CN116410012A - 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用 - Google Patents

一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用 Download PDF

Info

Publication number
CN116410012A
CN116410012A CN202310388215.4A CN202310388215A CN116410012A CN 116410012 A CN116410012 A CN 116410012A CN 202310388215 A CN202310388215 A CN 202310388215A CN 116410012 A CN116410012 A CN 116410012A
Authority
CN
China
Prior art keywords
silicon
composite material
carbide
layer ceramic
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310388215.4A
Other languages
English (en)
Other versions
CN116410012B (zh
Inventor
史忠旗
张彪
林怀志
魏智磊
谢文琦
夏鸿雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310388215.4A priority Critical patent/CN116410012B/zh
Publication of CN116410012A publication Critical patent/CN116410012A/zh
Application granted granted Critical
Publication of CN116410012B publication Critical patent/CN116410012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种碳化硅/硅碳化钼双层陶瓷骨架增强的碳基复合材料及其制备方法和应用,以中间相炭微球(MCMB)为基体,以反应烧结生成的内层碳化硅(SiC)/外层硅碳化钼(Mo5Si3C)双层陶瓷为增强相,均匀分布在中间相炭微球之间,形成各向同性的三维网状碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料。本发明制备碳化硅/硅碳化钼双层陶瓷骨架增强的碳基复合材料的工艺简单、成本低,制备得到具有优异的烧结性能、力学性能、抗氧化和抗辐照性能的各向同性碳基复合材料,可满足核能、航空航天、化工等领域的应用需求,具有广阔的应用前景。

Description

一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制 备方法和应用
技术领域
本发明属于无机非金属材料制备的技术领域,具体涉及一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用。
背景技术
核电技术的飞速发展对反应堆在稳态和瞬态工况下运行的可靠性、经济性和安全性提出了更高的要求。高温气冷堆(HTGR)因其发电效率高、安全性好等优点被誉为最具潜力的第四代先进核能系统的候选堆型之一。受工业氦气供应的牵制,以空气为冷却介质的气冷微堆是该领域的重要发展方向,可极大扩展应用场景。核石墨因其优异的中子慢化性能、抗辐射性和高温下稳定的机械性能而被用作高温气冷堆的结构材料和慢化剂。然而,在堆内高温(873~1373K)、高辐照条件下,结构石墨承受着高温高压、中子辐照、氧化性杂质气体以及摩擦损耗等严峻的考验。氧化性杂质气体在堆内高温条件下(>773K)会与堆芯的石墨材料发生一系列化学反应,引起石墨材料的氧化腐蚀,增加石墨的孔隙率,从而降低其强度,严重破坏堆内结构石墨的完整性,影响反应堆的安全性。因此,如何有效提升结构石墨的力学性能和抗氧化性能,对于其在以空气为冷却介质的新型气冷微堆等极端场景中的应用至关重要。
目前,表面涂层是保护石墨材料免受氧化腐蚀的主要方法。表面涂层技术是利用涂层作为环境屏障,阻止氧气与基材接触,达到抗高温氧化的目的。由于涂层材料不进入基材内部,可以最大限度地保留基材的性能。然而,一方面,包渗法、反应渗透、浆料烧结等表面涂层的制备方法需要较高的反应温度,这会在石墨衬底上产生许多缺陷;另一方面,等离子喷涂、化学气相沉积等方法可使制备温度降低,获得的涂层均匀致密,几乎没有缺陷,但涂层与基材之间没有发生化学反应,两者之间的界面结合力很弱,导致较差的力学和抗热震性能。有研究【无机材料学报,2007,22(4):737–741.】采用包埋浸渗/气相沉积二步法在C/C复合材料表面制备碳化硅涂层以提高该材料的高温抗氧化性能,但由于基体和涂层材料之间的热膨胀系数差异、且在预氧化处理过程中涂层结构容易变得疏松,导致复合材料整体的力学性能较差,同时涂层中产生的大量微裂纹导致抗氧化性能迅速衰减。
为了克服上述问题,研究人员尝试开发新型石墨基结构复合材料。石墨基结构复合材料由陶瓷增强相和石墨基体组成,通过调节增强相的分布和组织,能够有效地改善石墨基体的力学性能和高温抗氧化性能。陶瓷增强相的选择对石墨基复合材料的性能提升具有决定性作用。有报道表明,通过熔盐法在中间相炭微球表面包覆碳化硅层,然后通过热压烧结成功制备出碳化硅增强碳基复合材料,能够一定程度提升复合材料的力学和抗氧化性能【一种碳化硅增强碳基复合材料及制备方法,中国发明专利,ZL201910198813.9】。然而,一方面,碳化硅的在1200℃以上才能形成抗氧化的二氧化硅涂层,这限制了碳化硅陶瓷增强石墨基复合材料在高温气冷堆的中低运行温度下的应用;另一方面,该工艺制备的复合材料的增强相含量难以调控、且工艺复杂、烧结温度高,这限制了其在工业生产中的大规模应用。研究表明,二硅化钼能够在温度高于800℃的时发生氧化反应,表面生成一层致密、连续且具有自愈合能力的含硅氧化层,可有效阻断氧气与二硅化钼的进一步接触,还能够修复因热应力产生的裂纹和孔洞,所以二硅化钼具有优异的高温抗氧化能力。此外,碳/石墨与硅化钼反应生成的硅碳化钼是钼-硅-碳体系中唯一的稳定相,具有高熔点、优异的力学和抗辐照性能,因此二硅化钼是石墨基复合材料增强相的理想选择。在各种增强相的空间分布构型中,三维网状陶瓷增强相结合石墨基体相的结构在提升石墨基复合材料力学性能的同时,可以保护石墨基体免受氧化等腐蚀。有研究通过直接混合后烧结制备陶瓷增强石墨基复合材料,但是无法避免石墨颗粒的团聚,且陶瓷与石墨之间不存在化学结合,结合性能较差【精密成型工程,2022,14(1):101–107.】;而反应熔渗制备的碳化硅增强石墨复合材料,由于原位反应能够保证增强相与基体的结合强度,但是难以将增强相与基体完全分隔开【机械工程材料,2022,46(10):21–26.】。因此,如何确保陶瓷增强相在石墨基体中的三维连续分布以及陶瓷/石墨的良好界面结合一直是巨大的挑战和难题。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用,以解决陶瓷增强相在石墨基体中存在的三维连续分布问题以及陶瓷/石墨界面结合问题。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料,该复合材料以体积百分比计,由10%~30%的内层碳化硅陶瓷骨架,40%~80%的中间相炭微球和10%~30%的外层硅碳化钼陶瓷骨架组成;
该复合材料具有致密的各向同性的三维网状碳化硅/硅碳化钼双层陶瓷骨架结构,碳化硅/硅碳化钼双层陶瓷骨架分隔保护中间相炭微球基体。
优选地,该复合材料的相对密度为89.21~99.57%,显气孔率为0.17%~9.28%,弯曲强度为148.3~405.6MPa,在900℃空气中氧化1h的质量损失为1.8%~5.2%。
本发明还公开了上述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,包括以下步骤:
1)以中间相炭微球和二硅化钼作为原料,以氧化铝和氧化钇作为复合烧结助剂,将原料与复合烧结助剂充分混合均匀,获得反应原料粉体;
2)将反应原料粉体预压成型,获得预压成型试样,然后于1400~1700℃下进行放电等离子烧结,保温后冷却处理,制得碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料。
优选地,步骤1)中,中间相炭微球和二硅化钼的质量比为1:(1~5);氧化铝和氧化钇的摩尔比为5:3;原料与复合烧结助剂的质量比为95:5。
优选地,步骤1)中,充分混合均匀采用球磨处理,将原料与复合烧结助剂的混合粉末放入放入行星球磨罐中,玛瑙磨球与混合粉末的质量比为5:1,加入的液体球磨介质为无水乙醇,无水乙醇与混合粉末的质量比为1:2;密封后,以200转/分钟的转速球磨处理2h,获得均匀的反应原料浆料,烘干、过筛后得到反应原料粉体。
优选地,步骤1)中,所用二硅化钼粉的粒径范围为1~3μm,纯度大于99.0%;所用中间相炭微球的粒径为8~12μm;所用氧化铝的粒径范围为0.5~3μm,纯度大于99.9%;所用氧化钇的粒径范围为0.5~3μm,纯度大于99.99%。
优选地,步骤2)中,预压成型的压力为50MPa,保压5min。
优选地,步骤2)中,放电等离子烧结是在真空或通有保护气氛条件下,对预压成型试样施加30~70MPa的轴向压力,并利用脉冲电流对试样进行60s的活化。
优选地,步骤2)中,保温处理的温度制度分三个阶段,第一阶段由室温起以200~300℃/min的升温速率升温至800℃,第二阶段从800℃以150~200℃/min的升温速率升温至1200℃,第三阶段从1200℃以100~150℃/min的升温速率升温至最终烧结温度;所述的保温时间为5min。
本发明还公开了上述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料在制备核能材料、航空航天材料或高温气冷微堆结构材料中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明公开的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料,以中间相炭微球(MCMB)为基体,以反应烧结生成的内层碳化硅(SiC)/外层硅碳化钼(Mo5Si3C)双层陶瓷为增强相,均匀分布在中间相炭微球之间,形成各向同性的三维网状碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料。一方面,在组分设计方面,基本由硅、钼、碳三种元素组成,均具有小的中子吸收截面,能够保证其优异的抗辐照性能;另一方面,由中间相炭微球作为基体,在其表面形成均匀且厚度可控的碳化硅/硅碳化钼双层陶瓷增强相(即内层碳化硅陶瓷骨架和外层硅碳化钼陶瓷骨架),内层碳化硅陶瓷骨架与中间相炭微球紧密结合,为复合材料提供高强度的特性,且由于碳化硅与石墨良好的化学相容性和匹配的热膨胀系数,碳化硅内层也充当中间相炭微球与硅碳化钼层的过渡层作用,保证复合材料在高温服役条件下的结构稳定性。同时,碳化硅/硅碳化钼双层陶瓷骨架分隔保护中间相炭微球基体,使复合材料具有良好的抗氧化和抗辐照能力。因此,本发明的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料具有轻质、高强、抗氧化、耐辐照等优异性能,可作为新型高温气冷微堆的结构材料使用,也可应用于其他极端服役环境。
本发明公开的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,优势如下:
第一,以二硅化钼为原料均匀的分散在中间相炭微球之间,通过反应烧结在中间相炭微球表面原位生成碳化硅内层,利用碳原子在碳化硅中的扩散,形成连续的硅碳化钼三元稳定相外层,即通过一步反应烧结工艺即可实现双层骨架结构,将每个中间相炭微球独立分隔结合,起到阻断氧扩散路径的作用。
第二,中间相炭微球表面原位生成的碳化硅内层增强相,既增强了陶瓷骨架与中间相炭微球的结合强度又降低了硅碳化钼与中间相炭微球之间的界面热应力。同时,通过调节二硅化钼粉与中间相炭微球的比例,可以调控双层陶瓷骨架增强相的含量;通过调节烧结温度和保温时间,可以调控双层陶瓷骨架增强相的相对厚度,进而实现不同应用场景的性能需求。
第三,通过反应烧结形成碳化硅/硅碳化钼双层陶瓷增强相能够有效地降低中间相炭微球的烧结致密化温度,同时规避传统结构石墨高孔隙率的缺点,极大地增强了结构件的机械强度,具有工艺稳定,低成本的优点。
附图说明
图1是本发明制备的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料(实施例1)的XRD图谱。
图2是本发明制备的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料(实施例1)的显微形貌照片。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法是通过放电等离子烧结装置完成的。预先在两端压头和模具内壁垫制一层厚度为0.2mm的石墨纸,将混合好的原料粉4装入石墨模具中,以50MPa的压力预压成型,保压5min;将装有预压成型试样的石墨模具放在放电等离子装置中上下石墨垫块的中心位置,启动压力加载系统给两端石墨垫块施加30~70MPa的轴向压力。关闭炉腔,通过真空系统对整个炉腔抽真空,形成气压小于5Pa的真空室。烧结在该真空或惰性气体保护条件下进行,烧结过程中的温度通过红外测温装置测得。烧结时,电源系统通过电极产生脉冲电流对试样进行60s的激发活化,电流激发结束后通过增加直流电流来实现温度的升高,进行烧结。因活化阶段产生锯齿状脉冲电流于粉体微粒上形成微区放电等离子体,使得颗粒间产生瞬间高温促使原子扩散产生颈缩,并消除三角晶界处的微气孔,实现快速致密化,随后通电加热于粉体,利用热扩散以及轴向机械压力的作用完成烧结过程。保温过程结束后,冷却系统可以让烧结炉和试样的温度快速降至室温。利用这一过程可实现材料的快速烧结。
实施例1
称取质量比为1:3的中间相炭微球和二硅化钼粉作为原料粉,摩尔比为5:3的氧化铝和氧化钇为烧结助剂,且烧结助剂和原料粉的质量比为5:95。将称取的原料粉和烧结助剂组成的混合粉放入玛瑙混料罐,按玛瑙磨球:混合粉末=5:1的质量比,取磨球置于玛瑙混料罐中;按无水乙醇:混合粉末=1:2的质量比,取无水乙醇加入玛瑙混料罐中;将玛瑙混料罐固定在行星混料机上,以200转/分钟的转速混合2小时,烘干过筛后得到混合均匀的原料粉体。模具的上下压头和内壁均预先垫一层石墨纸,将混合后的原料粉体装入石墨模具中,以50MPa的压力预压成型,保压5min;随后将碳模具放入图1所示的放电等离子烧结装置中,炉腔内抽真空,形成腔内气压小于5Pa的真空室。通过加载系统给石墨模具施加50MPa的轴向压力。烧结过程初始时,利用脉冲电流对试样进行60s的活化处理;烧结升温过程中,第一阶段由室温起以200~300℃/min的升温速率升温至800℃,第二阶段从800℃以150~200℃/min的升温速率升温至1200℃,第三阶段从1200℃以100~150℃/min的升温速率升温至1600℃,保温5min。随后随炉冷却至室温,得到碳化硅/硅碳化钼双层陶瓷骨架增强的各向同性碳基复合材料。
利用X射线衍射仪(XRD)对该实施例制备的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料进行物相分析,XRD图谱如图1所示,从图中可以看出,所得复合材料主要由碳化硅、硅碳化钼和石墨相组成,没有二硅化钼相和其他杂质相,说明反应烧结可以使二硅化钼与中间相炭微球充分反应,生成碳化硅/硅碳化钼双层陶瓷增强相。利用场发射扫描电子显微镜(FESEM)对该实施例制备的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料进行表征,其显微结构可参考图2,从图中可以明显观察到复合材料中出现双层陶瓷骨架结构,内层碳化硅增强相包裹在中间相炭微球周围,外层硅碳化钼增强相均匀分布在碳化硅陶瓷骨架周围,形成三维网络状结构的双层陶瓷骨架。采用阿基米德排水法测得试样的密度为4.26g/cm3,相对密度为99.21%,显气孔率为0.58%;三点弯曲强度测试结果表明,该试样的弯曲强度为308.3MPa;中高温空气环境中的抗氧化性能测试结果显示,该试样在900℃空气中氧化1h的质量损失仅为2.3%。
实施例2
本实施例工艺同实施例1,不同的只是一些工艺参数有改变:最终的烧结温度为1700℃。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为4.18g/cm3,相对密度为98.23%,显气孔率为1.28%,弯曲强度为287.3MPa,在900℃空气中氧化1h的质量损失为2.8%。
实施例3
本实施例工艺同实施例1,不同的只是一些工艺参数有改变:最终的烧结温度为1400℃。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为4.04g/cm3,相对密度为94.81%,显气孔率为3.24%,弯曲强度为236.2MPa,在900℃空气中氧化1h的质量损失为4.2%。
实施例4
本实施例工艺同实施例1,不同的只是一些工艺参数有改变:放电等离子装置对试样施加的轴向压力为30MPa。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为4.21g/cm3,相对密度为98.34%,显气孔率为1.28%,弯曲强度为267.5MPa,在900℃空气中氧化1h的质量损失为2.9%。
实施例5
本实施例工艺同实施例1,不同的只是一些工艺参数有改变:放电等离子装置对试样施加的轴向压力为70MPa。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为4.24g/cm3,相对密度为99.47%,显气孔率为0.38%,弯曲强度为327.5MPa,在900℃空气中氧化1h的质量损失为3.3%。
实施例6
本实施例工艺同实施例1,不同的只是一些工艺参数有改变:中间相炭微球和二硅化钼粉的质量比为1:5。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为4.66g/cm3,相对密度为99.57%,显气孔率为0.17%,弯曲强度为405.6MPa,在900℃空气中氧化1h的质量损失为1.8%。
实施例7
本实施例工艺同实施例3,不同的只是一些工艺参数有改变:中间相炭微球和二硅化钼粉的质量比为1:1。
对得到的产物进行X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征,结果与实施例1相似。该试样的密度为3.04g/cm3,相对密度为89.21%,显气孔率为9.28%,弯曲强度为148.3MPa,在900℃空气中氧化1h的质量损失为5.2%。
综上所述,本发明公开的碳化硅/硅碳化钼双层陶瓷骨架增强的碳基复合材料的制备方法,以中间相炭微球(MCMB)为基体,以反应烧结生成的内层碳化硅(SiC)/外层硅碳化钼(Mo5Si3C)双层陶瓷为增强相,均匀分布在中间相炭微球之间,形成各向同性的三维网状碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料。本发明的制备方法以微米级二硅化钼(MoSi2)粉体和中间相炭微球为原料,首先通过行星球磨机将原料充分混合,然后预压成型后在放电等离子烧结炉中于1400~1700℃进行反应烧结。烧结后形成的均匀三维网状碳化硅/硅碳化钼双层陶瓷骨架增强相,可显著提高碳基体的力学和抗氧化性能,从而形成工艺简单、成本低、且具有优异的烧结性能、力学性能、抗氧化和抗辐照性能的各向同性碳基复合材料,可满足核能、航空航天、化工等领域的应用需求,具有广阔的应用前景。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料,其特征在于,该复合材料以体积百分比计,由10%~30%的内层碳化硅陶瓷骨架,40%~80%的中间相炭微球和10%~30%的外层硅碳化钼陶瓷骨架组成;
该复合材料具有致密的各向同性的三维网状碳化硅/硅碳化钼双层陶瓷骨架结构,碳化硅/硅碳化钼双层陶瓷骨架分隔保护中间相炭微球基体。
2.根据权利要求1所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料,其特征在于,该复合材料的相对密度为89.21~99.57%,显气孔率为0.17%~9.28%,弯曲强度为148.3~405.6MPa,在900℃空气中氧化1h的质量损失为1.8%~5.2%。
3.权利要求1或2所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,包括以下步骤:
1)以中间相炭微球和二硅化钼作为原料,以氧化铝和氧化钇作为复合烧结助剂,将原料与复合烧结助剂充分混合均匀,获得反应原料粉体;
2)将反应原料粉体预压成型,获得预压成型试样,然后于1400~1700℃下进行放电等离子烧结,保温后冷却处理,制得碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料。
4.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤1)中,中间相炭微球和二硅化钼的质量比为1:(1~5);氧化铝和氧化钇的摩尔比为5:3;原料与复合烧结助剂的质量比为95:5。
5.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤1)中,充分混合均匀采用球磨处理,将原料与复合烧结助剂的混合粉末放入放入行星球磨罐中,玛瑙磨球与混合粉末的质量比为5:1,加入的液体球磨介质为无水乙醇,无水乙醇与混合粉末的质量比为1:2;密封后,以200转/分钟的转速球磨处理2h,获得均匀的反应原料浆料,烘干、过筛后得到反应原料粉体。
6.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤1)中,所用二硅化钼粉的粒径范围为1~3μm,纯度大于99.0%;所用中间相炭微球的粒径为8~12μm;所用氧化铝的粒径范围为0.5~3μm,纯度大于99.9%;所用氧化钇的粒径范围为0.5~3μm,纯度大于99.99%。
7.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤2)中,预压成型的压力为50MPa,保压5min。
8.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤2)中,放电等离子烧结是在真空或通有保护气氛条件下,对预压成型试样施加30~70MPa的轴向压力,并利用脉冲电流对试样进行60s的活化。
9.根据权利要求3所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料的制备方法,其特征在于,步骤2)中,保温处理的温度制度分三个阶段,第一阶段由室温起以200~300℃/min的升温速率升温至800℃,第二阶段从800℃以150~200℃/min的升温速率升温至1200℃,第三阶段从1200℃以100~150℃/min的升温速率升温至最终烧结温度;所述的保温时间为5min。
10.权利要求1或2所述的碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料在制备核能材料、航空航天材料或高温气冷微堆结构材料中的应用。
CN202310388215.4A 2023-04-12 2023-04-12 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用 Active CN116410012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310388215.4A CN116410012B (zh) 2023-04-12 2023-04-12 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310388215.4A CN116410012B (zh) 2023-04-12 2023-04-12 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN116410012A true CN116410012A (zh) 2023-07-11
CN116410012B CN116410012B (zh) 2023-12-29

Family

ID=87059218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310388215.4A Active CN116410012B (zh) 2023-04-12 2023-04-12 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN116410012B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795837A (en) * 1996-07-05 1998-08-18 National Science Council Process for preparing molybdenum, molybdenum silicides or carbides/ceramic admixtures and sintered composites
CN101747044A (zh) * 2009-12-16 2010-06-23 西安交通大学 以中间相炭微球为炭源的反应烧结碳化硅陶瓷的制备方法
CN105016773A (zh) * 2015-07-31 2015-11-04 西安交通大学 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN105236982A (zh) * 2015-09-14 2016-01-13 西安交通大学 氮化铝增强的石墨基复合材料及制备工艺
US20160297714A1 (en) * 2013-10-31 2016-10-13 Cern - European Organization For Nuclear Research Molybdenum carbide / carbon composite and manufacturing method
CN109928756A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化硅增强碳基复合材料及制备方法
CN109928755A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化钨增强碳基复合材料及制备方法
RU2716323C1 (ru) * 2019-06-18 2020-03-11 Игорь Лазаревич Синани Способ защиты углеродсодержащих композиционных материалов крупногабаритных изделий от окисления
CN112876254A (zh) * 2021-03-10 2021-06-01 清华大学 一种多孔碳化硅陶瓷膜及其制备方法
CN115677364A (zh) * 2022-09-07 2023-02-03 西安交通大学 一种多层次碳化锆增强碳基复合材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795837A (en) * 1996-07-05 1998-08-18 National Science Council Process for preparing molybdenum, molybdenum silicides or carbides/ceramic admixtures and sintered composites
CN101747044A (zh) * 2009-12-16 2010-06-23 西安交通大学 以中间相炭微球为炭源的反应烧结碳化硅陶瓷的制备方法
US20160297714A1 (en) * 2013-10-31 2016-10-13 Cern - European Organization For Nuclear Research Molybdenum carbide / carbon composite and manufacturing method
CN105016773A (zh) * 2015-07-31 2015-11-04 西安交通大学 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN105236982A (zh) * 2015-09-14 2016-01-13 西安交通大学 氮化铝增强的石墨基复合材料及制备工艺
CN109928756A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化硅增强碳基复合材料及制备方法
CN109928755A (zh) * 2019-03-15 2019-06-25 西安交通大学 一种碳化钨增强碳基复合材料及制备方法
RU2716323C1 (ru) * 2019-06-18 2020-03-11 Игорь Лазаревич Синани Способ защиты углеродсодержащих композиционных материалов крупногабаритных изделий от окисления
CN112876254A (zh) * 2021-03-10 2021-06-01 清华大学 一种多孔碳化硅陶瓷膜及其制备方法
CN115677364A (zh) * 2022-09-07 2023-02-03 西安交通大学 一种多层次碳化锆增强碳基复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TETSUSHI HORIBE, ET AL.: ""Interfacial Reaction in Joining of MoSi2 to Graphite by SPS Method"", 《MATERIALS TRANSACTIONS, JIM》, vol. 37, no. 4, pages 743 - 747 *
XIAOJIE WANG, ET AL.: ""Microstructure and Tribological Performance of Mesocarbon Microbead-Silicon Carbide Composites"", 《MATERIALS》, pages 1 - 13 *

Also Published As

Publication number Publication date
CN116410012B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN105272229B (zh) 含烧绿石相锆酸钆粉体的陶瓷及其制备方法
CN104230367B (zh) 一种SiC-ZrC-ZrB2纳米复相陶瓷改性C/C复合材料及其制备方法
US20220135489A1 (en) Method for preparing continuous fiber-reinforced ceramic matrix composite by flash sintering technology
CN109928755B (zh) 一种碳化钨增强碳基复合材料及制备方法
CN115677364B (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN109608218B (zh) 一种自愈合陶瓷基复合材料及其低温快速制备方法
CN105441767B (zh) 一种抗高温氧化损伤ZrB2‑SiC‑ZrC‑W复相陶瓷的制备方法
CN103979974A (zh) 一种C/SiC-HfB2-HfC超高温陶瓷基复合材料的制备方法
CN109251033A (zh) 一种微波合成Ti2AlC块体材料的方法
CN107746282B (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
WO2019037688A1 (zh) 碳化铀芯块及其制备方法、燃料棒
JP4484004B2 (ja) セラミックス基複合部材の製造方法
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
CN114736024A (zh) 一种核壳结构的超高温陶瓷固溶体包覆碳微球复合粉体及其制备方法
CN116410012B (zh) 一种碳化硅/硅碳化钼双层陶瓷骨架增强碳基复合材料及制备方法和应用
Yu et al. Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN105483487A (zh) 一种含锆的碳化硼-铝合金复合材料及其制备方法
CN115894085B (zh) 一种复合陶瓷涂层材料及其制备方法和应用
JPH09175870A (ja) 反応焼結セラミックス及びその製造方法
CN115286395A (zh) 一种改性SiC基复合材料及其制备方法
CN113773089B (zh) 一种高熵二硅化物及其制备方法
CN107686358A (zh) 一种塞隆‑bn复相陶瓷材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant