CN116504827A - Hemt外延片及其制备方法、hemt - Google Patents

Hemt外延片及其制备方法、hemt Download PDF

Info

Publication number
CN116504827A
CN116504827A CN202310787003.3A CN202310787003A CN116504827A CN 116504827 A CN116504827 A CN 116504827A CN 202310787003 A CN202310787003 A CN 202310787003A CN 116504827 A CN116504827 A CN 116504827A
Authority
CN
China
Prior art keywords
layer
epitaxial wafer
hemt
substrate
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310787003.3A
Other languages
English (en)
Other versions
CN116504827B (zh
Inventor
郑文杰
程龙
高虹
刘春杨
胡加辉
金从龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202310787003.3A priority Critical patent/CN116504827B/zh
Publication of CN116504827A publication Critical patent/CN116504827A/zh
Application granted granted Critical
Publication of CN116504827B publication Critical patent/CN116504827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种HEMT外延片及其制备方法、HEMT,所述HEMT外延片包括衬底及依次层叠于所述衬底上的电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层。本发明提供的HEMT外延片能限制二维电子气,具有更好的关断能力和更好的开启能力,并降低短沟道效应的影响和更低的表面接触电阻。

Description

HEMT外延片及其制备方法、HEMT
技术领域
本发明涉及光电技术领域,尤其涉及一种HEMT外延片及其制备方法、HEMT。
背景技术
随着科技的发展,高性能高效率的半导体电力电子器件在当今社会显得尤为重要。传统的Si基半导体电力电子器件由于材料本身的限制,其性能和效率已经难以有很大的提高。以GaN为代表的宽禁带半导体由于具有大禁带宽度、高击穿场强、高电子迁移率等优良特性,十分适合制备高性能高效率的电力电子器件。GaN异质结场效应晶体管(HFET)常常被称为GaN高电子迁移率晶体管(HEMT)。而在AlGaN/GaN的HFET中,2DEG(二维电子气)载流子密度由AlGaN势垒层的成分和厚度决定,对于P-GaN栅HFET,P-GaN层能耗尽2DEG,但是,要确保2DEG在零栅极偏置时完全耗尽,即获得增强型器件,或者说为了获得较大阈值的增强型器件,如大于1V阈值电压,AlGaN势垒层必须足够薄,这就会限制非栅控接入区域中的载流子密度。
发明内容
本发明所要解决的技术问题在于,提供一种HEMT外延片,其限制二维电子气,具有更好的关断能力和更好的开启能力,并降低短沟道效应的影响和更低的表面接触电阻。
本发明所要解决的技术问题还在于,提供一种HEMT外延片的制备方法,其工艺简单,能够稳定制得发光效率良好的HEMT外延片。
为了解决上述技术问题,本发明提供了一种HEMT外延片,包括衬底及依次层叠于所述衬底上的电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;
所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;
所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层;
所述掺Mg的GaN层的Mg掺杂浓度为1×1016atoms/cm3~2×1017atoms/cm3
在一种实施方式中,所述掺Mg的GaN层的厚度为100nm~700nm;
所述BN层的厚度为100nm~200nm;
所述Si3N4层的厚度为100nm~200nm。
在一种实施方式中,所述极化层的厚度为10nm~20nm。
在一种实施方式中,所述YAlN层的Y组分为0.1~0.2。
为解决上述问题,本发明还提供了一种HEMT外延片的制备方法,包括以下步骤:
S1、准备衬底;
S2、在所述衬底上依次沉积电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;
所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;
所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层;
所述掺Mg的GaN层的Mg掺杂浓度为1×1016atoms/cm3~2×1017atoms/cm3
在一种实施方式中,所述掺Mg的GaN层的生长温度为650℃~800℃;
所述BN层的生长温度为950℃~1000℃;
所述Si3N4层的生长温度为950℃~1000℃;
所述极化层的生长温度为1000℃~1050℃。
在一种实施方式中,所述掺Mg的GaN层的生长压力为260torr~500torr;
所述BN层的生长压力为100torr~200torr;
所述Si3N4层的生长压力为100torr~200torr;
所述极化层的生长压力为50torr~200torr。
在一种实施方式中,所述掺Mg的GaN层的V/III比为200~1000;
所述BN层的V/III比为200~1000;
所述极化层的V/III比为500~1000。
相应地,本发明还提供了一种HEMT,所述HEMT包括上述的HEMT外延片。
实施本发明,具有如下有益效果:
本发明提供的HEMT外延片,其设有特定结构的电子阻挡层和极化层,所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层。
所述电子阻挡层中,掺Mg的GaN层可以限制由于衬底所带来的电子,降低静电击穿的风险,同时Mg掺杂可以减少电子的移动速度。BN层能够使掺Mg的GaN层上的三维成核层形成的岛之间加速合并,形成高质量的电子阻挡层,进一步降低与衬底之间的晶格失配和热失配,从而减少位错的产生和裂纹,降低位错的产生。Si3N4层改变位错延伸方向,使之相交发生湮灭,减少漏电通道。
所述极化层中GaN层、YAlN层和AlGaN层共同构成一个特殊结构的异质结,增加了器件的自发和压电电荷极化,即应变相关的电荷极化,使得其二维电子气(2DEG)薄层电荷的载流子密度提高数倍,与此同时,应变驰豫问题也得到了很好的控制,这一特殊的异质结结构增强了器件射频性能和可靠性。
附图说明
图1为本发明提供的HEMT外延片的结构示意图;
图2为本发明提供的HEMT外延片的制备方法的流程图;
图3为本发明提供的HEMT外延片的制备方法的步骤S2的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。
除非另外说明或存在矛盾之处,本文中使用的术语或短语具有以下含义:
本发明中,“优选”仅为描述效果更好的实施方式或实施例,应当理解,并不构成对本发明保护范围的限制。
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本发明中,涉及到数值区间,如无特别说明,则包括数值区间的两个端点。
为解决上述问题,本发明提供了一种HEMT外延片,如图1所示,包括衬底1及依次层叠于所述衬底1上的电子阻挡层2、高阻层3、沟道层4、势垒层5、极化层6和GaN帽层7;
所述电子阻挡层2包括依次层叠在所述衬底1上的掺Mg的GaN层21、BN层22和Si3N4层23;
所述极化层6包括依次层叠在所述势垒层5上的GaN层61、YAlN层62和AlGaN层63;
所述掺Mg的GaN层的Mg掺杂浓度为1×1016atoms/cm3~2×1017atoms/cm3
本发明提供的HEMT外延片,其在衬底上设置特定结构的电子阻挡层,下文对所述电子阻挡层的具体结构进行进一步描述。
在一种实施方式中,所述掺Mg的GaN层21的厚度为100nm~700nm;所述掺Mg的GaN层21的示例性厚度为200nm、300nm、500nm、600nm,但不限于此。优选地,所述掺Mg的GaN层21的Mg掺杂浓度为5×1016atoms/cm3~1×1017atoms/cm3。在一种实施方式中,所述BN层22的厚度为100nm~200nm;所述BN层22的示例性厚度为120nm、140nm、160nm、180nm,但不限于此。在一种实施方式中,所述Si3N4层23的厚度为100nm~200nm;所述Si3N4层23的示例性厚度为120nm、140nm、160nm、180nm,但不限于此。
所述电子阻挡层中,掺Mg的GaN层可以限制由于衬底所带来的电子,降低静电击穿的风险,同时Mg掺杂可以减少电子的移动速度。BN层能够使掺Mg的GaN层上的三维成核层形成的岛之间加速合并,形成高质量的电子阻挡层,进一步降低与衬底之间的晶格失配和热失配,从而减少位错的产生和裂纹,降低位错的产生。Si3N4层改变位错延伸方向,使之相交发生湮灭,减少漏电通道。
本发明提供的HEMT外延片,其在势垒层5上设置特定结构的极化层6,下文对所述极化层6的具体结构进行进一步描述。
在一种实施方式中,所述极化层6的厚度为10nm~20nm;所述极化层6的示例性厚度为12nm、14nm、16nm、18nm,但不限于此。在一种实施方式中,所述YAlN层62的Y组分为0.1~0.2。优选地,所述YAlN层62的Y组分为0.11~0.19。所述极化层中GaN层61、YAlN层62和AlGaN层63共同构成一个特殊结构的异质结,增加了器件的自发和压电电荷极化,即应变相关的电荷极化,使得其二维电子气(2DEG)薄层电荷的载流子密度提高数倍,与此同时,应变驰豫问题也得到了很好的控制,这一特殊的异质结结构增强了器件射频性能和可靠性。
相应地,本发明提供了一种HEMT外延片的制备方法,如图2所示,包括以下步骤:
S1、准备衬底1;
在一种实施方式中,所述衬底可选用硅衬底。
S2、在所述衬底1上依次沉积电子阻挡层2、高阻层3、沟道层4、势垒层5、极化层6和GaN帽层7。
如图3所示,步骤S2包括以下步骤:
S21、在衬底1上沉积电子阻挡层2。
在一种实施方式中,所述掺Mg的GaN层的生长温度为650℃~800℃;所述BN层的生长温度为950℃~1000℃;所述Si3N4层的生长温度为950℃~1000℃;所述掺Mg的GaN层的生长压力为260torr~500torr;所述BN层的生长压力为100torr~200torr;所述Si3N4层的生长压力为100torr~200torr;所述掺Mg的GaN层的V/III比为200~1000;所述BN层的V/III比为200~1000。
S22、在电子阻挡层2上沉积高阻层3。
在一种实施方式中,控制生长温度在1000℃~1020℃,生长压力在50torr~200torr,通入Ga源和乙烯和NH3,沉积自掺碳高阻GaN外延层,其厚度为2μm~3μm,碳掺杂浓度为5×1018atoms/cm3~1×1019atoms/cm3
优选地,控制生长温度在1010℃,生长压力在150torr,厚度为2.5μm,碳掺杂浓度为5×1018atoms/cm3
S23、在高阻层3上沉积沟道层4。
在一种实施方式中,控制生长温度在1030℃~1080℃,反应腔压力维持100torr~300torr,通入NH3、TMGa,生长厚度为200nm~500nm的GaN沟道层。
优选地,控制生长温度在1050℃,反应腔压力维持200torr,通入NH3、TMGa,生长厚度为350nm的GaN沟道层。
S24、在沟道层4上沉积势垒层5。
在一种实施方式中,控制生长温度在1030℃~1080℃,反应腔压力维持在50torr~200torr,通入NH3、TMGa、TMAl,生长厚度为20nm~30nm的AlyGa1-yN势垒层,y为0.15~0.30。
优选地,控制生长温度在1050℃,反应腔压力维持在150torr,通入NH3、TMGa、TMAl,生长厚度为25nm的AlyGa1-yN势垒层,y为0.25。
S25、在势垒层5上沉积极化层6。
在一种实施方式中,所述极化层的生长温度为1000℃~1050℃,所述极化层的生长压力为50torr~200torr,所述极化层的V/III比为500~1000,通入相应的Ga源、Al源、Y源或N源,完成极化层的沉积。
S26、在极化层6上沉积GaN帽层7。
在一种实施方式中,控制反应腔温度在1030℃~1080℃,反应腔压力维持在50torr~200 torr,通入NH3、TMGa,生长厚度为2nm~5nm的GaN帽层。
优选地,控制反应腔温度在1060℃,反应腔压力维持在150 torr,通入NH3、TMGa,生长厚度为5nm的GaN帽层。
相应地,本发明还提供了一种HEMT,所述HEMT包括上述的HEMT外延片。所述HEMT的光电效率得到有效提升,且其他项电学性能良好。
下面以具体实施例进一步说明本发明:
实施例1
本实施例提供一种HEMT外延片,包括衬底及依次层叠于所述衬底上的电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;
所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;
所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层。
其中,所述掺Mg的GaN层的厚度为400nm,所述BN层的厚度为150nm,所述Si3N4层的厚度为150nm,极化层的厚度为15nm,所述掺Mg的GaN层的Mg掺杂浓度为1×1017atoms/cm3,所述YAlN层的Y组分为0.15。
实施例2
本实施例提供一种HEMT外延片,与实施例1不同之处在于:所述掺Mg的GaN层的厚度为100nm,所述BN层的厚度为100nm,所述Si3N4层的厚度为100nm。其余皆与实施例1相同。
实施例3
本实施例提供一种HEMT外延片,与实施例1不同之处在于:极化层的厚度为20nm。其余皆与实施例1相同。
对比例1
本对比例与实施例1不同之处在于,所述电子阻挡层不包括Mg的GaN层,仅包括BN层和Si3N4层,其余皆与实施例1相同。
对比例2
本对比例与实施例1不同之处在于,所述电子阻挡层不包括BN层,仅包括Mg的GaN层和Si3N4层,其余皆与实施例1相同。
对比例3
本对比例与实施例1不同之处在于,所述电子阻挡层不包括Si3N4层,仅包括BN层和Mg的GaN层,其余皆与实施例1相同。
对比例4
本对比例与实施例1不同之处在于,所述极化层不包括GaN层,仅包括YAlN层和AlGaN层,其余皆与实施例1相同。
对比例5
本对比例与实施例1不同之处在于,所述极化层不包括YAlN层,仅包括GaN层和AlGaN层,其余皆与实施例1相同。
对比例6
本对比例与实施例1不同之处在于,所述极化层不包括AlGaN层,仅包括GaN层和YAlN层,其余皆与实施例1相同。
以实施例1~实施例3和对比例1~对比例6制得HEMT外延片使用相同芯片工艺条件制备成10×24mil的芯片,分别抽取300颗HEMT芯片,测试芯片的光电性能,以对比例1为基础,计算各实施例和对比例的抗静电能力提升率和外观良率提升率,具体测试结果如表1所示。
表1实施例1~实施例3和对比例1~对比例6制得HEMT的性能测试结果
由上述结果可知,本发明提供的HEMT外延片,其设有特定结构的电子阻挡层和极化层,所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层。
所述电子阻挡层中,掺Mg的GaN层可以限制由于衬底所带来的电子,降低静电击穿的风险,同时Mg掺杂可以减少电子的移动速度。BN层能够使掺Mg的GaN层上的三维成核层形成的岛之间加速合并,形成高质量的电子阻挡层,进一步降低与衬底之间的晶格失配和热失配,从而减少位错的产生和裂纹,降低位错的产生。Si3N4层改变位错延伸方向,使之相交发生湮灭,减少漏电通道。
所述极化层中GaN层、YAlN层和AlGaN层共同构成一个特殊结构的异质结,增加了器件的自发和压电电荷极化,即应变相关的电荷极化,使得其二维电子气(2DEG)薄层电荷的载流子密度提高数倍,与此同时,应变驰豫问题也得到了很好的控制,这一特殊的异质结结构增强了器件射频性能和可靠性。
以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (9)

1.一种HEMT外延片,其特征在于,包括衬底及依次层叠于所述衬底上的电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;
所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;
所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层;
所述掺Mg的GaN层的Mg掺杂浓度为1×1016atoms/cm3~2×1017atoms/cm3
2.如权利要求1所述的HEMT外延片,其特征在于,所述掺Mg的GaN层的厚度为100nm~700nm;
所述BN层的厚度为100nm~200nm;
所述Si3N4层的厚度为100nm~200nm。
3.如权利要求1所述的HEMT外延片,其特征在于,所述极化层的厚度为10nm~20nm。
4.如权利要求1所述的HEMT外延片,其特征在于,所述YAlN层的Y组分为0.1~0.2。
5.一种如权利要求1~4任一项所述的HEMT外延片的制备方法,其特征在于,包括以下步骤:
S1、准备衬底;
S2、在所述衬底上依次沉积电子阻挡层、高阻层、沟道层、势垒层、极化层和GaN帽层;
所述电子阻挡层包括依次层叠在所述衬底上的掺Mg的GaN层、BN层和Si3N4层;
所述极化层包括依次层叠在所述势垒层上的GaN层、YAlN层和AlGaN层;
所述掺Mg的GaN层的Mg掺杂浓度为1×1016atoms/cm3~2×1017atoms/cm3
6.如权利要求5所述的HEMT外延片的制备方法,其特征在于,所述掺Mg的GaN层的生长温度为650℃~800℃;
所述BN层的生长温度为950℃~1000℃;
所述Si3N4层的生长温度为950℃~1000℃;
所述极化层的生长温度为1000℃~1050℃。
7.如权利要求5所述的HEMT外延片的制备方法,其特征在于,所述掺Mg的GaN层的生长压力为260torr~500torr;
所述BN层的生长压力为100torr~200torr;
所述Si3N4层的生长压力为100torr~200torr;
所述极化层的生长压力为50torr~200torr。
8.如权利要求5所述的HEMT外延片的制备方法,其特征在于,所述掺Mg的GaN层的V/III比为200~1000;
所述BN层的V/III比为200~1000;
所述极化层的V/III比为500~1000。
9.一种HEMT,其特征在于,所述HEMT包括如权利要求1~4任一项所述的HEMT外延片。
CN202310787003.3A 2023-06-30 2023-06-30 Hemt外延片及其制备方法、hemt Active CN116504827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310787003.3A CN116504827B (zh) 2023-06-30 2023-06-30 Hemt外延片及其制备方法、hemt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310787003.3A CN116504827B (zh) 2023-06-30 2023-06-30 Hemt外延片及其制备方法、hemt

Publications (2)

Publication Number Publication Date
CN116504827A true CN116504827A (zh) 2023-07-28
CN116504827B CN116504827B (zh) 2023-09-08

Family

ID=87321757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310787003.3A Active CN116504827B (zh) 2023-06-30 2023-06-30 Hemt外延片及其制备方法、hemt

Country Status (1)

Country Link
CN (1) CN116504827B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162848A (ja) * 1997-11-26 1999-06-18 Showa Denko Kk エピタキシャルウェハおよびその製造方法
US20150041825A1 (en) * 2013-08-12 2015-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, high electron mobility transistor (hemt) and method of manufacturing
CN112736131A (zh) * 2021-01-05 2021-04-30 西安电子科技大学 YAlN/GaN高电子迁移率晶体管及其制作方法
CN112838148A (zh) * 2019-11-22 2021-05-25 赛奥科思有限公司 Iii族氮化物层叠基板和半导体元件
CN115332057A (zh) * 2022-08-24 2022-11-11 中国电子科技集团公司第五十五研究所 一种提高氮化硼二维材料结晶质量的外延生长方法
CN115360236A (zh) * 2022-07-05 2022-11-18 西安电子科技大学 一种具有高阻缓冲层的GaN HEMT器件及其制备方法
CN115799332A (zh) * 2023-02-13 2023-03-14 江西兆驰半导体有限公司 一种极性硅基高电子迁移率晶体管及其制备方法
CN115863446A (zh) * 2022-12-23 2023-03-28 中国电子科技集团公司第五十五研究所 一种GaN基异质结二极管及其制备方法
CN115896938A (zh) * 2022-12-26 2023-04-04 西电芜湖研究院有限责任公司 一种GaN外延低位错薄膜及其制备方法
CN116259660A (zh) * 2023-02-22 2023-06-13 浙江芯科半导体有限公司 一种e-hemt外延片及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162848A (ja) * 1997-11-26 1999-06-18 Showa Denko Kk エピタキシャルウェハおよびその製造方法
US20150041825A1 (en) * 2013-08-12 2015-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device, high electron mobility transistor (hemt) and method of manufacturing
CN112838148A (zh) * 2019-11-22 2021-05-25 赛奥科思有限公司 Iii族氮化物层叠基板和半导体元件
CN112736131A (zh) * 2021-01-05 2021-04-30 西安电子科技大学 YAlN/GaN高电子迁移率晶体管及其制作方法
CN115360236A (zh) * 2022-07-05 2022-11-18 西安电子科技大学 一种具有高阻缓冲层的GaN HEMT器件及其制备方法
CN115332057A (zh) * 2022-08-24 2022-11-11 中国电子科技集团公司第五十五研究所 一种提高氮化硼二维材料结晶质量的外延生长方法
CN115863446A (zh) * 2022-12-23 2023-03-28 中国电子科技集团公司第五十五研究所 一种GaN基异质结二极管及其制备方法
CN115896938A (zh) * 2022-12-26 2023-04-04 西电芜湖研究院有限责任公司 一种GaN外延低位错薄膜及其制备方法
CN115799332A (zh) * 2023-02-13 2023-03-14 江西兆驰半导体有限公司 一种极性硅基高电子迁移率晶体管及其制备方法
CN116259660A (zh) * 2023-02-22 2023-06-13 浙江芯科半导体有限公司 一种e-hemt外延片及其制备方法

Also Published As

Publication number Publication date
CN116504827B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
EP2108195B1 (en) Electronic field effect devices and methods for their manufacture
Alomari et al. AlGaN/GaN HEMT on (111) single crystalline diamond
US8716753B2 (en) Nitride semiconductor material, semiconductor element, and manufacturing method thereof
JP2009507362A (ja) ネイティブ基板を含む高電子移動度電子デバイス構造およびそれらを製造するための方法
US20050006639A1 (en) Semiconductor electronic devices and methods
US20090001384A1 (en) Group III Nitride semiconductor HFET and method for producing the same
US20210050216A1 (en) Semiconductor material growth of a high resistivity nitride buffer layer using ion implantation
CN108417627A (zh) 一种用于制备GaN基高频微波器件的方法
KR20150085724A (ko) 질화물 반도체 소자 및 그 제조 방법
CN115360236A (zh) 一种具有高阻缓冲层的GaN HEMT器件及其制备方法
CN111063726A (zh) 一种Si基氮化镓器件的外延结构
CN115799332B (zh) 一种极性硅基高电子迁移率晶体管及其制备方法
CN114551563A (zh) 成核层结构、半导体器件及成核层结构的制造方法
CN114914296B (zh) 一种外延片、外延片制备方法及高电子迁移率晶体管
CN116741822A (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
CN110880533B (zh) 基于超晶格结构的异质结、增强型hemt器件及其制作方法
CN116504827B (zh) Hemt外延片及其制备方法、hemt
KR20050086945A (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
CN206834183U (zh) 一种基于Si衬底的GaN基高压HEMT器件外延结构
CN116978944B (zh) 一种高电子迁移率晶体管及制备方法
CN116344516A (zh) Hemt外延片及其制备方法、hemt
CN113539786B (zh) 硅基氮化镓外延结构及其制备方法
CN114759082B (zh) 一种氮化镓基高电子迁移率晶体管及其制备方法
TW522495B (en) Thin-film crystal wafer having pn junction and method for fabricating the wafer
CN117954489A (zh) 氮化镓基高电子迁移率晶体管外延片及其制备方法、hemt

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant