CN111370666A - 正极材料、其制备方法及应用 - Google Patents

正极材料、其制备方法及应用 Download PDF

Info

Publication number
CN111370666A
CN111370666A CN202010194573.8A CN202010194573A CN111370666A CN 111370666 A CN111370666 A CN 111370666A CN 202010194573 A CN202010194573 A CN 202010194573A CN 111370666 A CN111370666 A CN 111370666A
Authority
CN
China
Prior art keywords
positive electrode
electrode material
crystal
nickel
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010194573.8A
Other languages
English (en)
Inventor
曹凯
王志敏
王宁
单旭意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avic Innovation Technology Research Institute Jiangsu Co ltd
China Lithium Battery Technology Co Ltd
Original Assignee
China Aviation Lithium Battery Co Ltd
China Aviation Lithium Battery Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Aviation Lithium Battery Co Ltd, China Aviation Lithium Battery Research Institute Co Ltd filed Critical China Aviation Lithium Battery Co Ltd
Priority to CN202010194573.8A priority Critical patent/CN111370666A/zh
Publication of CN111370666A publication Critical patent/CN111370666A/zh
Priority to US17/010,851 priority patent/US11569505B2/en
Priority to EP20194763.7A priority patent/EP3882216A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种正极材料,含有具有超晶格结构的晶体,晶体的化学式为xLi2MO3·(1‑x)LiNiaCobMn(1‑a‑b)O2,0<x≤0.1,0.8≤a<1,b≤0.1,所述M选自Mn、Co和Ni中的一种或几种。还公开了该正极材料的制备方法及包含该正极材料的电池或电容器。本发明的正极材料包含具有层状‑层状超晶格结构的晶体,在常规呈层状结构的高镍三元材料基础上穿叉另一种层状结构,利用两种不同层状结构之间的相互齿合,以提升产品的结构稳定性。本发明的正极材料由于锰基富锂相(Li2MnO3)的加入一定程度稀释了产品中镍的含量,镍含量的降低可有效改善电池的产气。因此,本申请可从减少产气和稳定正极结构两方面,提高电池的安全性能。

Description

正极材料、其制备方法及应用
技术领域
本发明属于化学电源领域,具体涉及一种正极材料、其制备方法及应用。
背景技术
高镍三元正极材料随着镍含量的增加,表面状态异常活跃。在充放电过程中,高镍材料与电解液反应产生大量氧气,进而影响了高镍材料的安全性能;与此同时,镍含量的提高亦会增加Li/Ni混排程度,在锂离子脱嵌过程中晶体结构容易破坏,结构稳定性降低,进而导致高镍材料的循环寿命也随之降低。这两个主要缺陷限制了高镍材料的进一步应用。
目前高镍材料主要靠四价Mn离子起稳定作用,然而随着镍含量的增加,只靠四价Mn离子的骨架支撑作用已经不能达到现在电池体系下,高电压对高镍材料材料稳定性的要求。
发明内容
为了克服上述缺陷,本发明提供一种正极材料及该正极材料的制备方法,和包含该正极材料的锂离子电池或电容器。
本发明的一方面提供一种正极材料,所述正极材料含有具有超晶格结构的晶体,所述晶体的化学式为xLi2MO3·(1-x)LiNiaCobMn(1-a-b)O2,0<x≤0.1,0.8≤a<1,b≤0.1,所述M选自Mn、Co和Ni中的一种或几种。
本发明的另一方面提供一种该正极材料的制备方法,包括:对含有镍离子、锰离子和钴离子的溶液在搅拌条件下将pH值调解至10-12,反应完成后在50-90℃下陈化5-12h,经分离、洗涤、干燥得到前驱体;及将锂源化合物与得到的前驱体混合均匀,并置于600℃-1000℃下烧结6-15h。
本发明的另一方面提供一种包含上述正极材料的锂离子电池或电容器。
本发明的正极材料包含具有层状-层状超晶格结构的晶体,在常规呈层状结构的高镍三元材料基础上穿叉另一种层状结构,利用两种不同层状结构之间的相互齿合,以提升产品的结构稳定性。本发明的正极材料由于富锂相(Li2MO3)的加入一定程度稀释了产品中镍的含量,镍含量的降低可有效改善电池的产气。因此,本申请可从减少产气和稳定正极结构两方面,提高电池的安全性能。
附图说明
通过参照附图详细描述其示例实施方式,本发明的上述和其它特征及优点将变得更加明显。
图1是实施例1中所得正极材料的扫描电镜图。
图2是实施例1中所得正极材料的XRD图谱。
图3是实施例1中所得正极材料与LiNi0.8Co0.1Mn0.1O2的DSC曲线。
图4是实施例1中所得正极材料组装成电池的首次充放电曲线。
具体实施方式
下面结合具体实施方式对本发明作详细说明。
本发明的正极材料,含有具有超晶格结构的晶体,晶体的化学式为xLi2MO3·(1-x)LiNiaCobMn(1-a-b)O2,0<x≤0.1,0.8≤a<1,b≤0.1,所述M选自Mn、Co和Ni中的一种或几种。富锂相Li2MO3是层状材料,具有很稳定的晶体结构。在材料中富锂相Li2MO3的摩尔含量在大于0-10%之间,可以选择在该范围内的任何值,例如1%、2%、3%、4%、5%、6%、7%、8%、9%等。少量的富锂相可以在原子尺度对高镍材料LiNiaCobMn(1-a-b)O2进行纳米尺度掺杂,协同作用可以使高镍材料的晶体结构框架更加的稳定,同时可以降低Li/Ni混排程度,提高镍基材料的结构稳定性。并且富锂相材料具有稳定的表面结构,与高镍材料原位结合形成镍基富锂正极材料可以稳定高镍材料的表面状态,降低高镍三元的风险系数,提高高镍材料的安全性能。
在优选的实施方式中,富锂相Li2MO3为Li2MnO3
在优选的实施方式中,晶体中还可以包括掺杂元素,包括掺杂元素的晶体的化学式为xLi2MO3·(1-x)LiNiaCobMn(1-a-b-c)M1cO2,c≤0.03。其中掺杂元素M1可以是任何适当的掺杂元素,优选选自Zr、Ti、Al、Mg、Y等过渡金属元素中的一种或多种。
在优选的实施方式中,晶体外存在包覆层,包覆层中所涉及的材料的具体种类并没有特别的限制,可根据需求进行选择。优选,包覆层可以包括氧化物、氟化物、磷酸盐、聚合物中的一种或多种。包覆层的含量可以是任何适当的含量,例如可以是包覆前的整个材料的总重量的0.03~1%。
制备上述正极材料可以包括如下步骤:制备前驱体步骤和烧结步骤。首先形成含有Ni、Co和Mn的前驱体,然后将前驱体与锂源化合物混合烧结得到正极材料。具体而言,正极材料的制备方法包括:对含有镍离子、锰离子和钴离子的溶液在搅拌条件下将pH值调解至10-12,反应完成后在50-90℃下陈化5-12h,经分离、洗涤、干燥得到前驱体。然后进行烧结步骤,将锂源化合物与得到的前驱体混合均匀,并置于600℃-1000℃下烧结6-15h。
在优选的实施方式中,前驱体可以为碳酸盐或氢氧化物。
在优选的实施方式中,锂源化合物可以为LiOH·H2O、Li2CO3、LiNO3、CH3COOLi·2H2O中的一种或几种,锂源化合物的混合量是理论化学剂量的1.05-1.2倍。
在优选的实施方式中,还可以在烧结步骤进行体相掺杂,即将含有掺杂元素的化合物与锂源化合物和前驱体混合均匀进行烧结,掺杂元素选自Zr、Ti、Al、Mg、Y中的一种或多种。
在优选的实施方式中,还可以包括对烧结后的材料进行液相包覆形成包覆层,包覆层包括氧化物、氟化物、磷酸盐、聚合物中的一种或几种。
本发明的正极材料适用于锂离子电池或超级电容器中。
以下通过具体实例进一步描述本申请。不过这些实例仅仅是范例性的,并不对本发明的保护范围构成任何限制。
在下述实施例和对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均可商购获得。
实施例1
将一定体积的硫酸镍,钴,锰溶液与过量2%摩尔的氢氧化钠溶液同时通过蠕动泵以580μL·min-1的进料速度滴加到母液中。镍,钴,锰的摩尔比列为72:9:19,物料的反应温度为50℃,pH控制在10,同时顶置搅拌杆以400rmp·min-1的转速剧烈搅拌,反应过程中加入氮气保护。陈化10h后,将得到的氢氧化物前驱体先进行抽滤,然后一定体积蒸馏水中清洗两次,最后在100℃下真空干燥6h,得到的干燥前驱体。将前驱体与一定摩尔比的LiOH充分研磨混合,然后在马弗炉中以5℃·min-1的加热速度先500℃预煅烧5h,而后800℃下煅烧12h,就得到了富锂镍基正极材料0.1Li2MnO3-0.9LiNi0.8Co0.1Mn0.1O2
图1示出本实施例得到的富锂镍基正极材料的SEM图。从SEM图上可以看出,此富锂镍基正极材料为微米级的单晶颗粒,大小颗粒掺混有利于提高材料的振实和压实密度,适于实际应用。
图2示出本实施例得到富锂镍基正极材料的XRD谱图。从图中可以看出,该材料的绝大部分衍射峰属于空间群为R-3m的α-NaFeO2结构,在20°到23°产生了超晶格衍射峰,表明本实施例得到的正极材料含有超晶格结构。
图3示出本实施例得到的富锂镍基正极材料与高镍LiNi0.8Co0.1Mn0.1O2(NCM811)的DSC曲线。通过DSC曲线可以看出,本实施例得到的富锂镍基材料的起峰温度比NCM11高,峰强和比NCM811低,表明该材料相较于NCM811热稳定性更高。
实施例2
将一定体积的乙酸镍,钴,锰溶液与过量3%摩尔的碳酸钠溶液同时通过蠕动泵以1000μL·min-1的进料速度滴加到装有碳酸钠的母液中。镍,钴,锰的摩尔比列为76:9.5:14.5,物料的反应温度为55℃,pH=11,同时顶置搅拌杆以500rmp·min-1的转速剧烈搅拌,反应过程中加入氩气保护。陈化5h后得到的碳酸盐前驱体先进行抽滤,然后在800mL蒸馏水中清洗两次,最后在120℃下真空干燥8h,得到的干燥前驱体。将得到的前驱体与一定摩尔比的LiOH充分研磨混合,然后在马弗炉中以5℃·min-1的加热速度先500℃预煅烧5h,而后600℃下煅烧10h,就得到了富锂镍基正极材料0.05Li2MnO3-0.95LiNi0.8Co0.1Mn0.1O2
实施例3
将一定体积的硫酸镍,钴,锰溶液与过量1%摩尔的氢氧化钠溶液同时通过蠕动泵以780μL·min-1的进料速度滴加到装有氢氧化钠的母液中。镍,钴,锰的摩尔比列为83.6:6.7:9.7,物料的反应温度为60℃,pH=12,同时顶置搅拌杆以600rmp·min-1的转速剧烈搅拌,反应过程中加入氮气保护。陈化8h后得到的氢氧化物前驱体先进行抽滤,然后在700mL蒸馏水中清洗两次,最后在80℃下真空干燥10h,得到的干燥前驱体。将得到的前驱体与一定摩尔比的Li2CO3充分研磨混合,然后在马弗炉中以5℃·min-1的加热速度先500℃预煅烧5h,而后1000℃下煅烧8h,就得到了富锂正极材料0.05Li2MnO3-0.95LiNi0.88Co0.07Mn0.05O2
实施例4
将一定量的硫酸镍,钴,锰溶液与过量5%摩尔的碳酸钠溶液同时通过蠕动泵以800μL min-1的进料速度滴加到装有碳酸钠的母液中;镍,钴,锰的摩尔比列为72:19:9,物料的反应温度为45℃,pH=11,同时顶置搅拌杆以600rmp·min-1的转速剧烈搅拌,反应过程中加入氮气保护。陈化10h后得到的碳酸盐前驱体先进行抽滤,然后在900mL蒸馏水中清洗两次,最后在100℃下真空干燥8h,得到的干燥前驱体。将得到的前驱体与一定摩尔比的CH3COOLi充分研磨混合,然后在马弗炉中以5℃·min-1的加热速度先500℃预煅烧5h,而后800℃下煅烧15h,就得到了富锂正极材料0.1Li2CoO3-0.9LiNi0.8Co0.1Mn0.1O2
将实施例1-4得到的富锂镍基正极材料制作成电极片并组装成纽扣电池。具体过程为:首先把富锂正极材料、乙炔黑、PVDF按质量比8:1:1充分研磨混合后,而后加入NMP使混合物溶解,持续搅拌6h;然后使用刮刀涂布在干净的铝箔上。在120℃真空干燥12h,使用冲片机冲出直径为14mm的电极片。在布劳恩手套箱中将其组装成型号为2032的纽扣半电池。以锂片作对电极和参比电极,电解液为1摩尔的LiPF6溶解到重量比为3:5:2的碳酸乙烯酯、碳酸二甲酯和氟代碳酸乙烯酯中。将组装成的电池在深圳新威测试仪上进行充放电测试
图3示出实施例1得到富锂镍基正极材料的首次充放电曲线。通过该曲线可以得出,在充放电电压窗口为3.0-4.25V下同时充放电电流为1/3C的情况下,首次充电比容量和放电比容量分别为205.4mAh·g–1和186.4mAh·g–1,首次效率为90.75%,表现出不错的首次充放电性能。实施例1-4得到富锂镍基正极材料的首次充放电比容量和效率如表1所示。
表1
Figure BDA0002417134630000051
Figure BDA0002417134630000061
从表1可以看出实施例1-4的正极材料首次充放电比容量和首次充放电效率较好。并且实施例2-4得到的正极材料也具有超晶格结构且与没有超晶格结构的NCM811相比具有更好的热稳定性。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

1.一种正极材料,其特征在于,所述正极材料含有具有超晶格结构的晶体,所述晶体的化学式为xLi2MO3·(1-x)LiNiaCobMn(1-a-b)O2,0<x≤0.1,0.8≤a<1,b≤0.1,所述M选自Mn、Co和Ni中的一种或几种。
2.如权利要求1所述的正极材料,其特征在于,所述M为Mn。
3.如权利要求1所述的正极材料,其特征在于,所述晶体还包括掺杂元素,包括掺杂元素的晶体的化学式为xLi2MO3·(1-x)LiNiaCobMn(1-a-b-c)M1cO2,c≤0.03,所述M1选自Zr、Ti、Al、Mg、Y中的一种或多种。
4.如权利要求1所述的正极材料,其特征在于,所述晶体外存在包覆层,所述包覆层包括氧化物、氟化物、磷酸盐、聚合物中的一种或多种。
5.一种权利要求1所述的正极材料的制备方法,其特征在于,包括:
制备前驱体步骤,对含有镍离子、锰离子和钴离子的溶液在搅拌条件下将pH值调解至10-12,反应完成后在50-90℃下陈化5-12h,经分离、洗涤、干燥得到前驱体;及
烧结步骤,将锂源化合物与得到的前驱体混合均匀,并置于600℃-1000℃下烧结6-15h。
6.根据权利要求5所述的制备方法,其特征在于,所述前驱体为碳酸盐或氢氧化物。
7.根据权利要求5所述的制备方法,其特征在于,所述锂源化合物为LiOH·H2O、Li2CO3、LiNO3、CH3COOLi·2H2O中的一种或几种,所述锂源化合物的混合量是理论化学剂量的1.05-1.2倍。
8.根据权利要求5所述的制备方法,其特征在于,所述烧结步骤中,还添加含掺杂元素的化合物与锂源化合物和所述前驱体一起烧结,掺杂元素选自Zr、Ti、Al、Mg、Y中的一种或多种。
9.根据权利要求5所述的制备方法,其特征在于,还包括对烧结后的材料进行液相包覆形成包覆层,所述包覆层包括氧化物、氟化物、磷酸盐、聚合物中的一种或几种。
10.一种锂离子电池或电容器,其特征在于,包括权利要求1-4任一所述的正极材料。
CN202010194573.8A 2020-03-19 2020-03-19 正极材料、其制备方法及应用 Pending CN111370666A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010194573.8A CN111370666A (zh) 2020-03-19 2020-03-19 正极材料、其制备方法及应用
US17/010,851 US11569505B2 (en) 2020-03-19 2020-09-03 Cathode material, and preparation method and application thereof
EP20194763.7A EP3882216A1 (en) 2020-03-19 2020-09-07 Cathode material, and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010194573.8A CN111370666A (zh) 2020-03-19 2020-03-19 正极材料、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN111370666A true CN111370666A (zh) 2020-07-03

Family

ID=71209038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010194573.8A Pending CN111370666A (zh) 2020-03-19 2020-03-19 正极材料、其制备方法及应用

Country Status (3)

Country Link
US (1) US11569505B2 (zh)
EP (1) EP3882216A1 (zh)
CN (1) CN111370666A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987297A (zh) * 2020-08-26 2020-11-24 北京理工大学重庆创新中心 表面铝掺杂及磷酸钛铝锂包覆的富锂锰基正极材料及制备
CN112151798A (zh) * 2020-09-16 2020-12-29 天目湖先进储能技术研究院有限公司 一种氟化物/氧化物共包覆正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052981A1 (en) * 2009-08-27 2011-03-03 Lopez Herman A Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
CN104600283A (zh) * 2015-01-10 2015-05-06 复旦大学 一种富锂电极材料及其制备方法和应用
CN104966833A (zh) * 2015-07-28 2015-10-07 宁德时代新能源科技有限公司 正极材料、其制备方法及包含该正极材料的锂离子电池
US20150357641A1 (en) * 2013-01-25 2015-12-10 Kabushiki Kaisha Toyota Jidoshokki Active material excelling in high-voltage characteristics
CN108483516A (zh) * 2018-03-19 2018-09-04 哈尔滨工业大学 一种具有超晶格有序结构的锂离子电池正极材料及其合成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382797B1 (ko) * 2012-03-22 2014-04-08 삼성정밀화학 주식회사 리튬이온 이차전지용 양극활물질 및 그것을 포함하는 리튬이온 이차전지
KR102701080B1 (ko) 2015-10-28 2024-09-02 삼성전자주식회사 복합 양극 활물질, 이를 포함하는 양극 및 리튬 전지
KR20170073217A (ko) 2015-12-18 2017-06-28 삼성전자주식회사 복합 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 전지
KR102473532B1 (ko) * 2015-12-31 2022-12-05 삼성전자주식회사 양극 활물질 및 상기 양극 활물질을 채용한 양극과 리튬 전지
CN107665988A (zh) 2016-07-27 2018-02-06 南通亨利锂电新材料有限公司 一种锂金属氧化物层状材料及其制备方法
US20190341648A1 (en) * 2018-05-07 2019-11-07 Gm Global Technology Operaitons Llc Hole-containing electrode designs for lithium ion battery and capacitor hybrid systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052981A1 (en) * 2009-08-27 2011-03-03 Lopez Herman A Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US20150357641A1 (en) * 2013-01-25 2015-12-10 Kabushiki Kaisha Toyota Jidoshokki Active material excelling in high-voltage characteristics
CN104600283A (zh) * 2015-01-10 2015-05-06 复旦大学 一种富锂电极材料及其制备方法和应用
CN104966833A (zh) * 2015-07-28 2015-10-07 宁德时代新能源科技有限公司 正极材料、其制备方法及包含该正极材料的锂离子电池
CN108483516A (zh) * 2018-03-19 2018-09-04 哈尔滨工业大学 一种具有超晶格有序结构的锂离子电池正极材料及其合成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987297A (zh) * 2020-08-26 2020-11-24 北京理工大学重庆创新中心 表面铝掺杂及磷酸钛铝锂包覆的富锂锰基正极材料及制备
CN112151798A (zh) * 2020-09-16 2020-12-29 天目湖先进储能技术研究院有限公司 一种氟化物/氧化物共包覆正极材料及其制备方法
CN112151798B (zh) * 2020-09-16 2022-03-15 天目湖先进储能技术研究院有限公司 一种氟化物/氧化物共包覆正极材料及其制备方法

Also Published As

Publication number Publication date
EP3882216A1 (en) 2021-09-22
US20210296644A1 (en) 2021-09-23
US11569505B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
CN108123115B (zh) O2构型锂电池正极材料及其制备方法
KR101470092B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN108767216B (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
CN110492095B (zh) 一种锡掺杂的富锂锰基正极材料及其制备方法
CN113871603B (zh) 一种高镍三元正极材料及其制备方法
CN109088067B (zh) 一种低钴掺杂尖晶石-层状结构镍锰酸锂两相复合正极材料的制备方法
CN104766970A (zh) 钛酸锂包覆的锂镍锰氧的合成方法
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
CN114566632B (zh) 一种钠离子电池用的正极材料及其制备方法
CN113130901B (zh) 一种钛掺杂高镍三元锂离子电池正极材料及其制备方法
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
CN113809294A (zh) 无钴高镍三元正极材料、制法和用于制备电池正极的方法
CN111106343A (zh) 一种镧、氟共掺杂的高镍三元正极材料及其制备方法与应用
CN111952562A (zh) 一种LiZr2(PO4)3包覆的富锂材料的制备方法
CN110867577A (zh) 一种三维纳米线阵列结构的811ncm三元正极材料及其制备方法
KR20240011822A (ko) 표면 코팅된 양극재 및 이의 제조 방법, 리튬 이온 배터리
CN115732661A (zh) 一种正极活性材料及其应用
CN114784269A (zh) 一种空间群为Cmca的T2型钴酸锂正极材料及其制备方法
CN116093303A (zh) 一种钠、镧共掺杂改性富锂锰基正极材料及其制备方法
KR20180015046A (ko) 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
CN116995224A (zh) 一种层状低钴富镍正极材料及其制备方法
CN109755530B (zh) 一种高压钴酸锂正极材料的钛钡双金属氧化物表面包覆方法
CN113582253B (zh) 一种四元正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: AVIC Innovation Technology Research Institute (Jiangsu) Co.,Ltd.

Applicant after: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

Address before: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: Kaibo Energy Technology Co.,Ltd.

Applicant before: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

Address after: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: Kaibo Energy Technology Co.,Ltd.

Applicant after: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

Address before: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: CHINA AVIATION LITHIUM BATTERY RESEARCH INSTITUTE Co.,Ltd.

Applicant before: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20220110

Address after: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: AVIC Innovation Technology Research Institute (Jiangsu) Co.,Ltd.

Applicant after: Zhongchuangxin Aviation Technology Co.,Ltd.

Address before: 166 Kejiao Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: AVIC Innovation Technology Research Institute (Jiangsu) Co.,Ltd.

Applicant before: CHINA AVIATION LITHIUM BATTERY Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20200703

RJ01 Rejection of invention patent application after publication