CN116387500A - 一种富锂层状氧化物材料及其制备方法与应用 - Google Patents

一种富锂层状氧化物材料及其制备方法与应用 Download PDF

Info

Publication number
CN116387500A
CN116387500A CN202211638986.6A CN202211638986A CN116387500A CN 116387500 A CN116387500 A CN 116387500A CN 202211638986 A CN202211638986 A CN 202211638986A CN 116387500 A CN116387500 A CN 116387500A
Authority
CN
China
Prior art keywords
lithium
roasting
oxide material
layered oxide
rich layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211638986.6A
Other languages
English (en)
Inventor
李红磊
唐淼
张海天
吉长印
吕菲
徐宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin B&M Science and Technology Co Ltd
Original Assignee
Tianjin B&M Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin B&M Science and Technology Co Ltd filed Critical Tianjin B&M Science and Technology Co Ltd
Priority to CN202211638986.6A priority Critical patent/CN116387500A/zh
Publication of CN116387500A publication Critical patent/CN116387500A/zh
Priority to EP23817282.9A priority patent/EP4411886A1/en
Priority to PCT/CN2023/112871 priority patent/WO2024131093A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于电池材料领域,尤其涉及一种富锂层状氧化物材料及其制备方法与应用。本发明提供的富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。本发明通过在LLO材料中引入多种阳离子的高熵组分设计,提高了系统构型熵,从而为材料提供了高的结构稳定性和稳定的离子扩散通道;同时,熵的变化进一步影响体系热力学稳定结构和晶面能量,实现吉布斯自由能的局部最小化,诱导具有锂离子快速传输通道的{010}晶面的暴露,为离子快速迁移提供了更多通道,提高电极反应动力学。实验结果表明:本发明提供的富锂层状氧化物材料作为锂电池正极材料使用时具有高的倍率性能与长的循环稳定性。

Description

一种富锂层状氧化物材料及其制备方法与应用
技术领域
本发明属于电池材料领域,尤其涉及一种富锂层状氧化物材料及其制备方法与应用。
背景技术
近年来新能源汽车的快速发展对锂二次电池的能量密度、循环寿命和功率密度提出了更高的要求,而正极材料是锂二次电池性能突破的关键因素。富锂层状氧化物正极材料(LLO)具有超过250mAh/g的高比容量和4.8V的高工作电压,并且成本低廉,受到研究者的广泛关注。但是,首次充电过程中电化学惰性Li2MnO3组分的电化学活化,在带来高容量和能量密度的同时,也引起材料表面结构的转变,表现为过渡金属离子的迁移、晶格错位、氧空位的产生与转移,导致缓慢的锂离子动力学和严重的电池容量衰减。
通常而言,离子传输动力学很大程度上取决于电极材料的主体结构和离子扩散通道。稳定的主体结构可以避免晶格和扩散通道的坍塌,有利于稳定实现可逆的离子嵌入与脱出。和传统层状正极材料一样,LLO材料的锂离子脱嵌方向均沿平行于(001)晶面方向,因此具有暴露的{010}晶面的材料设计,包括(010)、(110)、(100)、(0-10)、(1-10)和(-100)平面,可以降低Li脱嵌势垒,提高锂离子扩散速度。然而,相关研究表明LLO材料中{010}晶面表面能较高,生长速度大于低表面能晶面,最终在晶体生长过程中消失。因此,特殊优势晶面暴露的LLO材料的合成依旧是一个难点。
高熵材料,是近年来提出的一类含有5种及以上元素,并以等摩尔或近摩尔比相互固溶而得到的单一相材料,在热力学、动力学、微观结构和性能等方面表现出独特的效应,即高熵效应、迟滞扩散效应、晶格畸变效应等。因此,结合高熵材料的组分设计优势,优化LLO层状材料的结构特征,开发具有高倍率、长寿命的锂电池正极材料,具有十分重要的意义。
发明内容
有鉴于此,本发明的目的在于提供一种富锂层状氧化物材料及其制备方法与应用,本发明提供的富锂层状氧化物材料的{010}晶面大面积暴露,作为锂电池正极材料使用时具有较高的倍率性能和循环寿命。
本发明提供了一种富锂层状氧化物材料,所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。
优选的,所述{010}晶面的面积占为30~45%。
优选的,所述富锂层状氧化物材料的构型熵值为6.0~9.0。
优选的,所述富锂层状氧化物材料的化学式为Li(LiaNabMncNidCoeMf)O2,其中,M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种,0<a≤0.3,0<b≤0.05,0.4<c≤0.7,d>0,e>0,f>0,且a+b+c+d+e+f=1。
本发明提供了一种富锂层状氧化物材料的制备方法,包括以下步骤:
制备锰镍钴氢氧化物前驱体,将所述锰镍钴氢氧化物前驱体、锂源化合物、钠源化合物和M源化合物混合,在有氧条件下焙烧,得到富锂层状氧化物材料;
所述M源化合物中的M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种;
所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。
优选的,所述制备锰镍钴氢氧化物前驱体的具体步骤包括:
a)将锰的可溶性盐、镍的可溶性盐、钴的可溶性盐和水混合,得到混合盐溶液;
b)将所述混合盐溶液、氢氧化钠和络合剂混合,并控制所述氢氧化钠和络合剂的用量使混合体系的pH值维持在10~13进行络合与沉淀反应,得到沉淀物;
c)将所述沉淀物进行洗涤和干燥,得到锰镍钴氢氧化物前驱体。
优选的,所述具体步骤满足以下条件中的至少一个条件:
所述锰的可溶性盐为锰的硫酸盐、锰的氯化物和锰的硝酸盐中的一种或多种;
所述镍的可溶性盐为镍的硫酸盐、镍的氯化物和镍的硝酸盐中的一种或多种;
所述钴的可溶性盐为钴的硫酸盐、钴的氯化物和钴的硝酸盐中的一种或多种;
所述络合剂为氨水、乙二胺四乙酸和乙二胺中的一种或多种;
所述混合盐溶中金属离子的总浓度为1~3mol/L;
所述氢氧化钠以氢氧化钠水溶液的形式参与混合,所述氢氧化钠水溶液的浓度为0.5~3mol/L;
所述络合剂以络合剂水溶液的形式参与混合,所述络合剂水溶液的浓度为1~10mol/L;
所述络合与沉淀反应的搅拌速率为200~800r/min;
所述络合与沉淀反应的温度为30~70℃;
所述络合与沉淀反应的时间为10~50h。
优选的,所述锂源化合物为LiOH、Li2CO3、Li2SO4、LiCl和LiNO3中的一种或多种;所述钠源化合物为Na2CO3和/或NaHCO3;所述M源化合物为M的氧化物、M的氢氧化物、M的碳酸盐和M的硫酸盐中的一种或多种。
优选的,所述焙烧的方式为分步焙烧,具体过程包括:
i)从环境温度升温至第一焙烧温度,进行一次保温焙烧;
所述第一焙烧温度为300~600℃;升温至所述第一焙烧温度的升温速率为1~5℃/min;所述一次保温焙烧的时间为2~8h;
ii)继续升温至第二焙烧温度,进行二次保温焙烧;
所述第二焙烧温度为800~1000℃;升温至所述第二焙烧温度的升温速率为1~5℃/min;所述二次保温焙烧的时间为10~20h;
焙烧过程中,持续向所用焙烧设备中通入含氧气体,步骤i)的含氧气体进气速率为0.5~5m3/h,步骤ii)的含氧气体进气速率为0.5~5m3/h。
本发明提供了一种锂离子二次电池,所述锂离子二次电池的正极材料包括上述技术方案所述的富锂层状氧化物材料或上述技术方案所述制备方法制得的富锂层状氧化物材料。
本发明提供了一种用电装置,所述用电装置安装有上述技术方案所述的锂离子二次电池。
与现有技术相比,本发明提供了一种富锂层状氧化物材料及其制备方法与应用。本发明提供的富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。本发明通过在LLO材料中引入多种阳离子的高熵组分设计,提高了系统构型熵,从而为材料提供了高的结构稳定性和稳定的离子扩散通道;同时,熵的变化进一步影响体系热力学稳定结构和晶面能量,实现吉布斯自由能的局部最小化,诱导具有锂离子快速传输通道的{010}晶面的暴露,使{010}晶面的面积占比>20%,为离子快速迁移提供了更多通道,提高电极反应动力学。本发明提供的富锂层状氧化物材料作为锂电池正极材料使用时具有高的倍率性能与长的循环稳定性,其在锂二次电池生产制造领域具有良好的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明提供的实施例1富锂层状氧化物材料的XRD图;
图2为本发明提供的实施例1富锂层状氧化物材料的HRTEM及其快速傅里叶变换图;
图3为本发明提供的实施例1富锂层状氧化物材料的SEM图与一次颗粒结构示意图;
图4为本发明提供的实施例1、对比例1与对比例2所制备的氧化物材料在锂二次电池测试中的循环性能对比图;
图5为本发明提供的实施例1、对比例1与对比例2所制备的氧化物材料在锂二次电池测试中的倍率性能对比图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了克服现有LLO材料的缺陷,本发明提供了一种富锂层状氧化物材料及其制备方法与应用,其所要解决的核心技术问题在于:LLO材料不可逆的相变和阴离子氧化还原反应引起的结构扭曲和过渡金属离子重排,导致缓慢的锂离子传输动力学,严重的电池容量衰减和电压衰减。为此,本发明通过多种阳离子的高熵组分设计,提高了系统构型熵,为LLO材料提供高的结构稳定性和稳定的离子扩散通道;同时,熵的变化会影响体系和晶面的能量,实现吉布斯自由能的局部最小化,诱导具有锂离子快速传输通道的{010}晶面的暴露,{010}晶面的面积占比>20%,为离子快速迁移提供更多通道,提高电极反应动力学。
需要说明的是,本发明技术方案与传统的金属离子掺杂的LLO材料相比,其关键区别在于,本发明是通过多阳离子组分设计形成高熵固溶体,这种组分设计可以提高系统构型熵,诱导具有锂离子快速传输通道的{010}晶面的暴露,从而提高材料的电化学性能;而传统的单金属离子或多金属离子掺杂,则是以较高的金属-氧键能提升晶体结构的稳定性,实现材料电化学性能的提升。
本发明的原理如下:
多组分材料体系中的构型熵(Sconfig)主要依赖于元素的种类及其摩尔分数,可以根据以下公式量化:
Figure BDA0004007733950000051
式(1)中,xi和xj分别为阳离子和阴离子的摩尔分数,R是气体常数。
材料中不同晶面暴露的表面能一般与温度、体系中的构型熵(Sconfig)和振动熵(Svib)相关,可用公式表示为:
γ(T)=γ0–(T/A)(Sconfig+Svib) (2);
式(2)中,γ0为0K时材料的表面能,A为亥姆霍兹是自由能,T为温度。
由此可以看出,组分简单、熵值低的系统表面能主要受温度的影响,而组分多、熵值高的系统表面能主要受构型熵的影响;本发明通过多阳离子高熵组分调控,实现了特定性{010}晶面的大面积暴露,提高电极材料结构的稳定性和电化学性能。
为实现上述目的,本发明具体提出如下技术方案:
本发明提供了一种富锂层状氧化物材料,所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%,优选为30~45%,更优选为35~40%,具体可为36.4%、37.0%、37.2%、37.5%、37.4%或38.3%。
在本发明中,所述富锂层状氧化物材料的构型熵值优选为6.0~9.0,具体可为6.0、6.71、7.45、7.48、7.80、7.89、8.85或9.0。
在本发明中,所述富锂层状氧化物材料的化学通式优选为:Li(LiaNabMncNidCoeMf)O2,其中,M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种,0<a≤0.3,0<b≤0.05,0.4<c≤0.7,d>0,e>0,f>0,且a+b+c+d+e+f=1。
在本发明提供的一个实施例中,所述富锂层状氧化物材料的化学式具体为以下化学式中的任一种:
Li(Li0.18Na0.02Ni0.1552Co0.0776Mn0.5432Al0.008Ti0.016)O2
Li(Li0.14Na0.01Ni0.20825Co0.12495Mn0.4998Zr0.0170)O2
Li(Li0.14Na0.01Ni0.206125Co0.123675Mn0.4947Mg0.0085Ti0.017)O2
Li(Li0.19Na0.01Ni0.20825Co0.20825Mn0.4165Ti0.0085Zr0.0085)O2
Li(Li0.09Na0.01Ni0.2205Co0.2205Mn0.441Nb0.009Mo0.009)O2
Li(Li0.18Na0.02Ni0.1568Co0.1568Mn0.4704Zr0.008Ti0.008)O2
Li(Li0.14Na0.01Ni0.1649Co0.1649Mn0.4947Al0.0085Zr0.017)O2
本发明还提供了一种上述技术方案所述的富锂层状氧化物材料的制备方法,包括以下步骤:
制备锰镍钴氢氧化物前驱体,将所述锰镍钴氢氧化物前驱体、锂源化合物、钠源化合物和M源化合物混合,在有氧条件下焙烧,得到富锂层状氧化物材料;
所述M源化合物中的M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种;
所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。
在本发明提供的制备方法中,所述制备锰镍钴氢氧化物前驱体的具体步骤包括:
a)将锰的可溶性盐、镍的可溶性盐、钴的可溶性盐和水混合,得到混合盐溶液;
b)将所述混合盐溶液、氢氧化钠和络合剂混合,并控制所述氢氧化钠和络合剂的用量使混合体系的pH值维持在10~13进行络合与沉淀反应,得到沉淀物;
c)将所述沉淀物进行洗涤和干燥,得到锰镍钴氢氧化物前驱体。
在本发明提供的上述锰镍钴氢氧化物前驱体制备步骤中,步骤a)中,所述锰的可溶性盐优选为锰的硫酸盐、锰的氯化物和锰的硝酸盐中的一种或多种;所述镍的可溶性盐优选为镍的硫酸盐、镍的氯化物和镍的硝酸盐中的一种或多种;所述钴的可溶性盐优选为钴的硫酸盐、钴的氯化物和钴的硝酸盐中的一种或多种;所述混合盐溶中金属离子的总浓度优选为1~3mol/L,具体可为1mol/L、1.5mol/L、1.8mol/L、2mol/L、2.5mol/L或3mol/L。
在本发明提供的上述锰镍钴氢氧化物前驱体制备步骤中,步骤b)中,所述氢氧化钠优选以氢氧化钠水溶液的形式参与混合,所述氢氧化钠水溶液的浓度优选为0.5~3mol/L,具体可为0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L或3mol/L;所述络合剂优选为氨水、乙二胺四乙酸(EDTA)和乙二胺中的一种或多种;所述络合剂以络合剂水溶液的形式参与混合,所述络合剂水溶液的浓度优选为1~10mol/L,具体可为1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、4.5mol/L、5mol/L、5.5mol/L、6mol/L、6.5mol/L、7.5mol/L、8mol/L、8.5mol/L、9mol/L、9.5mol/L或10mol/L;所述混合优选在添加有水作为底液的反应釜中进行。
在本发明提供的上述锰镍钴氢氧化物前驱体制备步骤中,步骤b)中,所述混合体系的pH值具体可维持在10、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8、10.9、11、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9、12、12.1、12.2、12.3、12.4、12.5、12.7、12.8、12.9或13;所述络合与沉淀反应的搅拌速率优选为200~800r/min,具体可为200r/min、250r/min、300r/min、350r/min、400r/min、450r/min、500r/min、550r/min、600r/min、650r/min、700r/min、750r/min或800r/min;所述络合与沉淀反应的温度优选为30~70℃,具体可为30℃、35℃、40℃、45℃、50℃、55℃、56℃、60℃、65℃或70℃;所述络合与沉淀反应的时间优选为10~50h,具体可为10h、15h、20h、25h、30h、35h、40h、42h、45h或50h。
在本发明提供的上述锰镍钴氢氧化物前驱体制备步骤中,步骤c)中,所述干燥的温度优选为100~300℃,具体可为100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃或300℃。
在本发明提供的制备方法中,所述锂源化合物优选为LiOH、Li2CO3、Li2SO4、LiCl和LiNO3中的一种或多种;所述钠源化合物优选为Na2CO3和/或NaHCO3;所述M源化合物优选为M的氧化物、M的氢氧化物、M的碳酸盐和M的硫酸盐中的一种或多种。
在本发明提供的制备方法中,所述有氧条件优选为空气气氛或纯氧气氛;所述焙烧的方式优选为分步焙烧,其具体过程包括:
i)从环境温度升温至第一焙烧温度,进行一次保温焙烧;
ii)继续升温至第二焙烧温度,进行二次保温焙烧。
在本发明提供的上述焙烧过程中,步骤i)中,所述第一焙烧温度优选为300~600℃,具体可为300℃、320℃、350℃、370℃、400℃、420℃、450℃、470℃、500℃、520℃、550℃、570℃或600℃;升温至所述第一焙烧温度的升温速率优选为1~5℃/min,具体可为1℃/min、1.5℃/min、2℃/min、2.5℃/min、3℃/min、3.5℃/min、4℃/min、4.5℃/min或5℃/min;所述一次保温焙烧的时间优选为2~8h,具体可为2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h、6.5h、7h、7.5h或8h。
在本发明提供的上述焙烧过程中,步骤ii)中,所述第二焙烧温度优选为800~1000℃,具体可为800℃、810℃、820℃、830℃、840℃、850℃、860℃、870℃、880℃、890℃、900℃、910℃、920℃、930℃、940℃、950℃、960℃、970℃、980℃、990℃或1000℃;升温至所述第二焙烧温度的升温速率优选为1~5℃/min,具体可为1℃/min、1.5℃/min、2℃/min、2.5℃/min、3℃/min、3.5℃/min、4℃/min、4.5℃/min或5℃/min;所述二次保温焙烧的时间优选为10~20h,具体可为10h、10.5h、11h、11.5h、12h、12.5h、13h、13.5h、14h、14.5h、15h、15.5h、16h、16.5h、17h、17.5h、18h、18.5h、19h、19.5h或20h;
在本发明提供的上述焙烧过程中,有氧条件优选采用持续向所用焙烧设备中通入含氧气体的方式实现;其中,步骤i)的含氧气体进气速率优选为0.5~5m3/h,具体可为0.5m3/h、1m3/h、1.5m3/h、2m3/h、2.5m3/h、3m3/h、3.5m3/h、4m3/h、4.5m3/h或5m3/h;步骤ii)的含氧气体进气速率优选为0.5~5m3/h,具体可为0.5m3/h、1m3/h、1.5m3/h、2m3/h、2.5m3/h、3m3/h、3.5m3/h、4m3/h、4.5m3/h或5m3/h。
在本发明提供的制备方法中,所述焙烧结束后,优选将得到的产物冷却后进行粉碎和过筛。
本发明还提供了一种锂离子二次电池,包括正极、负极、电解液和介于正极与负极之间的隔膜;其中,所述正极的材料包括上述技术方案所述的富锂层状氧化物材料或上述技术方案所述制备方法制得的富锂层状氧化物材料。
本发明还提供了一种用电装置,所述用电装置安装有上述技术方案所述的锂离子二次电池。
为更清楚起见,下面通过以下实施例和对比例进行详细说明。
实施例1
按照摩尔比Ni/Co/Mn=20:10:70的比例称取硫酸镍、硫酸钴、硫酸锰,并溶解于去离子水中配制成2mol/L的混合盐溶液A;配制浓度为2mol/L的NaOH溶液B和浓度为2mol/L的氨水络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和氨水络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在11.5±0.05的范围内,反应釜内混合溶液搅拌速度设置为400r/min,反应温度为55℃,持续反应36h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为150℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、610g的碳酸锂、29.4g的碳酸钠、11.3g的三氧化二铝和17.8g的二氧化钛,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于空气气氛炉中进行两步焙烧,具体过程为:首先按照3℃/min的升温速率将炉温从室温升至550℃,在此温度下焙烧4h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h;然后按照3℃/min的升温速率将炉温继续升温至900℃,在此温度下焙烧12h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.18Na0.02Ni0.1552Co0.0776Mn0.5432Al0.008Ti0.016)O2
对本实施例制备的富锂层状氧化物材料进行X射线衍射(XRD)表征,结果如图1所示,图1为本发明提供的实施例1富锂层状氧化物材料的XRD图。通过图1可以看出,该材料除了20°~25°之间属于C2/m空间点群的单斜结构的较弱衍射峰以外,其余衍射峰可对应于六方层状结构,说明多组分设计未改变材料的体相结构特征。
对本实施例制备的富锂层状氧化物材料进行高分辨率的透射电镜(HRTEM)表征,并绘制快速傅里叶变换图谱,结果如图2所示,图2为本发明提供的实施例1富锂层状氧化物材料的HRTEM图及其快速傅里叶变换图,其中,左图为HRTEM图,右图为快速傅里叶变换图谱。通过图2可以看出,该材料的晶面间距为0.47nm,与六方相(003)晶面以及单斜结构富锂组分的(001)晶面相匹配;快速傅立叶变换图证明,该材料的顶部暴露晶面为(003)晶面。
对本实施例制备的富锂层状氧化物材料进行扫描电镜(SEM)观察,并绘制其一次颗粒的结构示意图,结果如图3所示,图3为本发明提供的实施例1富锂层状氧化物材料的SEM图与一次颗粒结构示意图,其中,左图为SEM图,右图为一次颗粒的结构示意图。通过图3中的左图可以看出,该材料由直径约1μm的多面体团聚而成;根据图3中的右图可以看出,该材料一次颗粒的顶部暴露晶面为{001}晶面,侧面为{010}晶面,{010}晶面的原子排列呈开放结构,有利于锂离子的输运。
实施例2
按照摩尔比Ni/Co/Mn=25:15:60的比例称取氯化镍、氯化钴、氯化锰,并溶解于去离子水中配制成1.8mol/L的混合盐溶液A;配制浓度为1.8mol/L的NaOH溶液B和浓度为2.5mol/L的氨水络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和氨水络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在11.8±0.05的范围内,反应釜内混合溶液搅拌速度设置为600r/min,反应温度为50℃,持续反应36h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为160℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、550g的碳酸锂、13.9g的碳酸钠和27.1g的二氧化锆,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于氧气气氛炉中进行两步焙烧,具体过程为:首先按照2.5℃/min的升温速率将炉温从室温升至500℃,在此温度下焙烧6h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为3m3/h;然后按照2.5℃/min的升温速率将炉温继续升温至880℃,在此温度下焙烧10h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为3m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.14Na0.01Ni0.20825Co0.12495Mn0.4998Zr0.0170)O2
实施例3
按照摩尔比Ni/Co/Mn=25:15:60的比例称取氯化镍、氯化钴、氯化锰,并溶解于去离子水中配制成2.5mol/L的混合盐溶液A;配制浓度为2mol/L的NaOH溶液B和浓度为3mol/L的乙二胺络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和乙二胺络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在11.6±0.05的范围内,反应釜内混合溶液搅拌速度设置为500r/min,反应温度为60℃,持续反应40h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为180℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、820g的硫酸锂、11.0g的碳酸氢钠、9.3g的碳酸镁和27.1g的二氧化钛,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于氧气气氛炉中进行两步焙烧,具体过程为:首先按照4℃/min的升温速率将炉温从室温升至550℃,在此温度下焙烧5h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为5m3/h;然后按照4℃/min的升温速率将炉温继续升温至920℃,在此温度下焙烧12h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为5m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.14Na0.01Ni0.206125Co0.123675Mn0.4947Mg0.0085Ti0.017)O2
实施例4
按照摩尔比Ni/Co/Mn=25:25:50的比例称取硫酸镍、氯化钴、硫酸锰,并溶解于去离子水中配制成3mol/L的混合盐溶液A;配制浓度为2.5mol/L的NaOH溶液B和浓度为2mol/L的EDTA络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和EDTA络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在12.0±0.05的范围内,反应釜内混合溶液搅拌速度设置为600r/min,反应温度为65℃,持续反应45h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为160℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、580g的碳酸锂、11.0g的碳酸氢钠、8.9g的二氧化钛和13.5g的二氧化锆,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于空气气氛炉中进行两步焙烧,具体过程为:首先按照2℃/min的升温速率将炉温从室温升至600℃,在此温度下焙烧4h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为3m3/h;然后按照2℃/min的升温速率将炉温继续升温至950℃,在此温度下焙烧10h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为3m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.19Na0.01Ni0.20825Co0.20825Mn0.4165Ti0.0085Zr0.0085)O2
实施例5
按照摩尔比Ni/Co/Mn=25:25:50的比例称取氯化镍、硫酸钴、氯化锰,并溶解于去离子水中配制成1.5mol/L的混合盐溶液A;配制浓度为1mol/L的NaOH溶液B和浓度为2mol/L的氨水络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和氨水络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在12.5±0.05的范围内,反应釜内混合溶液搅拌速度设置为800r/min,反应温度为60℃,持续反应40h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为150℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、570g的氢氧化锂、10.4g的碳酸氢钠、29.5g的五氧化二铌和16.2g的三氧化钼,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于氧气气氛炉中进行两步焙烧,具体过程为:首先按照4℃/min的升温速率将炉温从室温升至600℃,在此温度下焙烧3h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为2m3/h;然后按照4℃/min的升温速率将炉温继续升温至980℃,在此温度下焙烧15h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为2m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.09Na0.01Ni0.2205Co0.2205Mn0.441Nb0.009Mo0.009)O2
实施例6
按照摩尔比Ni/Co/Mn=20:20:60的比例称取氯化镍、硫酸钴、氯化锰,并溶解于去离子水中配制成2.5mol/L的混合盐溶液A;配制浓度为1.5mol/L的NaOH溶液B和浓度为5mol/L的乙二胺络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和乙二胺络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在11.3±0.05的范围内,反应釜内混合溶液搅拌速度设置为600r/min,反应温度为55℃,持续反应50h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为160℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、670g的氢氧化锂、29.4g的碳酸钠、13.5g的二氧化锆和8.9g的二氧化钛,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于空气气氛炉中进行两步焙烧,具体过程为:首先按照3℃/min的升温速率将炉温从室温升至550℃,在此温度下焙烧6h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为3m3/h;然后按照3℃/min的升温速率将炉温继续升温至960℃,在此温度下焙烧12h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为3m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.18Na0.02Ni0.1568Co0.1568Mn0.4704Zr0.008Ti0.008)O2
实施例7
按照摩尔比Ni/Co/Mn=20:20:60的比例称取氯化镍、硫酸钴、氯化锰,并溶解于去离子水中配制成1.8mol/L的混合盐溶液A;配制浓度为2.5mol/L的NaOH溶液B和浓度为1mol/L的EDTA络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH溶液和EDTA络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在12.8±0.05的范围内,反应釜内混合溶液搅拌速度设置为750r/min,反应温度为56℃,持续反应42h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为160℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P、555g的碳酸锂、13.9g的碳酸钠、11.3g的三氧化二铝和27.1g的二氧化锆,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于氧气气氛炉中进行两步焙烧,具体过程为:首先按照3℃/min的升温速率将炉温从室温升至580℃,在此温度下焙烧6h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为5m3/h;然后按照3℃/min的升温速率将炉温继续升温至920℃,在此温度下焙烧18h,升温和保温焙烧的过程中持续向炉内通入氧气,进气速率为5m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.14Na0.01Ni0.1649Co0.1649Mn0.4947Al0.0085Zr0.017)O2
对比例1
按照摩尔比Ni/Co/Mn=20:10:70的比例称取硫酸镍、硫酸钴、硫酸锰,并溶解于去离子水中配制成2mol/L的混合盐溶液A;配制浓度为2mol/L的NaOH溶液B和浓度为2mol/L的氨水络合剂溶液C;在反应釜中加入去离子水作为底液,将溶液A、B、C同时泵入反应釜中进行络合与沉淀反应,控制NaOH碱溶液和氨水络合剂溶液的流速,使反应釜中混合反应液的pH始终保持在11.5±0.05的范围内,反应釜内混合溶液搅拌速度设置为400r/min,反应温度为55℃,持续反应36h后,将得到的沉淀物排出,去离子水洗涤并烘干,烘干温度为150℃,得到锰镍钴氢氧化物前驱体P。
称取1000g的锰镍钴氢氧化物前驱体P和620g的碳酸锂,采用高混机进行充分混合,得到混合物Q。
将上述混合物Q放置于空气气氛炉中进行两步煅烧,具体过程为:首先按照3℃/min的升温速率将炉温从室温升至550℃,在此温度下焙烧4h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h;然后按照3℃/min的升温速率将炉温继续升温至900℃,在此温度下焙烧12h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.2Ni0.16Co0.08Mn0.56)O2
对比例2
称取620g的碳酸锂、55.8g的四氧化三锰、195.6g的氢氧化镍、98.9g的氢氧化钴、29.4g的碳酸钠、11.3g的三氧化二铝和17.8g的二氧化钛,将上述原材料加入至1000mL去离子水中,搅拌混合均匀,得到混合物A。
将混合物A通过蠕动泵泵入喷雾干燥设备,入液速率设置为0.8L/min,喷雾干燥进风温度设置为250℃,出风温度设置为120℃,载气速率设置为50L/min,高温下混合物中液体蒸发得到金属离子均匀混合的粉末B。
将上述粉末B放置于空气气氛炉中进行两步焙烧,具体过程为:首先按照3℃/min的升温速率将炉温从室温升至550℃,在此温度下焙烧4h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h;然后按照3℃/min的升温速率将炉温继续升温至900℃,在此温度下焙烧12h,升温和保温焙烧的过程中持续向炉内通入空气,进气速率为2.5m3/h。
焙烧结束后,随炉冷却,然后将产物进行粉碎,过筛,得到富锂层状氧化物材料Li(Li0.18Na0.02Ni0.1552Co0.0776Mn0.5432Al0.008Ti0.016)O2
性能效果评价
通过公式(1)计算实施例1~7和对比例1~2所制备的氧化物材料的构型熵,并通过SEM图计算上述材料中{010}晶面的暴露面积占比。结果如表1所示:
表1
Figure BDA0004007733950000151
Figure BDA0004007733950000161
在扣式锂二次电池中测试实施例1~7和对比例1~2所制备的氧化物材料作为锂二次电池正极材料时的电化学性能,锂二次电池及其正极极片的具体制作方式为:将所制备的正极材料粉末与乙炔黑、聚偏氟乙烯按照90:5:5的质量比混合,加入适量的N-甲基吡咯烷酮作为分散剂,研磨成浆料;随后将浆料均匀涂覆在铝箔上,120℃真空干燥10h,用对辊机将干燥好的极片进行辊压,使用切片机对铝箔进行裁剪,裁成直径为1.3cm的圆形极片,活性材料的负载量控制在10mg/cm2左右;在氩气气氛手套箱中组装半电池,水分压≤0.1ppm,氧分压≤0.1ppm;以金属锂为对电极,以1M LiPF6(FEC/EC/DMC,体积比为1:1:1)溶液为电解液,组装规格为CR2032型扣式电池,使用恒流充放电模式在室温条件下进行充放电,电压范围为2.0~4.65V,电流密度为50mA/g(0.2C倍率)进行充放电循环100圈;通过电化学阻抗EIS测试对比不同材料的锂离子扩散系数,测试的频率范围为100kHz~0.01Hz;电池倍率性能测试电流密度为50mA/g、500mA/g、1250mA/g、2500mA/g,分别对应0.2C、2C、5C、10C。
实施例1与对比例1~2所制备的氧化物材料在锂二次电池测试中的循环性能测试结果如图4所示,图4为本发明提供的实施例1、对比例1与对比例2所制备的氧化物材料在锂二次电池测试中的循环性能对比图;实施例1~7与对比例1~2所制备的氧化物材料在锂二次电池测试中的首周充电比容量、首周放电比容量、首周库伦效率,100周后容量保持率以及锂离子扩散系数数据如表2所示:
表2
Figure BDA0004007733950000162
Figure BDA0004007733950000171
实施例1与对比例1~2所制备的氧化物材料在锂二次电池测试中的倍率性能测试结果如图5所示,图5为本发明提供的实施例1、对比例1与对比例2所制备的氧化物材料在锂二次电池测试中的倍率性能对比图;实施例1~7与对比例1~2所制备的氧化物材料在锂二次电池测试中的倍率性能数据如表3所示:
表3
Figure BDA0004007733950000172
通过对比分析表1~3以及图4~5可以看出:1)实施例1~7与对比例1所制备的氧化物材料的构型熵值与{010}晶面的暴露比例呈正相关;2)对比例2虽然引入了多种阳离子的高熵组分设计,构型熵与实施例1相同,但由于采用的喷雾干燥工艺,相较于实施例1的共沉淀反应制备前驱体后混锂煅烧工艺,晶面调控阻力更大,而未能实现{010}晶面的大面积暴露;3)以实施例1~7所制备的氧化物材料作为正极材料的锂二次电池表现出更高的锂离子扩散速率,且循环100周后容量保持率明显高于对比例1~2;4)以实施例1~7所制备的氧化物材料作为正极材料的锂二次电池在10C高倍率下放电容量保持率(10C放电容量/0.2C放电容量)均远高于对比例1~2。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

1.一种富锂层状氧化物材料,其特征在于,所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。
2.根据权利要求1所述的富锂层状氧化物材料,其特征在于,所述{010}晶面的面积占为30~45%。
3.根据权利要求1所述的富锂层状氧化物材料,其特征在于,所述富锂层状氧化物材料的构型熵值为6.0~9.0。
4.根据权利要求1~3任一项所述的富锂层状氧化物材料,其特征在于,所述富锂层状氧化物材料的化学式为Li(LiaNabMncNidCoeMf)O2,其中,M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种,0<a≤0.3,0<b≤0.05,0.4<c≤0.7,d>0,e>0,f>0,且a+b+c+d+e+f=1。
5.一种富锂层状氧化物材料的制备方法,其特征在于,包括以下步骤:
制备锰镍钴氢氧化物前驱体,将所述锰镍钴氢氧化物前驱体、锂源化合物、钠源化合物和M源化合物混合,在有氧条件下焙烧,得到富锂层状氧化物材料;
所述M源化合物中的M为Mg、B、Al、Ti、Zr、Nb、Mo和W中的一种或多种;
所述富锂层状氧化物材料的一次颗粒为{010}晶面暴露的多面体,且{010}晶面的面积占比>20%。
6.根据权利要求5所述的制备方法,其特征在于,所述制备锰镍钴氢氧化物前驱体的具体步骤包括:
a)将锰的可溶性盐、镍的可溶性盐、钴的可溶性盐和水混合,得到混合盐溶液;
b)将所述混合盐溶液、氢氧化钠和络合剂混合,并控制所述氢氧化钠和络合剂的用量使混合体系的pH值维持在10~13进行络合与沉淀反应,得到沉淀物;
c)将所述沉淀物进行洗涤和干燥,得到锰镍钴氢氧化物前驱体。
7.根据权利要求6所述的制备方法,其特征在于,所述具体步骤满足以下条件中的至少一个条件:
所述锰的可溶性盐为锰的硫酸盐、锰的氯化物和锰的硝酸盐中的一种或多种;
所述镍的可溶性盐为镍的硫酸盐、镍的氯化物和镍的硝酸盐中的一种或多种;
所述钴的可溶性盐为钴的硫酸盐、钴的氯化物和钴的硝酸盐中的一种或多种;
所述络合剂为氨水、乙二胺四乙酸和乙二胺中的一种或多种;
所述混合盐溶中金属离子的总浓度为1~3mol/L;
所述氢氧化钠以氢氧化钠水溶液的形式参与混合,所述氢氧化钠水溶液的浓度为0.5~3mol/L;
所述络合剂以络合剂水溶液的形式参与混合,所述络合剂水溶液的浓度为1~10mol/L;
所述络合与沉淀反应的搅拌速率为200~800r/min;
所述络合与沉淀反应的温度为30~70℃;
所述络合与沉淀反应的时间为10~50h。
8.根据权利要求5所述的制备方法,其特征在于,所述锂源化合物为LiOH、Li2CO3、Li2SO4、LiCl和LiNO3中的一种或多种;所述钠源化合物为Na2CO3和/或NaHCO3;所述M源化合物为M的氧化物、M的氢氧化物、M的碳酸盐和M的硫酸盐中的一种或多种。
9.根据权利要求5所述的制备方法,其特征在于,所述焙烧的方式为分步焙烧,具体过程包括:
i)从环境温度升温至第一焙烧温度,进行一次保温焙烧;
所述第一焙烧温度为300~600℃;升温至所述第一焙烧温度的升温速率为1~5℃/min;所述一次保温焙烧的时间为2~8h;
ii)继续升温至第二焙烧温度,进行二次保温焙烧;
所述第二焙烧温度为800~1000℃;升温至所述第二焙烧温度的升温速率为1~5℃/min;所述二次保温焙烧的时间为10~20h;
焙烧过程中,持续向所用焙烧设备中通入含氧气体,步骤i)的含氧气体进气速率为0.5~5m3/h,步骤ii)的含氧气体进气速率为0.5~5m3/h。
10.一种锂离子二次电池,其特征在于,所述锂离子二次电池的正极材料包括权利要求1~4任一项所述的富锂层状氧化物材料或权利要求5~9任一项所述制备方法制得的富锂层状氧化物材料。
11.一种用电装置,其特征在于,所述用电装置安装有权利要求10所述的锂离子二次电池。
CN202211638986.6A 2022-12-20 2022-12-20 一种富锂层状氧化物材料及其制备方法与应用 Pending CN116387500A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211638986.6A CN116387500A (zh) 2022-12-20 2022-12-20 一种富锂层状氧化物材料及其制备方法与应用
EP23817282.9A EP4411886A1 (en) 2022-12-20 2023-08-14 Lithium-rich layered oxide material, preparation method therefor, and use thereof
PCT/CN2023/112871 WO2024131093A1 (zh) 2022-12-20 2023-08-14 富锂层状氧化物材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211638986.6A CN116387500A (zh) 2022-12-20 2022-12-20 一种富锂层状氧化物材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116387500A true CN116387500A (zh) 2023-07-04

Family

ID=86969919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211638986.6A Pending CN116387500A (zh) 2022-12-20 2022-12-20 一种富锂层状氧化物材料及其制备方法与应用

Country Status (3)

Country Link
EP (1) EP4411886A1 (zh)
CN (1) CN116387500A (zh)
WO (1) WO2024131093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024131093A1 (zh) * 2022-12-20 2024-06-27 天津巴莫科技有限责任公司 富锂层状氧化物材料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694165A (zh) * 2012-06-08 2012-09-26 天津理工大学 一种高容量富锂层状晶体结构锂电池正极材料及其制备
CN104466158A (zh) * 2013-09-22 2015-03-25 中兴通讯股份有限公司 富锂正极材料及其制备方法
CN105810934B (zh) * 2016-05-09 2019-07-05 北京工业大学 一种稳定富锂层状氧化物材料晶畴结构方法
CN106532029A (zh) * 2016-12-28 2017-03-22 四川富骅新能源科技有限公司 一种锂离子电池高电压三元正极材料及其制备方法
CN107785551B (zh) * 2017-10-20 2020-11-27 北京工业大学 一种相结构比例梯度渐变的富锂层状氧化物材料及制备方法
CN111446444B (zh) * 2020-03-03 2021-06-15 北京当升材料科技股份有限公司 一种富锂锰基材料及其制备方法和应用
CN112919553B (zh) * 2021-01-28 2022-10-18 广东邦普循环科技有限公司 一种正极材料前驱体及其制备方法和应用
CN116387500A (zh) * 2022-12-20 2023-07-04 天津巴莫科技有限责任公司 一种富锂层状氧化物材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024131093A1 (zh) * 2022-12-20 2024-06-27 天津巴莫科技有限责任公司 富锂层状氧化物材料及其制备方法与应用

Also Published As

Publication number Publication date
WO2024131093A1 (zh) 2024-06-27
EP4411886A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN108878799B (zh) 一种介孔硅酸铝锂包覆的掺杂型单晶三元正极材料及其制备方法
CN115000399B (zh) 一种类球状钠离子电池正极材料及其制备方法和钠离子电池
CN106602015A (zh) 一种氟掺杂的镍钴锰系三元正极材料的制备方法及制得的材料
CN113130901B (zh) 一种钛掺杂高镍三元锂离子电池正极材料及其制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN111554920A (zh) 一种含钠离子富锂锰基正极材料、其前驱体及制备方法
CN110540254A (zh) 一种硼镁共掺杂梯度镍钴锰酸锂正极材料及其制备方法
CN112701273B (zh) 一种氟掺杂富锂锰基正极材料的制备方法
CN112086616A (zh) 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
CN112340785B (zh) 一种掺杂型高镍三元材料及其制备方法
CN106910887A (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
CN115663173A (zh) 一种富钠层状氧化物材料及其制备方法和应用
CN113772748B (zh) 一种锂离子电池正极材料的制备方法
CN109888225A (zh) 正极材料及其制备方法和锂离子电池
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN113690430A (zh) 一种实现精确配锂的富锂锰基正极材料及其制备方法和应用
CN115663134A (zh) 一种新型表面纳米包覆和梯度掺杂一体化修饰超高镍三元正极材料及其制备方法
EP4411886A1 (en) Lithium-rich layered oxide material, preparation method therefor, and use thereof
CN114597378A (zh) 一种超高镍多晶正极材料及其制备方法和应用
WO2024131123A1 (zh) 富镍层状氧化物材料及其制备方法和应用
CN103413928B (zh) 高容量高压实金属氧化物正极材料及其制备方法
CN109616663B (zh) 镍钴铝三元正极材料、制备方法及锂离子电池
CN116856058A (zh) 一种单晶富锂材料及其制备方法和储能装置
CN111370666A (zh) 正极材料、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination