CN116477948A - 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法 - Google Patents

一种基于无氟化学溶液氧压切换法制备超导薄膜的方法 Download PDF

Info

Publication number
CN116477948A
CN116477948A CN202310331855.1A CN202310331855A CN116477948A CN 116477948 A CN116477948 A CN 116477948A CN 202310331855 A CN202310331855 A CN 202310331855A CN 116477948 A CN116477948 A CN 116477948A
Authority
CN
China
Prior art keywords
ybco
film
oxygen
preparing
oxygen pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310331855.1A
Other languages
English (en)
Inventor
李敏娟
蔡传兵
刘志勇
周星航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Creative Superconductor Technologies Co ltd
University of Shanghai for Science and Technology
Original Assignee
Shanghai Creative Superconductor Technologies Co ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Creative Superconductor Technologies Co ltd, University of Shanghai for Science and Technology filed Critical Shanghai Creative Superconductor Technologies Co ltd
Priority to CN202310331855.1A priority Critical patent/CN116477948A/zh
Publication of CN116477948A publication Critical patent/CN116477948A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本发明提供了一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,包括前驱液制备、涂覆、低温热解处理、高温晶化和氧化五个步骤。在高温晶化过程中先利用低氧压去除BaCO3,再切换为高氧压,利用氧压的变化来促使BaCO3与CuO反应,产生瞬态液相,从而辅助YBCO生长,提高生长速率。本发明制备的超导薄膜,利用氧压切换法成功实现了金属基底上YBCO薄膜的快速外延生长,生长速率最高可达1800nm/min,远超常规FF‑MOD方法。采用本发明的制备方法,能得到具有较高临界电流密度的YBCO超导薄膜,用于金属有机物沉积法制备第二代高温超导带材。

Description

一种基于无氟化学溶液氧压切换法制备超导薄膜的方法
技术领域
本发明属于超导材料领域,具体涉及一种基于无氟化学溶液氧压切换法制备超导薄膜的方法。
背景技术
超导薄膜的化学制备方法包括等离子体化学气相沉积(PCVD)、金属有机物化学气相沉积(MOCVD)、金属有机溶液沉积(MOD)、溶胶-凝胶等方法,这些方法成本低廉,沉积速率快。其中,金属有机溶液沉积法(MOD)被各国科学家广泛采用。
传统的无氟化学溶液法(FF-MOD)在制备YBCO薄膜热处理过程中乙酸钡分解生成BaCO3,但BaCO3不能通过简单的氧化或水解去除,且在1000℃以上才能分解成BaO,进而转化为YBCO相,所以,BaCO3的残留常导致制备的超导薄膜临界电流密度较低,超导性能偏低。通过BaCO3与反应过程中生成的CuO反应可以消除BaCO3,利用固相反应生长YBCO超导层,但生长速率较为缓慢。因此,制备YBCO薄膜过程中如何有效消除BaCO3,提高材料生长速率是十分重要的。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,该方法成功实现了金属基底上YBCO薄膜的快速外延生长,生长速率得到提高,制备的YBCO超导薄膜具有较高的临界电流密度,主要用于金属有机物沉积法(MOD法)制备第二代高温超导带材。
为解决上述技术问题,本发明采用的技术方案是:一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,其特征在于,该方法包括以下步骤:
S1、YBCO前驱液制备:将Y(CH3COO)3·4H2O、Ba(CH3COO)2、Cu(CH3COO)2·H2O在60℃的温度下去除水分,降至室温;然后在干燥的环境下,混合后溶解于丙酸中,升温至50℃~70℃,恒温搅拌至完全溶解;冷却至室温后,依次添加无水甲醇和体积分数为78%的三乙醇胺溶液,搅拌6h,完全溶解后得到YBCO前驱液;
其中,三乙醇胺作为添加剂,目的是增加溶液粘稠度及均匀性,控制薄膜开裂。
S2、YBCO胶体膜制备:将S1制备的YBCO前驱液涂覆在柔性金属基底上,得到YBCO胶体膜;
此步骤中柔性金属基底是具有双轴织构的金属层,能够诱导薄膜定向结晶。
S3、YBCO前驱膜制备:将S2得到的YBCO胶体膜进行热解处理,促使溶剂挥发,金属有机物分解,得到YBCO前驱膜;所述热解处理的方法为:在湿氧的气氛下,从室温以25℃/min的速率升温至400℃~500℃,然后恒温处理2h;所述湿氧是氧气以0.6L/min的气流量通过35℃去离子水获得的;
S4、YBCO薄膜制备:将S3得到的YBCO前驱膜在氮氧混合气中采用氧压切换的方法进行晶化,以20℃/min的速率升温至780℃~850℃,晶化后得到YBCO薄膜;
所述氧压切换的方法为:以2L/min的流量通入氮氧混合气,其中N2为填充气,开始时氧分压为10ppm,然后在温度上升到780℃~850℃时切换氧分压为500ppm~5000ppm,保温10min;
此步骤基于无氟化学溶液氧压切换法制备超导薄膜,先利用低氧压去除BaCO3,再切换为高氧压,利用氧压的变化来促使BaCO3与CuO反应,产生瞬态液相,从而辅助YBCO生长,提高生长速率。反应过程如下:
在低氧分压时:
氧压切换后:
2BaCuO2+2CuO+1/2Y2O3→2[BaCuO2+CuO](l)+1/2Y2O3(s)→YBa2Cu3O7-δ+CuO。
通过氧压切换使得上述反应进行,从而消除BaCO3
S5、YBCO超导薄膜制备:将S4得到的YBCO薄膜,在400℃~500℃的温度下,通入干燥的纯氧,保温2h,最后自然冷却至室温,得到基于无氟化学溶液氧压切换法制备的超导薄膜。
此步骤中氧化处理可以将YBCO超导薄膜从四方相转化为正交相。
优选地,S1中所述的Y(CH3COO)3·4H2O、Ba(CH3COO)2、Cu(CH3COO)2·H2O的摩尔比为1:2:4.66。
优选地,S1所述丙酸、无水甲醇和体积分数为78%的三乙醇胺溶液的体积比为9:9:1。
优选地,S1所述YBCO前驱液的总阳离子浓度为1.5mol/L。
优选地,S2中所述的柔性金属基底,是LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属衬底,由上海上创超导科技有限公司提供。
优选地,S3中所述的涂覆手段包括旋涂或提拉。
优选地,S5中所述的超导薄膜厚度为0.3μm~0.5μm。
本发明与现有技术相比具有以下优点:
1、本发明制备的超导薄膜,利用氧压切换法成功实现了金属基底上YBCO薄膜的快速外延生长,生长速率最高可达1800nm/min,远超常规FF-MOD方法(~10nm/min)。
2、采用本发明的方法,制备得到的YBCO超导薄膜表面平整致密无空洞,且薄膜织构良好,具有良好的超导特性。
下面结合附图和实施例对本发明作进一步详细说明。
附图说明
图1是本发明实施例1制备的YBCO薄膜的XRD图。
图2是本发明实施例1制备的YBCO薄膜的表面形貌图(SEM)。
具体实施方式
本发明所用乙酸钇化学式为Y(CH3COO)3·4H2O,纯度为99.9%,购自Alfa-Aesar试剂公司;乙酸钡化学式为Ba(CH3COO)2,纯度为99%,购自SCRC国药试剂公司;乙酸铜化学式为Cu(CH3COO)2·H2O,纯度为98.0-102.0%,购自Alfa-Aesar试剂公司。
实施例1
本实施例为一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,包括以下步骤:
S1、YBCO前驱液制备:将Y(CH3COO)3·4H2O(0.6673g)、Ba(CH3COO)2(1.0082g)、Cu(CH3COO)2·H2O(1.83625g)放入恒温干燥箱中,60℃下去除水分,降至室温后;在干燥的环境下,混合后溶解于4.5mL丙酸中,升温至50℃,恒温搅拌6h,完全溶解后冷却至室温,依次添加4.5mL无水甲醇和0.5mL体积分数为78%的三乙醇胺溶液,搅拌6h,完全溶解后得到总阳离子浓度为1.5mol/L的YBCO前驱液;
S2、YBCO胶体膜制备:将S1制备的YBCO前驱液通过旋涂的方法涂覆到LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底上,得到YBCO胶体膜;涂膜转数为3000r/min,涂膜时间为2min;
所述LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底购自上海上创超导科技有限公司;
S3、YBCO前驱膜制备:将S2得到的YBCO胶体膜放入管式炉中,通入以0.6L/min的气流量通过35℃去离子水的湿氧气,以25℃/min的速率升温至400℃,进行低温热解处理,恒温2h,使溶剂挥发,金属有机物分解,得到YBCO前驱膜;
S4、YBCO薄膜制备:将S3得到的YBCO前驱膜放在管式炉中采用氧压切换的方法进行高温晶化,升温速率为从室温以20℃/min的速率升温至830℃;开始时以2L/min的流量通入氮氧混合气,其中N2为填充气,在氧分压为10ppm时去除BaCO3,然后在温度上升到830℃时快速切换氧分压为500ppm,保温10min后,得到YBCO薄膜;
S5、YBCO超导薄膜制备:将S4得到的YBCO薄膜,在450℃的温度下,通入干燥的纯氧,保温2h,最后自然冷却至室温,得到基于无氟化学溶液氧压切换法制备的YBCO超导薄膜。
图1是本实施例制备的YBCO超导薄膜的XRD图。由图可知,(00l)峰强高,无(100)峰存在,说明薄膜织构良好,无杂相产生。
图2是本实施例制备的YBCO薄膜的表面形貌图(SEM)。由图可知,薄膜表面平整致密无孔洞,说明样品形貌良好。
本实施例中制备的YBCO超导薄膜的厚度为0.3μm,在77K、自场下的临界电流密度Jc为0.52MA/cm2
实施例2
本实施例为一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,包括以下步骤:
S1、YBCO前驱液制备:将Y(CH3COO)3·4H2O(2.6692g)、Ba(CH3COO)2(4.0328g)、Cu(CH3COO)2·H2O(7.345g)放入恒温干燥箱中,60℃下去除水分,降至室温后;在干燥的环境下,混合后溶解于18mL丙酸中,升温至50℃,恒温搅拌6h,完全溶解后冷却至室温,依次添加18mL无水甲醇和2mL体积分数为78%的三乙醇胺溶液,搅拌6h,完全溶解后得到总阳离子浓度为1.5mol/L的YBCO前驱液;
S2、YBCO胶体膜制备:将S1制备的YBCO前驱液通过提拉的方法涂覆到LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底上,得到YBCO胶体膜;提拉速度为100μm/s;
所述LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底由上海上创超导科技有限公司提供;
S3、YBCO前驱膜制备:将S2得到的YBCO胶体膜放入管式炉中,通入以0.6L/min的气流量通过35℃去离子水的湿氧气,以25℃/min的速率升温至500℃,进行低温热解处理,恒温2h,使溶剂挥发,金属有机物分解,得到YBCO前驱膜;
S4、YBCO薄膜制备:将S3得到的YBCO前驱膜放在管式炉中采用氧压切换的方法进行高温晶化,升温速率为从室温以20℃/min的速率升温至780℃;开始时以2L/min的流量通入氮氧混合气,其中N2为填充气,在氧分压为10ppm时去除BaCO3,然后在温度上升到780℃时快速切换氧分压为5000ppm,保温10min后,得到YBCO薄膜;
S5、YBCO超导薄膜制备:将S4得到的YBCO薄膜,在400℃的温度下,通入干燥的纯氧,保温2h,最后自然冷却至室温,得到基于无氟化学溶液氧压切换法制备的YBCO超导薄膜。
本实施例中制备的YBCO超导薄膜的厚度为0.5μm,在77K、自场下临界电流密度Jc为0.50MA/cm2
实施例3
本实施例为一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,包括以下步骤:
S1、YBCO前驱液制备:将Y(CH3COO)3·4H2O(1.3346g)、Ba(CH3COO)2(2.0164g)、Cu(CH3COO)2·H2O(3.6725g)放入恒温干燥箱中,60℃下去除水分,降至室温后;在干燥的环境下,混合后溶解于9mL丙酸中,升温至50℃,恒温搅拌6h,完全溶解后冷却至室温,依次添加9mL无水甲醇和1mL体积分数为78%的三乙醇胺溶液,搅拌6h,完全溶解后得到总阳离子浓度为1.5mol/L的YBCO前驱液;
S2、YBCO胶体膜制备:将S1制备的YBCO前驱液通过旋涂的方法涂覆到LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底上,得到YBCO胶体膜;涂膜转数为3000r/min,涂膜时间为2min;
所述LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属基底购自上海上创超导科技有限公司;
S3、YBCO前驱膜制备:将S2得到的YBCO胶体膜放入管式炉中,通入以0.6L/min的气流量通过35℃去离子水的湿氧气,以25℃/min的速率升温至450℃,进行低温热解处理,恒温2h,使溶剂挥发,金属有机物分解,得到YBCO前驱膜;
S4、YBCO薄膜制备:将S3得到的YBCO前驱膜放在管式炉中采用氧压切换的方法进行高温晶化,升温速率为从室温以20℃/min的速率升温至850℃;开始时以2L/min的流量通入氮氧混合气,其中N2为填充气,在氧分压为10ppm时去除BaCO3,然后在温度上升到850℃时快速切换氧分压为1000ppm,保温10min后,得到YBCO薄膜;
S5、YBCO超导薄膜制备:将S4得到的YBCO薄膜,在500℃的温度下,通入干燥的纯氧,保温2h,最后自然冷却至室温,得到基于无氟化学溶液氧压切换法制备的YBCO超导薄膜。
本实施例中制备的YBCO超导薄膜的厚度为0.4μm,在77K、自场下临界电流密度Jc为0.53MA/cm2
本发明制备的YBCO超导薄膜在电力传输过程中有高的不可逆场、高的载流能力和低的交流损耗,具有不可替代的优势。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (7)

1.一种基于无氟化学溶液氧压切换法制备超导薄膜的方法,其特征在于,该方法为:
S1、YBCO前驱液制备:将Y(CH3COO)3∙4H2O、Ba(CH3COO)2、Cu(CH3COO)2∙H2O在60℃的温度下去除水分,降至室温;然后在干燥的环境下混合后溶解于丙酸中,升温至50℃~70℃,恒温搅拌至完全溶解;冷却至室温后,依次添加无水甲醇和体积分数为78%的三乙醇胺溶液,搅拌6h,完全溶解后得到YBCO前驱液;
S2、YBCO胶体膜制备:将S1得到的YBCO前驱液涂覆在柔性金属基底上,得到YBCO胶体膜;
S3、YBCO前驱膜制备:将S2得到的YBCO胶体膜进行热解处理,得到YBCO前驱膜;所述热解处理的方法为:在湿氧的气氛下,从室温以25℃/min的速率升温至400℃~500℃,然后恒温处理2h;所述湿氧是氧气以0.6L/min的气流量通过35℃去离子水获得的;
S4、YBCO薄膜制备:将S3得到的YBCO前驱膜在氮氧混合气中采用氧压切换的方法进行晶化,从室温以20℃/min的速率升温至780℃~850℃,晶化后得到YBCO薄膜;
所述氧压切换的方法为:以2L/min的流量通入氮氧混合气,其中N2为填充气,开始时氧分压为10ppm,然后在温度上升到780℃~850℃时切换氧分压为500ppm~5000ppm,保温10min;
S5、YBCO超导薄膜制备:将S4得到的YBCO薄膜,在400℃~500℃的温度下,通入氧气,保温2h,最后自然冷却至室温,得到基于无氟化学溶液氧压切换法制备的超导薄膜。
2.根据权利要求1所述的方法,其特征在于,S1所述Y(CH3COO)3∙4H2O、Ba(CH3COO)2、Cu(CH3COO)2∙H2O的摩尔比为1:2:4.66。
3.根据权利要求1所述的方法,其特征在于,S1所述丙酸、无水甲醇和体积分数为78%的三乙醇胺溶液的体积比为9:9:1。
4.根据权利要求1所述的方法,其特征在于,S1所述YBCO前驱液的总阳离子浓度为1.5mol/L。
5.根据权利要求1所述的方法,其特征在于,S2所述的柔性金属基底,是LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy结构的柔性金属衬底。
6.根据权利要求1所述的方法,其特征在于,S3所述的涂覆手段包括旋涂或提拉。
7.根据权利要求1所述的方法,其特征在于,S5所述的超导薄膜厚度为0.3μm~0.5μm。
CN202310331855.1A 2023-03-31 2023-03-31 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法 Pending CN116477948A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310331855.1A CN116477948A (zh) 2023-03-31 2023-03-31 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310331855.1A CN116477948A (zh) 2023-03-31 2023-03-31 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法

Publications (1)

Publication Number Publication Date
CN116477948A true CN116477948A (zh) 2023-07-25

Family

ID=87226035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310331855.1A Pending CN116477948A (zh) 2023-03-31 2023-03-31 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法

Country Status (1)

Country Link
CN (1) CN116477948A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301778A (ja) * 1992-02-24 1993-11-16 Kobe Steel Ltd 酸化物超電導体の製造方法
KR20080043436A (ko) * 2006-11-14 2008-05-19 학교법인 한국산업기술대학 유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
CN102443792A (zh) * 2011-12-02 2012-05-09 西安理工大学 Ybco超导薄膜的低氟溶液沉积及其热处理工艺
CN106242553A (zh) * 2016-08-02 2016-12-21 西北有色金属研究院 一种高温超导rebco薄膜的制备方法
CN108677145A (zh) * 2018-04-17 2018-10-19 上海大学 异位多元金属氧化物薄膜外延生长及其连续化制备的方法
CN114164490A (zh) * 2021-11-05 2022-03-11 上海大学 一种感应法加热制备高温超导氧化物陶瓷外延膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301778A (ja) * 1992-02-24 1993-11-16 Kobe Steel Ltd 酸化物超電導体の製造方法
KR20080043436A (ko) * 2006-11-14 2008-05-19 학교법인 한국산업기술대학 유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
CN102443792A (zh) * 2011-12-02 2012-05-09 西安理工大学 Ybco超导薄膜的低氟溶液沉积及其热处理工艺
CN106242553A (zh) * 2016-08-02 2016-12-21 西北有色金属研究院 一种高温超导rebco薄膜的制备方法
CN108677145A (zh) * 2018-04-17 2018-10-19 上海大学 异位多元金属氧化物薄膜外延生长及其连续化制备的方法
CN114164490A (zh) * 2021-11-05 2022-03-11 上海大学 一种感应法加热制备高温超导氧化物陶瓷外延膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
褚宁东等: "瞬态液相辅助的YBa2Cu3O7-δ超导薄膜快速成相及界面反应", 《低温物理学报》, vol. 44, no. 3, 30 June 2022 (2022-06-30), pages 190 - 196 *

Similar Documents

Publication Publication Date Title
CN1328168C (zh) 钇钡铜氧超导薄膜的溶胶及其制备高温超导薄膜的方法
CN100360470C (zh) 钇钡铜氧超导膜的溶胶-凝胶制备方法
CN102531567A (zh) 一种改性的低氟溶液法制备高温超导薄膜的方法
CN101475370B (zh) 钇钡铜氧无氟溶胶及高温超导薄膜的制备方法
CN102731083B (zh) 一种制备钇钡铜氧高温超导膜的方法
CN104446434A (zh) 一种制备钇钡铜氧高温超导膜的方法
CN101752035B (zh) 一种化学溶液法制备高温超导薄膜的方法
CN101747031B (zh) 一种高温超导纳米复合薄膜及其制备方法
JP3851948B2 (ja) 超電導体の製造方法
CN113130134B (zh) 一种动态沉积第二代高温超导带材的装置和方法
CN107619274B (zh) 一种利用快速热处理制备钇钡铜氧高温超导薄膜的方法
CN101471161B (zh) 一种三氟酸盐-金属有机沉积制备高温超导薄膜的方法
CN105803434A (zh) 一种在氧化铝晶体基底上制备高温超导薄膜的方法
JP4203606B2 (ja) 酸化物超電導厚膜用組成物及び厚膜テープ状酸化物超電導体
CN116477948A (zh) 一种基于无氟化学溶液氧压切换法制备超导薄膜的方法
CN1905081A (zh) 一种具有导电缓冲层的钇钡铜氧涂层导体及制备方法
JP2013235766A (ja) 酸化物超電導薄膜とその形成方法
CN101746807A (zh) 提高三氟乙酸盐-金属有机沉积制备ybco薄膜厚度的方法
CN102569636B (zh) 一种化学溶液法制备钆钡铜氧高温超导薄膜的方法
CN114164490A (zh) 一种感应法加热制备高温超导氧化物陶瓷外延膜的方法
CN118398299A (zh) 一种预制纳米晶添加改善金属基带上超导薄膜性能的方法
CN103436865B (zh) 高分子辅助含氟溶液制备高温超导薄膜的方法
EP2509124A1 (en) Method for obtaining superconducting tapes from metal-organic solutions having low fluorine content
CN103497000B (zh) La2Zr2O7缓冲层薄膜的制备方法
CN107893219A (zh) 一种钆钐掺杂的钇钡铜氧超导层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination