CN116396969B - 一种狼尾草耐热相关rwp基因及其应用 - Google Patents

一种狼尾草耐热相关rwp基因及其应用 Download PDF

Info

Publication number
CN116396969B
CN116396969B CN202310123055.0A CN202310123055A CN116396969B CN 116396969 B CN116396969 B CN 116396969B CN 202310123055 A CN202310123055 A CN 202310123055A CN 116396969 B CN116396969 B CN 116396969B
Authority
CN
China
Prior art keywords
gene
rwp
pennisetum
rice
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310123055.0A
Other languages
English (en)
Other versions
CN116396969A (zh
Inventor
黄琳凯
靳雅荣
贾纪原
杨煜琛
骆金婵
王小珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Agricultural University
Original Assignee
Sichuan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Agricultural University filed Critical Sichuan Agricultural University
Priority to CN202310123055.0A priority Critical patent/CN116396969B/zh
Publication of CN116396969A publication Critical patent/CN116396969A/zh
Application granted granted Critical
Publication of CN116396969B publication Critical patent/CN116396969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供一种狼尾草耐热相关RWP基因,其核苷酸序列如SEQ ID NO.1所示。通过对美洲狼尾草进行多个时间点的转录组测序,发现RWP(PMA1G07385.1)基因在热胁迫后表达量持续增加,随后将其转基因到水稻中,发现与野生型相比过表达植株具有更强的耐热性;在水稻中过表达该基因可以显著提高水稻对高温胁迫的耐受性,表明该基因与植物的胁迫耐受性息息相关。借助分子育种手段利用该基因缩短育种时间,提高育种效率,还可能被应用于其他作物中开发与利用,具备巨大的研究价值和应用价值。

Description

一种狼尾草耐热相关RWP基因及其应用
技术领域
本发明涉及生物技术领域,具体涉及耐热相关狼尾草RWP基因及其应用。
背景技术
美洲狼尾草((Pennisetum glaucum(L.)R.Br.),又称御谷,珍珠粟,美洲狼尾草可用于调制干草,也可青贮。美洲狼尾草广泛分布于世界温带和热带地区,如非洲、印度和南亚,具有很强的耐热性。
植物受到热胁迫时,叶片的形态特征和一些生理指标也有明显的变化,具体表现为以下几个方面。叶片细胞体积变小、含水量降低,细胞膜系统受到不同程度的破坏;严重时可能导致细胞膜破裂,细胞壁变厚且机械组织发达,光合器官受到影响;胞质中有机物含量增多,液泡中无机盐含量升高;叶片少又小且角质层增厚、机械组织发达,气孔多但较小,比叶重(SLW)增加、栅栏组织/海绵组织比值降低等。
可见高温的环境给植物生长带来不可忽视的损害,严重影响了我国牧草的安全生产。而当今社会,畜牧业及其附属产品对人们的生活越来越重要,实际生产中狼尾草或其他饲草的种植规模有限,所以结合实际和改进狼尾草或其他植物的自身对环境的适应能力变得十分重要,对于推动我国乃至世界畜牧业的发展具有重要意义。
RWP基因家族主要参与氮信号响应和配子体发育(Camille et al.2014),关于热胁迫的研究还未见报道。
发明内容
本发明的目的在于提供一种狼尾草耐热相关RWP基因。
本发明另一目的在于提供一种热胁迫调控的蛋白。
本发明又一目的在于提供上述狼尾草耐热相关RWP基因的应用。该狼尾草RWP基因用于针对性地提高水稻的耐热性,缩短育种时间,提高育种效率。
本发明目的通过如下技术方案实现:
一种狼尾草耐热相关RWP基因,其核苷酸序列如SEQ ID NO.1所示。
一种热胁迫调控蛋白,其氨基酸序列如SEQ ID NO.2所示。
本发明还提供了含有上述狼尾草耐热相关RWP基因的载体。
本发明还提供扩增上述狼尾草耐热相关RWP基因的引物,包括核苷酸序列如SEQID NO.3所示的上游引物和SEQ ID NO.4所示的下游引物。
本发明还进一步提供了上述基因在提高水稻耐热性中的应用。
本发明具有如下有益效果:
本发明通过大量实验发现RWP(PMA1G07385.1)基因在热胁迫后表达量持续增加,随后将其转基因到水稻中,发现与野生型相比过表达植株具有更强的耐热性;在水稻中过表达该基因可以显著提高水稻对高温胁迫的耐受性,表明该基因与植物的胁迫耐受性息息相关。
本发明借助分子育种手段利用该基因缩短育种时间,提高育种效率,还可能被应用于其他作物中开发与利用,具备巨大的研究价值和应用价值。
附图说明
图1:为本发明RWP载体示意图。
图2:为本发明RWP载体测序结果分析图。
图3:为本发明水稻过表达狼尾草RWP基因鉴定结果凝胶电泳图。
图4:为本发明中水稻过表达狼尾草RWP基因各过程结果图。
图5:为本发明中水稻过表达狼尾草RWP基因在高温胁迫下表型图。
图6:为本发明中水稻过表达狼尾草RWP基因在高温胁迫下的生理指标测定对比图。
图7:为本发明狼尾草RWP基因扩增凝胶电泳图。
图8:为本发明各物种间RWP基因家族成员数目统计图。
图9:为本发明热胁迫下不同材料RWP基因表达趋势图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
1.全基因组测序
选取新鲜的狼尾草叶片,将新鲜叶片叶脉去掉,剪碎置于研钵中,加入液氮快速研磨成粉末状,转入2mL离心管,加入65℃预热的CTAB提取液900uL充分混匀,65℃保温40-60min,在此期间轻轻颠倒离心管几次。水浴完后,冷却至室温,加入等体积的氯仿/异戊醇(24:1)混合液轻轻摇动10min.12000r/min离心10min;取上清液,再用等体积的氯仿/异戊醇抽提一次,12000r/min离心10min;小心吸出上清液于另一2mL离心管中,加入0.6倍上清液体积的异丙醇,缓慢混匀,于-20℃冰箱中沉淀DNA;挑出成团的DNA.用70%乙醇洗2~3次,随后在诺禾致源生物科技有限公司进行全基因组测序。
为解析美洲狼尾草耐热性形成的分子机制,我们组装了适应全球不同气候的10个美洲狼尾草代表性种质的高质量染色体序列,构建了图形泛基因组图谱。结果发现,RWP-RK家族的扩张可能与早期LTR的扩张有关,并引起了美洲狼尾草中特异RWP–RKs基因数量的增加(图7)。
2.狼尾草RWP基因及表达载体的构建
为了进一步解析美洲狼尾草耐热性形成的分子机制,研究对斗牛基因型材料在8个高温处理时间点下的叶片和根系,对6个基因型材料在胁迫1h和24h的叶片分别进行转录组测序,发现RWP基因在所有材料热胁迫后均差异表达(图9)。此外,研究还发现,RWP-RKs与大部分ER相关基因(60.19%;325/540)和HSFs(50.00%;16/32)在热胁迫条件下表现出显著的相关性(Pearson相关系数≥0.6,p值<0.05),表明RWP–RKs对美洲狼尾草应对高温胁迫具有重要作用,与ER相关基因和HSFs共同作用以调控美洲狼尾草的耐热性。
因此,选取的实验材料为狼尾草品种“斗牛”,种植于四川农业大学温江校区。取其幼嫩叶片为材料提取总RNA。选用天根(北京)生化科技有限公司的植物总RNA提取试剂盒进行RNA提取,操作参考内附说明书进行。RNA提取后利用1%琼脂糖凝胶电泳进行完整性检测,使用超微量,分光光度计测定RNA浓度和纯度。反转录选用TaKaRa公司的PrimeScriptII 1st strand cDNA synthesis Kit,操作流程参考内附说明书。以狼尾草参考基因组为模板(SEQ ID NO.1),通过序列全长设计RWP扩增引物,以cDNA为模板进行扩增,扩增选用TaKaRa公司的PrimeSTAR Max DNA Polymerase试剂盒进行,操作流程参考内附说明书,PCR扩增体系见表1。反应条件为98℃预变性4min;98℃变性10s,55℃退火5s,72℃延伸30s,35个循环,最后72℃运行10min,1%琼脂糖凝胶电泳检测PCR产物,其结果如图7所示,泳道1、2、3分别为目的基因扩增的3次重复样本电泳结果,M为DNA Marker。
其中,设计的引物序列如下(5’→3’):
RWP-F(SEQ ID NO.3):
gatcacctgcaaaacaacatggacctcgacccccccacctccgacgcctgcgccgtcc
RWP-R(SEQ ID NO.4):
gatcacctgcaaaaggtggcggtcctcgaagagccagagcggggagggcggggtgagc
表1 PCR扩增体系
试剂 用量
Mix 10μL
上游引物F 1μL
下游引物R 1μL
cDNA模板 1μL
ddH2O To 20μL
按照同源重组载体构建的方法,使用普通琼脂糖凝胶DNA回收试剂盒(HiPure GelPure DNA Mini Kit,美基生物科技有限公司,广州,中国)对电泳后的目的产物进行切胶纯化回收以及线性化后的载体。通过克隆试剂盒(MonCloneTM Hi-Fusion Cloning Mix V2,莫纳,武汉,中国)将附有同源臂RWP基因片段连接到农杆菌表达质粒pBWA(V)HS的AarI位点间(图1)。将连接产物转入DH5α感受态细胞进行阳性克隆鉴定。选择pBWA(V)HS通用引物对18个单克隆菌落进行PCR阳性鉴定,最后通过测序验证重组质粒的正确性(图2)。
实施例2水稻转基因过表达
1.农杆菌准备
1.1质粒转化
取1μL质粒加入50μL EHA105农杆菌感受态细胞中,充分混匀后吸取至电转杯中,电转后加1mL LB液体培养基,充分混匀后吸取至1.5mL离心管中,于摇床30℃、180rpm振荡培养30min,将活化好的农杆菌菌液吸取50μL接种于LB固体培养基上,30℃暗培养48h。
1.2农杆菌检测
凝胶电泳检测,制备1%琼脂糖凝胶(称取1.5g琼脂糖粉末溶于150mL 1×TAE缓冲液中,微波炉加热约3分钟,至液体呈透明状态即可。在制胶板中加入EB,将溶好的琼脂糖液体倒入制胶板中,混匀,插上梳子,静置40分钟,当胶变成乳白色即可),点样,完成电泳过程。
2.水稻遗传转化
2.1诱导
挑选无霉斑、芽口正常的米粒,用75%酒精消毒1min,灭菌水清洗,1min/次;15%次氯酸钠消毒20min,灭菌水清洗3次,1min/次;消毒后的米粒接种于水稻愈伤诱导及继代培养基,26℃光照培养20天(图4)。
表2水稻愈伤诱导及继代培养基
组成成分 浓度
2,4-D 0.002g/L
L-Glutamine 0.5g/L
Proline 0.5g/L
Casein 0.3g/L
Sucrose 30g/L
Gelrite 2.6g/L
pH 5.8
2.2农杆菌侵染
挑取农杆菌于侵染液中,制备OD600=0.2的农杆菌重悬液,挑取愈伤于三角瓶中,加入农杆菌重悬液,侵染10-15min后弃菌液,将愈伤接种于共培培养基,20℃共培养48-72h(图4)。
表3共培养培养基(不包括谷氨酰胺和脯氨酸,加10克葡萄糖/升)
组成成分 浓度
2,4-D 2mg/L
肌醇 2mg/L
pH 5.5-5.2
AS(acetosyringone,乙酰丁香酮)100μM 10-20mg/L
2.3愈伤筛选
将2.2中的愈伤接种于筛选培养基,26℃暗培养20-30天;将阳性愈伤接种至筛选培养基,愈伤挑取过程务必挑取单克隆愈伤,26℃暗培养7-10天(图4)。
表4筛选培养基
组成成分 浓度
2,4-D 2mg/L
cefotaxine(头孢霉素) 500mg/L
hygromycin B(潮霉素) 50mg/L
pH 5.8
2.4分化及生根
将阳性愈伤接种至分化培养基,25-27℃光照培养15-20天,待分化出2-5cm的芽后接种至生根培养基,30℃光照培养7-10天(图4)。
表5分化培养基
表6生根培养基
组成成分 浓度
BA 0.002g/L
NAA 0.0005g/L
Sucrose 15g/L
Gelrite 2.6g/L
2.5阳性苗检测及高温胁迫处理
2.5.1阳性苗检测
采用CTAB法提取水稻基因组DNA,进行PCR检测,检测方法同农杆菌菌检,结果如图3所示,1-10泳道为过表达水稻不同株系,11为阴性对照,12为阳性对照,M为DNA marker。
2.5.2阳性苗模拟高温胁迫处理
将转基因水稻和野生型水稻在26℃光照下培养14h,每天在22℃暗下培养10h,共培养45d,然后将其高温处理(45℃/45℃,光照/黑暗,14h/10h),在高温处理72h后测定植株MDA含量和POD、SOD酶活性。如图5所示,高温处理72h之后,RWP基因过表达株系与野生型水稻相比,在高温处理后的过表达叶片更持绿,野生型株系枯黄叶片更多,表现出较弱的活性。
2.6生理指标测定
植物在受到光、温度、干旱、盐、碱等胁迫时会产生活性氧和自由基,而活性氧和自由、基会抑制植物生长、损伤细胞结构和功能、使膜脂过氧化、破坏生物大分子的结构功能等。植物本身也会抵抗这种逆境,其自身的酶系统和非酶系统会产生相应的物质以清除活性氧和自由基,酶系统中主要包含:超氧化物歧化酶(SOD)和超氧化物酶(POD)。
2.6.1过氧化物酶(POD)的测定
称取植物材料约0.2g,加入0.1mo1/L磷酸缓冲液(pH7.0)6ml(分3次加入研钵),在研钵中研磨成匀浆,过滤或以8000r/min离心15min,上清液为酶的提取液。
依次加入925μL的100mM乙酸-醋酸钠,再加入0.5mL的0.25%愈创木酚和25μL的粗酶液,混匀后加入50μL的0.75%过氧化氢启动反应。在470nm测定吸光值,每隔10秒记录一次。过氧化物酶(POD)的计算公式为:(ΔA470×V1)/(Cpr×V2×0.01×t)。
其中ΔA470:时间内吸光度的变化;Cpr:样品可溶性蛋白含量(mg);t为反应时间(min);V1:粗酶提取液的总体积(mL);V2:为测定时所用的粗酶提取液体积(mL)。
2.6.2超氧化物歧化酶(SOD)的测定
SOD活性的测定使用的是氮蓝四唑(NBT)光化还原法。25℃,13000卢卡斯光照下反应15~30min,观察变化(反应结束时CK0应该没有紫色产生,CK最大应该变为暗紫色,测定管应该变为亮紫色)。放入暗处终止反应,在560nm处测定吸光值,其计算公式为:[(A1-A2)×V]/(1/2A1×Cpr×Vt)。
其中,A1:最大管的吸光度;A2:样品管的吸光度;V:提取酶液的总体积(mL);Vt:测定时的酶液用量(mL);Cpr:样品蛋白含量(mg)。
2.6.3丙二醛(MDA)含量测定
植物在逆境下遭受伤害(或衰老)与活性氧积累诱发的膜脂过氧化作用密切相关,膜脂过氧化的产物有二烯轭合物、脂类过氧化物、丙二醛、乙烷等。其中丙二醛(MDA:Malondialdehyde)是膜脂过氧化最重要的产物之一,因此可通过测定MDA了解膜脂过氧化的程度,以间接测定膜系统受损程度。
丙二醛在高温及酸性环境下可与2-硫代巴比妥酸(TBA)反应产生红棕色的产物3,5,5-三甲基恶唑2,4-二酮(三甲川),该物质在532nm处有一吸收高峰,并且在660nm处有较小光吸收。根据其532nm的消光值可计算出溶液中丙二醛的含量。醛、可溶性糖对此反应有干扰,在450nm处有一吸收峰,可用双组分分光光度法加以排除。
取0.5g植物样品(叶、根),加5%三氯乙酸5mL,研磨后所得匀浆在3000r/min下离心10min。随后,取上清2ml,加0.67%硫代巴比妥酸2ml,混合后在100℃水浴上保温30min,冷却后再离心一次。最后,分别测定上清液在450nm、532nm和600nm处的吸光度值,并按公式[6.45(A532-A600)-0.56A450]算出MDA浓度,再算出单位鲜量组织中的MDA含量(μmol/g)。其中式中A450、A532和A600分别代表450nm,532nm和600nm波长下的吸光度值。
高温胁迫后各项生理指标如图6所示,POD和SOD含量RWP过表达株系显著高于野生型,表明其耐热性高于野生型,而MDA明显低于野生型,表明其受到的高温胁迫损伤更低。

Claims (1)

1.狼尾草耐热相关RWP基因在提高水稻耐热性中的应用,所述RWP基因核苷酸序列如SEQ ID NO.1所示。
CN202310123055.0A 2023-02-16 2023-02-16 一种狼尾草耐热相关rwp基因及其应用 Active CN116396969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310123055.0A CN116396969B (zh) 2023-02-16 2023-02-16 一种狼尾草耐热相关rwp基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310123055.0A CN116396969B (zh) 2023-02-16 2023-02-16 一种狼尾草耐热相关rwp基因及其应用

Publications (2)

Publication Number Publication Date
CN116396969A CN116396969A (zh) 2023-07-07
CN116396969B true CN116396969B (zh) 2024-02-20

Family

ID=87018639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310123055.0A Active CN116396969B (zh) 2023-02-16 2023-02-16 一种狼尾草耐热相关rwp基因及其应用

Country Status (1)

Country Link
CN (1) CN116396969B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318952A (zh) * 2015-07-03 2017-01-11 复旦大学 水稻基因OsAPM1及其提高水稻耐干旱及高温胁迫能力的应用
CN108359670A (zh) * 2018-03-08 2018-08-03 苏州科技大学 提高砷胁迫水稻耐受性的microRNA基因及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106318952A (zh) * 2015-07-03 2017-01-11 复旦大学 水稻基因OsAPM1及其提高水稻耐干旱及高温胁迫能力的应用
CN108359670A (zh) * 2018-03-08 2018-08-03 苏州科技大学 提高砷胁迫水稻耐受性的microRNA基因及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cenchrus americanus RWP-RK protein mRNA;MZ576490.1;Genbank;参见序列及相关信息部分 *
Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean;Nooral Amin等;Genes (Basel);第14卷(第2期);参见摘要,第5页第1段至第9页第2段及第10页图9 *
MZ576490.1.Cenchrus americanus RWP-RK protein mRNA.Genbank.2022,参见序列及相关信息部分. *
Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing;Min Sun等;BMC Plant Biology;第20卷(第1期);第323页,参见全文 *
水稻锌指蛋白基因OsBBX24响应热胁迫的研究;张超等;分子植物育种(第06期);第11-17页,参见全文 *

Also Published As

Publication number Publication date
CN116396969A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN108948164B (zh) 甘薯耐盐抗旱相关蛋白IbbZIP1及其编码基因与应用
CN108841841B (zh) 一种番茄转录因子SlbZIP6的克隆及其在抗高温胁迫中的应用
CN107541520B (zh) 与水稻根发育和抗逆性相关OsSAUR11基因及编码蛋白与应用
Zhao et al. Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowii
CN110734482B (zh) 一种岷江百合WRKY转录因子基因LrWRKY4及应用
CN114703226B (zh) 水稻OsUBC27基因或其编码的蛋白在提高水稻产量中的应用
CN112898391B (zh) 枳抗寒基因PtrERF9在植物抗寒遗传改良中的应用
CN111909941B (zh) 一种百合转录因子基因LrWRKY-L1及应用
AU2020100800A4 (en) Use of aegilops tauschii hmt1 gene
CN112175965A (zh) 增强水稻稻瘟病和白叶枯病抗性的基因、蛋白及提高水稻稻瘟病和白叶枯病抗性的方法
CN111454972B (zh) 枳抗寒基因PtrBADH及其在植物抗寒遗传改良中的应用
CN111593058A (zh) Bna-miR169n基因及其在控制甘蓝型油菜抗旱性中的应用
Sarangi et al. Agrobacterium-mediated genetic transformation of indica rice varieties involving Am-SOD gene
CN112430584B (zh) 一种杜梨泛素连接酶基因、编码蛋白及其在植物抗旱遗传改良中的应用
CN111778226B (zh) 一种水稻耐碱胁迫相关的质膜H+-ATPase蛋白及其应用
CN106554964B (zh) 棉花GbABR1基因在抗黄萎病中的应用
CN111057707B (zh) 转基因抗虫玉米2hvb4外源插入片段的旁侧序列及其检测方法
CN114507674B (zh) 茶树昼夜节律基因lux在提高植物抗寒性上的应用
CN116396969B (zh) 一种狼尾草耐热相关rwp基因及其应用
CN116496373A (zh) MYBHv33转录因子在植物抗盐性中的应用
CN111171124B (zh) 一种植物抗逆性相关蛋白VvIAA18及编码基因与应用
CN116606358A (zh) GmTLP8蛋白及其编码基因在调控植物耐逆性中的应用
Liu et al. Saussurea involucrata SIDhn2 gene confers tolerance to drought stress in upland cotton
CN105925589B (zh) 一种紫花苜蓿抗盐碱基因MsFLS及其编码蛋白与应用
CN118620908A (zh) 一种狼尾草耐热相关c2h2基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant