CN116532087A (zh) 置换-吸附型树脂基复合吸附剂、制备方法及其应用
Xiang et al. Efficient recovery of gold using Macroporous Metal-Organic framework prepared by the'MOF in MOF'method
Zhang et al. Enhanced removal of Cd (II) from aqueous solution by EDTA functionalized three-dimensional magnetic nitrogen-doped porous carbon
Zuo et al. Ion-imprinted magnetic adsorbents for the selective capture of Cu (II) and their cascade application as heterogeneous recyclable catalysts for Ullmann and Glaser coupling reactions
CN111569877A (zh) 催化剂及其制备方法
CN111282541A (zh) 一种除砷复合材料及其制备方法
CN112194148B (zh) 一种利用微波水热合成托贝莫来石去除重金属离子的方法
CN110201638B (zh) 一种mof材料的制备与应用
CN116535021A (zh) 基于配体修饰的树脂基复合破络剂、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination