CN116397200B - 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 - Google Patents
一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 Download PDFInfo
- Publication number
- CN116397200B CN116397200B CN202310671686.6A CN202310671686A CN116397200B CN 116397200 B CN116397200 B CN 116397200B CN 202310671686 A CN202310671686 A CN 202310671686A CN 116397200 B CN116397200 B CN 116397200B
- Authority
- CN
- China
- Prior art keywords
- molybdenum
- copper
- substrate
- layer
- cusbse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 118
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 238000002207 thermal evaporation Methods 0.000 title claims abstract description 20
- 230000031700 light absorption Effects 0.000 title claims abstract description 10
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 title claims abstract description 7
- LYUCIKFPSNZXRJ-UHFFFAOYSA-N [Se].[Sb].[Cu] Chemical compound [Se].[Sb].[Cu] LYUCIKFPSNZXRJ-UHFFFAOYSA-N 0.000 title claims abstract description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000010949 copper Substances 0.000 claims abstract description 62
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 62
- 239000011733 molybdenum Substances 0.000 claims abstract description 62
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052802 copper Inorganic materials 0.000 claims abstract description 57
- 238000001704 evaporation Methods 0.000 claims abstract description 41
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 33
- 239000011669 selenium Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 230000008020 evaporation Effects 0.000 claims description 39
- 238000004544 sputter deposition Methods 0.000 claims description 37
- 238000000151 deposition Methods 0.000 claims description 13
- 239000007888 film coating Substances 0.000 claims description 13
- 238000009501 film coating Methods 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 11
- 238000005086 pumping Methods 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000010549 co-Evaporation Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 30
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 239000010409 thin film Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 3
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005092 sublimation method Methods 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- OQRNKLRIQBVZHK-UHFFFAOYSA-N selanylideneantimony Chemical compound [Sb]=[Se] OQRNKLRIQBVZHK-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5866—Treatment with sulfur, selenium or tellurium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法,采用磁控溅射法依次沉积钼、铜,形成钼/铜叠层衬底,之后单源热蒸发沉积Sb2Se3,使Sb2Se3和铜衬底直接反应生成CuSbSe2薄膜。本方法主要优势如下:(1)适合柔性衬底CuSbSe2电池的卷对卷流水线生产工艺;(2)单源热蒸发,一步生成CuSbSe2薄膜,简化了多源共蒸发的传统生产工艺,并且大幅降低了设备成本;(3)生成的CuSbSe2薄膜结晶性好,均匀致密。
Description
技术领域
本发明涉及一种薄膜太阳能电池光吸收层的制备技术,具体地说是一种CuSbSe2光吸收层的钼铜叠层衬底单源热蒸发制备方法,属于太阳能电池技术领域。
背景技术
随着光伏产业和研究的蓬勃发展,薄膜太阳能电池技术水平不断升级,形成以碲化镉、铜铟镓硒为代表的新一代薄膜光伏产品。然而,这两类太阳能电池的吸收层中,In、Te的稀缺和Cd的毒性,以及多元半导体制备过程的复杂性,分别是碲化镉和铜铟镓硒太阳能电池发展的瓶颈。因此,需要开发更加廉价的光吸收层材料,同时要降低制备过程的复杂程度,并充分发挥薄膜电池轻、薄的特点,向柔性化发展。
铜锑硒(CuSbSe2)是近年来出现的一类新型太阳能电池材料,其组成元素丰度高、无毒环保,且CuSbSe2有很高的光吸收系数和优良的带隙,其太阳能电池的理论预测光电转换效率在27%以上。CuSbSe2的重要优点之一是材料熔点只有480℃,远低于碲化镉和铜铟镓硒,因此不需要很高的衬底温度就能制备,非常适合作为柔性太阳能电池的光吸收层,市场发展潜力巨大。以多元半导体作为吸收层的柔性太阳能电池,在选择制备方法时还应考虑是否兼容卷对卷流水线生产工艺:相对于化学溶液法,真空法更兼容。真空法主要包括磁控溅射、近空间升华和热蒸发。其中,磁控溅射法的通常是先磁控溅射金属预制膜后硒化法,属于两步法成膜,且硒化过程中物相变化复杂,因此不适合流水线工艺。近空间升华法,由于源和衬底距离很近,且蒸发源的面积与衬底面积相当,只适合小面积镀膜,当衬底面积扩大之后,会产生沉积速率不均匀、源和衬底温度相互干扰等问题,影响薄膜均匀性和结晶性,另一方面,近空间升华沉积速度过快,对于多元半导体会造成较多的晶格缺陷,因此也不适合流水线生产。而热蒸发法,参考铜铟镓硒的多源共蒸发,一般需要多个单质蒸发源同时蒸发,工艺参数多,同样增加了复杂性,但优点是可一次成膜,薄膜结晶性好、均匀致密、缺陷少。考虑到以上问题,本发明对热蒸发的传统工艺进行改进,采用钼/铜叠层衬底,用单一Sb2Se3蒸发源,使Sb2Se3蒸气和叠层衬底中的铜层在高温下直接反应,一步生成CuSbSe2薄膜。
发明内容
本发明提供了一种CuSbSe2光吸收层的钼铜叠层衬底单源热蒸发制备方法,采用钼/铜叠层衬底和单一Sb2Se3源热蒸发沉积Sb2Se3,使Sb2Se3和铜衬底在高温下直接反应一步生成CuSbSe2薄膜,减少了多源共蒸发多个蒸发源复杂的工艺参数控制,简化了步骤,提高了成膜速度,对多元半导体薄膜太阳能电池的卷对卷流水线生产工艺有重要意义。
本发明CuSbSe2光吸收层的钼铜叠层衬底单源热蒸发制备方法,包括如下步骤:
步骤1:钼/铜叠层衬底的制备
将玻璃衬底固定在磁控溅射系统真空室的衬底托盘上,抽至1×10-4Pa后,采用双极脉冲磁控溅射和直流磁控溅射依次沉积钼层和铜层;
步骤2:CuSbSe2光吸收层的制备
将步骤1中得到的钼/铜叠层衬底固定在热蒸发设备的衬底托盘,先抽真空,然后将叠层衬底和Sb2Se3蒸发源同时升至目标温度开始镀膜,使铜衬底与Sb2Se3充分反应并结晶,得到CuSbSe2薄膜。
具体地:
步骤1中,将玻璃衬底置于磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层:第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟;保持气压为1.2Pa,再采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
更进一步地,钼层厚度为1μm;铜层厚度由最终生成的CuSbSe2光吸收层的目标厚度确定。铜的厚度是根据最终生成的CuSbSe2的厚度确定,CuSbSe2过厚会导致起皮现象,如果铜的厚度太薄,所生成的CuSbSe2吸收层过薄,无法完全吸收太阳光。当CuSbSe2光吸收层的目标厚度确定为1μm 时,铜层厚度确定为100nm。
步骤2中,将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温,由于相距较远(>10cm),二者温度互不干扰。抽真空后,将衬底温度从室温经20min升到340-400℃,同时将Sb2Se3蒸发源从室温经20min升到550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕。自然降温后,得到CuSbSe2薄膜。
与常用的几种真空法镀膜技术相比,本发明的优势体现在以下几点:
(1)与多源共蒸发法相比,本发明采用单一Sb2Se3蒸发源,简化了多个蒸发源的复杂工艺参数,提高了镀膜过程的可控性和重复性,并且大幅降低了设备成本;
(2)与磁控溅射预制膜后硒化法的两步法成膜相比,本发明属于一步法,直接在钼/铜叠层衬底上通过高温下铜和硒化锑蒸气反应,一步生成CuSbSe2薄膜;
(3)与近空间升华法相比,本发明的热蒸发设备中源和衬底距离较远,薄膜沉积速率较小,从而有利于提高大面积镀膜的均匀性,并减少薄膜缺陷。
总之,本发明采用钼/铜叠层衬底,用单一Sb2Se3蒸发源,使Sb2Se3蒸气和铜衬底在高温下直接反应一步生成CuSbSe2薄膜,减少了多源共蒸发繁琐的步骤,提高了成膜速度,对多元半导体薄膜太阳能电池的产业化发展有重要意义。
附图说明
图1是实施例1样品的XRD图谱。
图2是实施例1样品的Raman图谱。
图3为实施例1样品的SEM照片。
图4为实施例2样品的XRD图谱。
图5为实施例3样品的XRD图谱。
图6为实施例4样品的XRD图谱。
具体实施方式
实施例1:
1、钼/铜叠层衬底的制备:将玻璃衬底放置在磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层,第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟。保持气压为1.2Pa,再采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
2、CuSbSe2光吸收层的制备:将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温,由于相距较远,二者温度互不干扰。抽真空后,将衬底温度从室温经20min升到380℃,同时将Sb2Se3蒸发源从室温经20min升到550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕。自然降温后,得到CuSbSe2薄膜。
图1和图2分别是实施例1样品的XRD和Raman图谱。可见样品为CuSbSe2相,且结晶性好。图3为实施例1样品的SEM照片,晶粒达到微米级。
实施例2:在实施例1基础上改变衬底温度至340℃
1、钼/铜叠层衬底的制备:将玻璃衬底放置在磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层,第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟。保持气压为1.2Pa,再采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
2、CuSbSe2光吸收层的制备:将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温,由于相距较远,二者温度互不干扰。抽真空后,将衬底温度从室温经20min升到340℃,同时将Sb2Se3蒸发源从室温经20min升到550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕。自然降温后,得到CuSbSe2薄膜。
图4为实施例2样品的XRD图谱。与实施例1的XRD相比,XRD主峰分别属于CuSe和Sb2Se3。
实施例3:在实施例1基础上改变衬底温度至360℃
1、钼/铜叠层衬底的制备:将玻璃衬底放置在磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层,第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟。保持气压为1.2Pa,再采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
2、CuSbSe2光吸收层的制备:将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温,由于相距较远,二者温度互不干扰。抽真空后,将衬底温度从室温经20min升到360℃,同时将Sb2Se3蒸发源从室温经20min升到550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕。自然降温后,得到CuSbSe2薄膜。
图5为实施例3样品的XRD图谱,XRD主峰是CuSbSe2峰,但存在Sb2Se3。
实验例4:在实施例1基础上改变衬底温度至400℃
1、钼/铜叠层衬底的制备:将玻璃衬底放置在磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层,第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟。保持气压为1.2Pa,再采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
2、CuSbSe2光吸收层的制备:将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温,由于相距较远,二者温度互不干扰。抽真空后,将衬底温度从室温经20min升到400℃,同时将Sb2Se3蒸发源从室温经20min升到550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕。自然降温后,得到CuSbSe2薄膜。
图6为实验例4样品的XRD图谱,XRD主峰属于CuSbSe2和Cu3SbSe4。
以上实施例表明,CuSbSe2吸收层的物相对衬底温度相当敏感,衬底温度的微小改变都会造成薄膜物相的明显区别。实施例2,衬底温度较低(340℃),Sb2Se3和铜层衬底反应不充分,存在二元杂相CuSe和Sb2Se3。实施例3较实施例2提高了衬底温度至360℃,虽然CuSe2已参与反应而消失,但还是存在未充分反应的Sb2Se3。实施例4为衬底温度过高的情况(400℃),CuSbSe2发生相变分解,生成Cu3SbSe4。实施例1为最佳衬底温度380℃,CuSbSe2薄膜中没有检测出杂相,且CuSbSe2薄膜均匀致密,结晶性好。所以在反应过程中必须精确控制衬底温度,才能得到物相纯净的CuSbSe2吸收层。衬底温度过低或过高,薄膜中锑和铜的原子比都会偏离CuSbSe2的化学计量比,即Sb:Cu原子比1:1。其中实施例3衬底温度过低,薄膜中Sb:Cu原子比高于1:1,富锑;而实施例4衬底温度过高,薄膜中Sb:Cu原子比低于1:1,富铜。
Claims (8)
1.一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法,其特征在于:
采用磁控溅射法依次沉积钼、铜,形成钼/铜叠层衬底,在该叠层衬底上热蒸发沉积Sb2Se3,使Sb2Se3和叠层衬底中的铜层在高温下直接反应一步生成CuSbSe2薄膜;具体包括如下步骤:
步骤1:钼/铜叠层衬底的制备
将玻璃衬底固定在磁控溅射系统真空室的衬底托盘上,抽至目标真空后,采用双极脉冲磁控溅射和直流磁控溅射依次沉积钼层和铜层,形成钼/铜叠层衬底,通过改变溅射功率和沉积时间来调控钼层和铜层的厚度;
步骤2:CuSbSe2光吸收层的制备
将步骤1中得到的钼/铜叠层衬底置于热蒸发设备中,先抽真空,然后将叠层衬底和Sb2Se3蒸发源同时升至目标温度开始蒸发镀膜,使钼/铜叠层衬底的铜层与Sb2Se3蒸气充分反应生成CuSbSe2薄膜。
2.根据权利要求1所述的制备方法,其特征在于:
步骤1中,将玻璃衬底置于磁控溅射镀膜系统真空室的衬底托盘上,并将真空室抽至1×10-4Pa,然后通入氩气,将真空室气压调至1.6Pa,先采用双极脉冲磁控溅射沉积钼层,再采用直流磁控溅射在钼层上沉积铜层。
3.根据权利要求2所述的制备方法,其特征在于:
采用双极脉冲磁控溅射沉积钼层时包括两个阶段:第一阶段钼的溅射功率为80w,溅射时间为20分钟,然后将真空室气压调至1.2Pa,进行第二阶段钼的沉积,溅射功率为40w,溅射时间为20分钟。
4.根据权利要求3所述的制备方法,其特征在于:
钼层厚度为1μm。
5.根据权利要求3所述的制备方法,其特征在于:
采用双极脉冲磁控溅射沉积钼层结束后,保持气压为1.2Pa,采用直流磁控溅射在钼层上沉积铜层,溅射功率为20w,溅射时间为8分钟,得到钼/铜叠层衬底。
6.根据权利要求5所述的制备方法,其特征在于:
铜层厚度为100nm。
7.根据权利要求1所述的制备方法,其特征在于:
步骤2中,将钼/铜叠层衬底固定在热蒸发设备的衬底托盘,Sb2Se3蒸发源位于衬底正下方,蒸发源和衬底分别独立控温;抽真空后,将衬底温度从室温升至340-400℃,同时将Sb2Se3蒸发源从室温升至550℃,开始镀膜,衬底和蒸发源保温10min,镀膜完毕;自然降温后,得到CuSbSe2薄膜。
8.根据权利要求7所述的制备方法,其特征在于:
衬底温度升温至380℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310671686.6A CN116397200B (zh) | 2023-06-08 | 2023-06-08 | 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310671686.6A CN116397200B (zh) | 2023-06-08 | 2023-06-08 | 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116397200A CN116397200A (zh) | 2023-07-07 |
CN116397200B true CN116397200B (zh) | 2023-08-08 |
Family
ID=87014586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310671686.6A Active CN116397200B (zh) | 2023-06-08 | 2023-06-08 | 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116397200B (zh) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110349A (ja) * | 1984-11-02 | 1986-05-28 | Hitachi Ltd | 情報記録媒体 |
CN101459200A (zh) * | 2007-12-14 | 2009-06-17 | 中国电子科技集团公司第十八研究所 | 柔性铜铟镓硒薄膜太阳电池及其吸收层的制备方法 |
CN103346194A (zh) * | 2013-06-18 | 2013-10-09 | 天津理工大学 | 一种铜铟镓硒太阳电池器件及其制备方法 |
CN103956406A (zh) * | 2014-04-16 | 2014-07-30 | 渤海大学 | 一种superstrate结构铜锌锡硫太阳电池的非真空制备方法 |
CN105118872A (zh) * | 2015-07-21 | 2015-12-02 | 中国电子科技集团公司第十八研究所 | 一种低温制备高效柔性铜铟镓硒薄膜太阳电池的方法 |
CN107829071A (zh) * | 2017-11-17 | 2018-03-23 | 中南大学 | 铜锑硫薄膜材料的制备方法 |
KR20180033996A (ko) * | 2016-09-27 | 2018-04-04 | 한국생산기술연구원 | 열증착과 스퍼터링을 동시 적용한 특수 나노구조체 제조방법 |
CN108468027A (zh) * | 2018-03-28 | 2018-08-31 | 清华大学 | 一种锑掺杂铜锌锡硫硒靶材及其制备方法和应用 |
CN108551312A (zh) * | 2018-05-09 | 2018-09-18 | 常州大学 | 一种具有可拉伸结构的Sb2Se3薄膜太阳能电池及制备方法 |
CN110246923A (zh) * | 2019-06-29 | 2019-09-17 | 深圳黑晶光电科技有限公司 | 一种串联型钙钛矿/同质结硅叠层太阳能电池及其制备方法 |
KR20210097854A (ko) * | 2020-01-30 | 2021-08-10 | 신라대학교 산학협력단 | 고주파 마그네트론 스퍼터링법을 이용한 코벨라이트 박막의 제조 방법 및 이에 의해 제조된 코벨라이트 박막을 이용한 박막태양전지 |
CN115295684A (zh) * | 2022-10-08 | 2022-11-04 | 合肥工业大学 | 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法 |
-
2023
- 2023-06-08 CN CN202310671686.6A patent/CN116397200B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110349A (ja) * | 1984-11-02 | 1986-05-28 | Hitachi Ltd | 情報記録媒体 |
CN101459200A (zh) * | 2007-12-14 | 2009-06-17 | 中国电子科技集团公司第十八研究所 | 柔性铜铟镓硒薄膜太阳电池及其吸收层的制备方法 |
CN103346194A (zh) * | 2013-06-18 | 2013-10-09 | 天津理工大学 | 一种铜铟镓硒太阳电池器件及其制备方法 |
CN103956406A (zh) * | 2014-04-16 | 2014-07-30 | 渤海大学 | 一种superstrate结构铜锌锡硫太阳电池的非真空制备方法 |
CN105118872A (zh) * | 2015-07-21 | 2015-12-02 | 中国电子科技集团公司第十八研究所 | 一种低温制备高效柔性铜铟镓硒薄膜太阳电池的方法 |
KR20180033996A (ko) * | 2016-09-27 | 2018-04-04 | 한국생산기술연구원 | 열증착과 스퍼터링을 동시 적용한 특수 나노구조체 제조방법 |
CN107829071A (zh) * | 2017-11-17 | 2018-03-23 | 中南大学 | 铜锑硫薄膜材料的制备方法 |
CN108468027A (zh) * | 2018-03-28 | 2018-08-31 | 清华大学 | 一种锑掺杂铜锌锡硫硒靶材及其制备方法和应用 |
CN108551312A (zh) * | 2018-05-09 | 2018-09-18 | 常州大学 | 一种具有可拉伸结构的Sb2Se3薄膜太阳能电池及制备方法 |
CN110246923A (zh) * | 2019-06-29 | 2019-09-17 | 深圳黑晶光电科技有限公司 | 一种串联型钙钛矿/同质结硅叠层太阳能电池及其制备方法 |
KR20210097854A (ko) * | 2020-01-30 | 2021-08-10 | 신라대학교 산학협력단 | 고주파 마그네트론 스퍼터링법을 이용한 코벨라이트 박막의 제조 방법 및 이에 의해 제조된 코벨라이트 박막을 이용한 박막태양전지 |
CN115295684A (zh) * | 2022-10-08 | 2022-11-04 | 合肥工业大学 | 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法 |
Non-Patent Citations (1)
Title |
---|
Structural, electrical and optical characteristics of CuSbSe2 films prepared by pulsed laser deposition and magnetron sputtering processes;Hongbo Yan;《Journal of Materials Science》;1-8页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116397200A (zh) | 2023-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8188367B2 (en) | Multilayer structure to form absorber layers for solar cells | |
EP1424735B1 (en) | Method for forming light-absorbing layer | |
US7576017B2 (en) | Method and apparatus for forming a thin-film solar cell using a continuous process | |
CN101632154B (zh) | 利用一步金属有机化学气相沉积工艺制备ⅰ-ⅲ-ⅵ2化合物薄膜的方法 | |
JP2003179238A (ja) | 薄膜太陽電池の製造方法 | |
CN115295684A (zh) | 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法 | |
WO2013160421A1 (en) | Method for producing the pentanary compound semiconductor cztsse doped with sodium | |
KR101542342B1 (ko) | Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지 | |
CN116397200B (zh) | 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法 | |
CN110257770B (zh) | 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法 | |
US20140256082A1 (en) | Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing | |
CN115161610B (zh) | 一种铜锑硒太阳能电池光吸收层薄膜的制备方法 | |
JP2003282600A (ja) | 光吸収層の作製方法および装置 | |
KR101388458B1 (ko) | 급속 열처리 공정을 사용한 cigs 박막의 제조방법 | |
US20170236710A1 (en) | Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers | |
KR20020007777A (ko) | 이원화합물의 진공증발 증착에 의한 CuInSe2박막의 제조방법 | |
Rijal et al. | Optimizing the Selenization of Sb 2 Se 3 Absorbers to Improve the Film Quality and Solar Cell Performances | |
CN103346213A (zh) | 一种太阳能电池吸收层的制备方法 | |
CN101967624A (zh) | Cu2ZnSnS4光伏薄膜的制备方法 | |
Lim et al. | Influence of stacking order and intermediate phase at low temperature on Cu 2 ZnSnS 4 thin film formation for solar cell | |
CN116377396B (zh) | 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法 | |
Bosio et al. | Polycrystalline Cu (InGa) Se2/CdS thin film solar cells made by new precursors | |
KR101410073B1 (ko) | Cigs 박막태양전지의 제조 방법 | |
KR101083741B1 (ko) | 태양 전지 광흡수층 제조를 위한 셀렌화 방법 | |
Yamaguchi et al. | NaF Addition to Cu2ZnSnSe4 Thin films prepared by sequential evaporation from compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |