CN111282541A - 一种除砷复合材料及其制备方法 - Google Patents

一种除砷复合材料及其制备方法 Download PDF

Info

Publication number
CN111282541A
CN111282541A CN202010123855.9A CN202010123855A CN111282541A CN 111282541 A CN111282541 A CN 111282541A CN 202010123855 A CN202010123855 A CN 202010123855A CN 111282541 A CN111282541 A CN 111282541A
Authority
CN
China
Prior art keywords
titanium
salt
arsenic
arsenic removal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010123855.9A
Other languages
English (en)
Inventor
郭鹏
王晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingshang Suzhou Environmental Technology Co ltd
Original Assignee
Qingshang Suzhou Environmental Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingshang Suzhou Environmental Technology Co ltd filed Critical Qingshang Suzhou Environmental Technology Co ltd
Priority to CN202010123855.9A priority Critical patent/CN111282541A/zh
Publication of CN111282541A publication Critical patent/CN111282541A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种除砷复合材料,包括载体,所述的除砷复合材料还包括附着在所述的载体的表面的铁钛锰复合氧化物,其中,所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为0.5~5:0.5~4:1。本发明的除砷复合材料的吸附性能好,能够高效稳定去除水体中的砷,并且铁钛锰氧化物可以再生。

Description

一种除砷复合材料及其制备方法
技术领域
本发明属于水处理技术领域,具体涉及一种除砷复合材料及其制备方法。
背景技术
砷是一种兼具金属和非金属性质的类金属元素,As(III)主要存在以地下水为代表的还原性环境中,而As(Ⅴ)主要存在以地表水为代表的氧化性环境中,砷主要通过两种途径进入到人体,其一通过饮用含砷地下水,其二食用含砷地下水灌溉过的谷物和蔬菜。地下水砷污染是全球性环境问题。长期饮用高砷水可导致皮肤癌和多种内脏器官癌变,慢性砷中毒患者除有头痛、头晕等症状外,突出表现为皮肤损害,症状为皮肤色素沉着、皮肤角化过度等。因此,对生活中的饮用水的除砷,是一个关系民生的重要课题。
砷污染主要通过物理法、化学法和生物法达到去除的目的,其中,沉淀法、离子交换法、吸附法、膜分离法和生物法等为常见的含砷废水处理方法。吸附法是饮用水除砷的首选方法,该方法除砷效率高,操作简单,成本低廉。粘土矿物常用作吸附剂,主要成分为铝、镁、硅酸盐等,具有粒径小、比表面积大、孔隙率高和较好的离子交换性能,其中伊利石、蒙脱石、高岭土是有效的除砷吸附剂。
CN103084140B公开了一种去除水中砷的复合材料及其制备方法,其通过聚合铁盐、水解钛盐插入膨润土层间,经烘干煅烧,形成铁、钛二元氧化物插层改性复合材料。该发明是通过聚合铁盐、水解钛盐对膨润土进行改性以撑大膨润土的层间孔隙,从而提高除砷效果。但是,该发明的复合材料的除砷效率有待进一步提高,并且除砷时光照条件对除砷效果也有影响,此外,膨润土层间可容纳的改性物的量有限,在吸附容量上没有优势。
发明内容
本发明针对上述问题,提出了一种除砷效率更高的除砷复合材料及其制备方法。
为解决上述技术问题,本发明采用如下技术方案:
本发明一方面提供一种除砷复合材料,包括载体,所述的除砷复合材料还包括附着在所述的载体的表面的铁钛锰复合氧化物,其中,所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为0.5~5:0.5~4:1。
本发明的除砷复合材料具有较大的比表面积,可提供较多的吸附位点,并且表面带有电荷,在静电作用下可促进砷在水体中的迁移,对水中砷的原位修复具有重要意义。本发明附着在所述的载体的表面的铁钛锰复合氧化物可通过氧化-吸附过程,减少砷的毒性,高效稳定地去除水体砷污染。另外,在除砷复合材料完成砷的吸附后,用强碱溶液使得吸附上的砷脱附下来,从而可以再次用于除砷,或者可以进一步在复合材料表面附着新的铁钛锰氧化物,从而可以进一步提高再生后的复合材料的除砷效率,且再生方法简单,再生周期短,易于推广应用。
优选地,所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为2~5:1~4:1。
进一步优选地,所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为3.5~4.5:1.5~2.5:1。
本发明通过优化铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比,可以进一步提高复合材料的性能,减少成本投入。
优选地,所述的铁钛锰复合氧化物通过亚钛盐、高锰酸盐、二价铁盐以及三价铁盐进行氧化还原反应并通过原位沉淀法形成在所述的载体的表面。
进一步优选地,所述的亚钛盐为硫酸亚钛(Ti2(SO4)3)、三氯化钛(TiCl3)中的一种或多种;所述的高锰酸盐为高锰酸钾、高锰酸钠中的一种或多种;所述的二价铁盐为硫酸亚铁(FeSO4)、氯化亚铁(FeCl2)、硝酸亚铁(Fe(NO3)2)中的一种或多种;所述的三价铁盐为硫酸铁(Fe2(SO4)3)、氯化铁(FeCl3)、硝酸铁(Fe(NO3)3)中的一种或多种。
进一步优选地,所述的三价铁盐和所述的二价铁盐的投料摩尔比为2~2.2:1。
优选地,所述的载体为聚合铝盐和/或聚合铁盐改性的蒙脱石,所述的载体为粒径≥200目的颗粒物或粉末。本发明通过采用改性蒙脱石为载体,其层间聚合氯化铝和颗粒边缘的≡Al-OH均能有效与水体中的砷结合,有利于砷的更加高效去除。
本发明中的聚合铝盐和/或聚合铁盐改性的蒙脱石可以直接市购获得,或者按照本领域的常规方法对蒙脱石进行改性即可。
进一步优选地,聚合铝盐可以为聚合氯化铝、聚合硫酸铝中的一种或多种;聚合铁盐可以为聚合氯化铁、聚合硫酸铁中的一种或多种。
本发明的第二方面是提供一种所述的除砷复合材料的制备方法,包括如下步骤:
(1)在厌氧条件下将二价铁盐、三价铁盐、亚钛盐溶解于水中,得到溶液a;
(2)将高锰酸盐、碱性溶液和水混合,得到溶液b;
(3)在所述的溶液a中加入所述的载体,在搅拌的条件下,加入所述的溶液b,继续搅拌30~60min,然后调节pH至6~9;
(4)静置陈化1~4h,然后沉淀物经洗涤、干燥得到所述的除砷复合材料。
本发明采用原位沉淀法一步合成复合材料,制备方法简单,原料成本低廉,可以采用该方面进行铁钛锰氧化物的再生,再生简单,再生周期短。
优选地,步骤(1)中的厌氧条件为充以惰性气体的条件。
优选地,步骤(2)中的碱性溶液,以及步骤(3)中调节pH的试剂为0.2~0.4mol/L的氢氧化钠溶液。
优选地,步骤(4)中,采用乙醇和水进行洗涤。
进一步优选地,采用乙醇和水交替洗涤多次。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明的除砷复合材料的吸附性能好,能够高效稳定去除水体中的砷,并且铁钛锰氧化物可以再生。
具体实施方式
下面的实施例为用来说明本发明的几个具体实施方式,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
实施例1
在惰性气体保护气下,将3.8g FeCl3·6H2O、1.8g FeSO4·7H2O和3.84gTi2(SO4)3溶解于500ml去离子水中,得到溶液a。将0.79g KMnO4溶解于50ml去离子水中,与50ml 0.3MNaOH溶液混合,得到溶液b。在溶液a中加入1.0g聚合氯化铝改性蒙脱石,快速搅拌的同时,缓慢滴加溶液b,继续搅拌40min,用0.3M NaOH溶液调节pH至8.0,静置陈化3h,采用乙醇和去离子水充分洗涤过滤陈化后的沉淀物,将过滤后的沉淀物于50-80℃条件下干燥。即获得新型除砷复合材料,其中Fe/Ti/Mn的摩尔比为4:2:1。
实施例2
在惰性气体保护气下,将2.7g FeCl3·6H2O、1.39g FeSO4·7H2O和1.92gTi2(SO4)3溶解于500ml去离子水中,得到溶液a。将0.79g KMnO4溶解于50ml去离子水中,与50ml 0.3MNaOH溶液混合,得到溶液b。在溶液a中加入1.0g聚合氯化铝改性蒙脱石,快速搅拌的同时,缓慢滴加溶液b,继续搅拌40min,用0.3M NaOH溶液调节pH至8.0,静置陈化3h,采用乙醇和去离子水充分洗涤过滤陈化后的沉淀物,将过滤后的沉淀物于50-80℃条件下干燥。即获得新型除砷复合材料,其中Fe/Ti/Mn的摩尔比为3:1:1。
实施例3
在惰性气体保护气下,将0.9g FeCl3·6H2O、0.47g FeSO4·7H2O和1.92gTi2(SO4)3溶解于500ml去离子水中,得到溶液a。将0.79g KMnO4溶解于50ml去离子水中,与50ml 0.3MNaOH溶液混合,得到溶液b。在溶液a中加入1.0g聚合氯化铝改性蒙脱石,快速搅拌的同时,缓慢滴加溶液b,继续搅拌40min,用0.3M NaOH溶液调节pH至8.0,静置陈化3h,采用乙醇和去离子水充分洗涤过滤陈化后的沉淀物,将过滤后的沉淀物于50-80℃条件下干燥。即获得新型除砷复合材料,其中Fe/Ti/Mn的摩尔比为1:1:1。
采用实施例1至3制得的新型除砷复合材料在吸附剂投加量=1.0g/L、pH=7.0±0.1、温度=25℃的条件下对不同初始As(Ⅲ)浓度的水体进行吸附测试,吸附容量结果见表1。
表1
实施例1(mg/g) 实施例2(mg/g) 实施例3(mg/g)
2mg/L 1.98 1.92 1.84
10mg/L 7.36 6.55 4.02
采用实施例1至3制得的新型除砷复合材料在吸附剂投加量=1.0g/L、pH=7.0±0.1、温度=25℃的条件下对不同初始As(Ⅴ)浓度的水体进行吸附测试,吸附容量结果见表2。
表2
Figure BDA0002393820580000041
Figure BDA0002393820580000051
采用实施例1制得的新型除砷复合材料在初始砷浓度=10mg/L、吸附剂投加量=1.0g/L、pH=7.0±0.1、温度=25℃的条件下对黑暗、自然光、紫外光不同光照进行吸附测试,吸附容量结果见表3。
表3
As(Ⅲ)吸附量(mg/g) As(Ⅴ)吸附量(mg/g)
黑暗 6.86 5.57
自然光 7.47 6.60
紫外光 7.82 7.02
将实施例1制得的新型除砷复合材料在初始砷浓度=10mg/L,吸附剂投加量=1.0g/L、pH=7.0±0.1、温度=25℃的条件下吸附饱和后的复合材料进行再生,再生的方法为:将过滤得到的复合材料置于200mL NaOH溶液(0.5M)中,搅拌反应6小时(170rpm,25±1℃),过滤,洗涤,干燥,得到再生后的复合材料。
采用上述再生后的复合材料在初始砷浓度=10mg/L、吸附剂投加量=1.0g/L、pH=7.0±0.1、温度=25℃的条件下进行吸附砷测试,连续吸附-脱附3次,吸附容量结果见表4。
表4
再生次数 As(Ⅲ)吸附量(mg/g) As(Ⅴ)吸附量(mg/g)
0 7.36 6.47
1 7.02 6.13
2 6.60 5.65
3 5.89 5.03
本发明包括但不限于以上实施例,本领域熟练技术人员可在本发明权利要求内变换得到更多实施例。

Claims (10)

1.一种除砷复合材料,包括载体,其特征在于:所述的除砷复合材料还包括附着在所述的载体的表面的铁钛锰复合氧化物,其中,所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为0.5~5:0.5~4:1。
2.根据权利要求1所述的除砷复合材料,其特征在于:所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为2~5:1~4:1。
3.根据权利要求2所述的除砷复合材料,其特征在于:所述的铁钛锰复合氧化物中Fe、Ti、Mn的摩尔比为3.5~4.5:1.5~2.5:1。
4.根据权利要求1至3中任一项所述的除砷复合材料,其特征在于:所述的铁钛锰复合氧化物通过亚钛盐、高锰酸盐、二价铁盐以及三价铁盐进行氧化还原反应并通过原位沉淀法形成在所述的载体的表面。
5.根据权利要求4所述的除砷复合材料,其特征在于:所述的亚钛盐为硫酸亚钛、三氯化钛中的一种或多种;所述的高锰酸盐为高锰酸钾、高锰酸钠中的一种或多种;所述的二价铁盐为硫酸亚铁、氯化亚铁、硝酸亚铁中的一种或多种;所述的三价铁盐为硫酸铁、氯化铁、硝酸铁中的一种或多种。
6.根据权利要求1所述的除砷复合材料,其特征在于:所述的载体为聚合铝盐和/或聚合铁盐改性的蒙脱石,所述的载体为粒径≥200目的颗粒物或粉末。
7.一种如权利要求1至6中任一项所述的除砷复合材料的制备方法,其特征在于:包括如下步骤:
(1)在厌氧条件下将二价铁盐、三价铁盐、亚钛盐溶解于水中,得到溶液a;
(2)将高锰酸盐、碱性溶液和水混合,得到溶液b;
(3)在所述的溶液a中加入所述的载体,在搅拌的条件下,加入所述的溶液b,继续搅拌30~60min,然后调节pH至6~9;
(4)静置陈化1~4h,然后沉淀物经洗涤、干燥得到所述的除砷复合材料。
8.根据权利要求7所述的制备方法,其特征在于:步骤(1)中的厌氧条件为充以惰性气体的条件。
9.根据权利要求7所述的制备方法,其特征在于:步骤(2)中的碱性溶液,以及步骤(3)中调节pH的试剂为0.2~0.4mol/L的氢氧化钠溶液。
10.根据权利要求7所述的制备方法,其特征在于:步骤(4)中,采用乙醇和水进行洗涤。
CN202010123855.9A 2020-02-27 2020-02-27 一种除砷复合材料及其制备方法 Pending CN111282541A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010123855.9A CN111282541A (zh) 2020-02-27 2020-02-27 一种除砷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010123855.9A CN111282541A (zh) 2020-02-27 2020-02-27 一种除砷复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111282541A true CN111282541A (zh) 2020-06-16

Family

ID=71021577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010123855.9A Pending CN111282541A (zh) 2020-02-27 2020-02-27 一种除砷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111282541A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791700A (zh) * 2021-01-22 2021-05-14 暨南大学 一种铁钛锰复合氧化物改性纳米碳管及其制备方法与应用
CN112892466A (zh) * 2021-01-22 2021-06-04 暨南大学 一种铁钛锰复合氧化物及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024160A (zh) * 2006-02-21 2007-08-29 中国科学院生态环境研究中心 一种铁锰复合氧化物/硅藻土吸附剂的制备、使用及再生方法
CN101049972A (zh) * 2007-05-10 2007-10-10 桂林工学院 铁铝复合氢氧化物的合成方法及其应用
CN103084140A (zh) * 2012-12-20 2013-05-08 中国科学院生态环境研究中心 一种去除水中砷的复合材料及其制备方法
CN107837783A (zh) * 2017-11-23 2018-03-27 哈尔滨工业大学 一种铁钛锰三元复合除砷吸附剂的制备方法
CN109126731A (zh) * 2018-09-07 2019-01-04 哈尔滨工业大学 一种颗粒状的饮用水除砷吸附材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024160A (zh) * 2006-02-21 2007-08-29 中国科学院生态环境研究中心 一种铁锰复合氧化物/硅藻土吸附剂的制备、使用及再生方法
CN101049972A (zh) * 2007-05-10 2007-10-10 桂林工学院 铁铝复合氢氧化物的合成方法及其应用
CN103084140A (zh) * 2012-12-20 2013-05-08 中国科学院生态环境研究中心 一种去除水中砷的复合材料及其制备方法
CN107837783A (zh) * 2017-11-23 2018-03-27 哈尔滨工业大学 一种铁钛锰三元复合除砷吸附剂的制备方法
CN109126731A (zh) * 2018-09-07 2019-01-04 哈尔滨工业大学 一种颗粒状的饮用水除砷吸附材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张伟: "新型复合铁钛锰吸附剂的研制及其除砷效能与机制研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112791700A (zh) * 2021-01-22 2021-05-14 暨南大学 一种铁钛锰复合氧化物改性纳米碳管及其制备方法与应用
CN112892466A (zh) * 2021-01-22 2021-06-04 暨南大学 一种铁钛锰复合氧化物及其制备方法与应用

Similar Documents

Publication Publication Date Title
Li et al. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review
JP6982318B2 (ja) タリウム含有廃水処理方法
Bao et al. Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr (VI) and Hg (II) from aqueous solutions under wide pH range
Wang et al. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater
Khurshid et al. Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene
CN108311117B (zh) 一种用于重金属废水处理的磁性生物炭材料及其制备方法
Qiu et al. Fabrication and evaluation of a regenerable HFO-doped agricultural waste for enhanced adsorption affinity towards phosphate
CN106732350A (zh) 对砷镉复合污染修复的磁性生物炭吸附材料的制备方法
Li et al. Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite
CN110548490A (zh) 一种可回收的镧改性膨润土除磷材料的制备方法及其应用
CN111589416A (zh) 一种镧改性生物炭及其制备方法和应用
Liu et al. Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal
CN109107524B (zh) 一种赤泥吸附剂及其制备方法和应用
CN111282541A (zh) 一种除砷复合材料及其制备方法
CN111151221A (zh) 一种超快去除水体中重金属的大孔生物炭基杂化材料及其制备方法与应用
CN115041152B (zh) 一种基于树脂基载钕纳米复合材料及其制备方法和在深度去除水中磷酸根的应用
Tee et al. Lanthanum carbonate nanoparticles confined within anion exchange resin for phosphate removal from river water: Batch and fixed-bed column study
Xu et al. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr (VI) from aqueous solutions
Tee et al. Comprehensive review and future research directions on using various lanthanum-based adsorbents for selective phosphate removal
CN108772038B (zh) 一种脱除水中铅离子的吸附剂及其制备方法和应用
Leiviskä Vanadium (V) removal from water by sorption
Xu et al. Amorphous Fe–Mn binary oxides nanoparticles decorating waste bamboo biomass-based monolith for efficient arsenic removal with column adsorption
CN107297200B (zh) 一种以有机聚氨酯泡沫为基底的泡沫铁酸铜及其制备和应用
CN102249364A (zh) 采用载铁二氧化钛纳米管吸附去除水中低浓度五价砷的方法
Wang et al. Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200616

RJ01 Rejection of invention patent application after publication