CN116377396A - 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法 - Google Patents

一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法 Download PDF

Info

Publication number
CN116377396A
CN116377396A CN202310658825.1A CN202310658825A CN116377396A CN 116377396 A CN116377396 A CN 116377396A CN 202310658825 A CN202310658825 A CN 202310658825A CN 116377396 A CN116377396 A CN 116377396A
Authority
CN
China
Prior art keywords
antimony
selenide
copper
evaporation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310658825.1A
Other languages
English (en)
Other versions
CN116377396B (zh
Inventor
万磊
许光磊
张子硕
周儒
毛小丽
牛海红
王欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202310658825.1A priority Critical patent/CN116377396B/zh
Publication of CN116377396A publication Critical patent/CN116377396A/zh
Application granted granted Critical
Publication of CN116377396B publication Critical patent/CN116377396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法,属于铜锑硒太阳能电池技术领域。操作步骤如下:在多源热蒸发镀膜系统的真空腔室中,采用两个阶段的共蒸发镀膜;第一阶段,将硒化亚铜的束源炉、硒化锑的束源炉和镀钼玻璃升温,并保持恒定,使三者同时达到目标温度;在镀钼玻璃的表面同时蒸发沉积硒化亚铜和硒化锑;第二阶段,停止蒸发硒化亚铜,继续保持原温度蒸发硒化锑;温度降至室温,得到厚度为1000nm的铜锑硒薄膜。本发明提高了真空腔室的内部洁净度,在较低的衬底温度下即可获得结晶性较好的铜锑硒薄膜,简化了共蒸发制备工艺,增加了铜锑硒薄膜沉积后的热退火处理工艺而获得较好的薄膜结晶性。

Description

一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法
技术领域
本发明属于铜锑硒太阳能电池技术领域,具体涉及铜锑硒太阳能电池光吸收层的双源共蒸发制备方法。
背景技术
铜锑硒(CuSbSe2)太阳能电池是近几年来出现的一种新型化合物薄膜太阳能电池。其具有光吸收系数高、带隙与太阳光谱匹配的优点。其类似于传统的高效薄膜太阳能电池吸收层铜铟镓硒(CIGS),但与铜铟镓硒相比:一、其组分元素锑较铟、镓的价格低,可节约原料成本;二、其结晶温度远低于铜铟镓硒,可以大大降低衬底温度,适合制备柔性太阳能电池:铜铟镓硒薄膜共蒸发沉积的常用衬底温度为550℃,而铜锑硒的共蒸发沉积衬底温度可降至300℃左右。因此,铜锑硒被认为是最有潜力的新一代太阳能电池之一。
铜锑硒光吸收层是电池最核心的一层,目前对于该材料的文献报道较少。铜锑硒属于多元化合物半导体,物相较复杂,在制备过程中,可能会生成其他二元和三元化合物,例如Sb2Se3、Cu2Se、Cu3SbSe4、Cu3SbSe3等,增加了制备纯相铜锑硒的技术难度。铜锑硒(CuSbSe2)吸收层的制备方法分为真空法和化学溶液法两类。
其中,化学溶液法制备铜锑硒的工艺较为简单,例如采用肼溶液溶解含有铜和锑的氧化物,再将溶液旋涂在衬底上进行退火加热制备铜锑硒。但是,化学溶液法相比真空法有较为明显的缺点:首先溶剂会给薄膜引入杂质,而且杂质难以去除,例如碳元素,将影响电池的光电转换效率。其次,大部分制备前驱体溶液的溶剂都具有较强的毒性,例如肼就是剧毒物质,一旦操作不当就会给操作者以及环境带来不可逆转的影响。
真空法很好地解决了以上问题,目前主流的真空法为磁控溅射、近空间升华以及共蒸发法。其中,磁控溅射制备铜锑硒薄膜,一般采用预制膜硒化的两步法工艺,但硒化过程物相复杂、较难控制,且磁控溅射和硒化两步工艺之间,薄膜样品需要暴露大气,不利于流水线生产。而近空间升华法适合小面积镀膜,大面积镀膜时难以控制均匀性。热蒸发法是一步成膜,且薄膜结晶性好、均匀致密,适合大面积镀膜及流水线生产。热蒸发制备多元半导体薄膜的常规工艺是多源共蒸发,即铜(Cu)、锑(Sb)、硒(Se)三个单质源同时蒸发到衬底的方法。这种常规工艺的缺点是:一方面,三个蒸发源以及衬底都要独立控温,增加了操控的复杂性,另一方面,由于单质硒的蒸发温度较低,真空腔室内会充满硒蒸气,污染腔室和真空泵油,并且硒蒸气会氧化腐蚀电离规灯丝、热偶丝、炉丝等零部件,造成损坏,设备维护成本较高。
发明内容
为了实现降低铜锑硒薄膜共蒸发工艺的复杂性和设备维护成本,本发明提供一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法。
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃置于多源热蒸发镀膜系统的衬底上,并且抽真空至1×10-4Pa以下;
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1100-1300℃、硒化锑的束源炉升温至500-600℃,将镀钼玻璃升温至280-360℃,并保持恒定,使三者同时达到目标温度;在镀钼玻璃的表面同时蒸发沉积硒化亚铜和硒化锑,持续蒸镀10-30min;
(3)共蒸发镀膜第二阶段,停止蒸发硒化亚铜,继续保持原温度蒸发硒化锑,时间10-60min;
(4)降温至室温,在镀钼玻璃上得到铜锑硒薄膜;
所述铜锑硒薄膜的厚度为1100nm,薄膜平整致密,结晶性良好。
进一步限定的技术方案如下:
步骤(1)中,所述多源热蒸发镀膜系统的蒸发源为硒化亚铜和硒化锑。
步骤(2)中,所述镀钼玻璃升温的加热方式为非接触式加热,镀钼玻璃位于石墨加热器上方,石墨加热器与镀钼玻璃底部之间的间距为1-5毫米。
步骤(2)中,硒化锑蒸发源采用双炉蒸发,即采用一对炉体和温度曲线完全相同的束源炉蒸发硒化锑。
本发明的有益技术效果体现在以下方面:
1.本发明采用分子束外延法专用的束源炉,可精确控制蒸发速率,通过共蒸发硒化亚铜和硒化锑制备铜锑硒薄膜,将蒸发源从三源减为双源,避免了使用硒单质源,降低了真空腔室的污染,降低了设备维护成本。本发明制备工艺较三源共蒸发简单,重复性好。第一阶段,由硒化物(硒化亚铜和硒化锑)直接在衬底表面发生热化学反应生成铜锑硒,反应过程更直接,更容易控制物相,第二阶段,薄膜在硒化锑气氛中的原位退火,使第一阶段得到的铜锑硒薄膜进一步提高结晶性。
2.第一阶段硒化亚铜(Cu2Se)与硒化锑(Sb2Se3)的反应机理为:Cu2Se + Sb2Se3→CuSbSe2,基于该机理进行的沉积过程有效避免了杂相生成,例如(Cu3SbSe3、Cu3SbSe4)。而对于第二阶段。硒化锑蒸发源采用双炉蒸发,即采用一对炉体和温度曲线完全相同的束源炉蒸发硒化锑,这样温度不用设置很高,且镀膜均匀,避免只采用单个硒化锑束源炉造成温度设置过高、蒸发过于剧烈,从而影响薄膜均匀性。硒化锑束源炉持续不断地蒸发出硒化锑蒸汽,在腔体中营造了较高的饱和蒸汽压,有效抑制了铜锑硒在高温下的分解(CuSbSe2 →Cu2Se + Sb2Se3),第二阶段的单独蒸发硒化锑,相当于在硒化锑气氛中进一步退火,使薄膜可以在更高的衬底温度下生长,进而提高了结晶性。
附图说明
图1是双源共蒸发的温度曲线图。
图2是实施例1得到的铜锑硒(CuSbSe2)薄膜的XRD谱图。从图中可以看出XRD峰与CuSbSe2标准粉末衍射卡片对应,证明在该实例下制备的CuSbSe2薄膜物相较纯,且结晶性好。
图3是实施例1得到的铜锑硒薄膜的SEM图。
图4是实施例1得到的铜锑硒薄膜的Raman图。
图5是实施例2、3得到的铜锑硒薄膜的XRD谱图。表明过高的硒化锑源温度会使薄膜中生成硒化锑杂相。
图6是实施例5得到的铜锑硒薄膜的XRD谱图。表明随着第二阶段硒化锑气氛原位退火时间的增加,铜锑硒的XRD峰明显变强,即薄膜结晶性提高。
具体实施方式
下面结合附图,通过实施例对本发明作进一步的说明。
实施例1
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃放置在多源热蒸发镀膜系统的衬底托盘,抽真空至1×10-4Pa,硒化亚铜、硒化锑束源炉和衬底开始升温。
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1220℃、硒化锑的束源炉升温至530℃,将镀钼玻璃升温至320℃,打开束源炉和衬底挡板,打开衬底旋转按钮,开始第一阶段镀膜,持续蒸镀12min。
(3)共蒸发镀膜第二阶段,关闭硒化亚铜束源炉挡板,并开始降温,同时维持硒化锑的束源炉和衬底上的镀钼玻璃温度不变,进行第二阶段的硒化锑气氛的蒸发镀膜,即原位热退火处理10min。
(4)在第二阶段原位热退火结束,关闭硒化锑束源炉挡板并降温,关闭衬底挡板,直至温度降至室温,得到厚度为1000nm的铜锑硒薄膜。
实施例2(对比实施例1,进一步提高了硒化锑源的温度)
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃放置在多源热蒸发镀膜系统的衬底托盘,抽真空至1×10-4Pa。
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1220℃、硒化锑的束源炉升温至540℃,将镀钼玻璃升温至320℃,打开束源炉和衬底挡板,打开衬底旋转按钮,开始第一阶段镀膜,持续蒸镀12min。
(3)共蒸发镀膜第二阶段,关闭硒化亚铜束源炉挡板,并开始降温,同时维持硒化锑的束源炉和衬底上的镀钼玻璃温度不变,进行第二阶段的硒化锑气氛的蒸发镀膜,即原位热退火处理10min。
(4)在第二阶段原位热退火结束,关闭硒化锑束源炉挡板并降温,关闭衬底挡板,直至温度降至室温,得到厚度为1000nm的铜锑硒薄膜。
实施例3(对比实施例2,继续提高硒化锑源的温度)
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃放置在多源热蒸发镀膜系统的衬底托盘,抽真空至1×10-4Pa。
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1220℃、硒化锑的束源炉升温至550℃,将镀钼玻璃升温至320℃,打开束源炉和衬底挡板,打开衬底旋转按钮,开始第一阶段镀膜,持续蒸镀12min。
(3)共蒸发镀膜第二阶段,关闭硒化亚铜束源炉挡板,并开始降温,同时维持硒化锑的束源炉和衬底上的镀钼玻璃温度不变,进行第二阶段的硒化锑气氛的蒸发镀膜,即原位热退火处理10min。
(4)在第二阶段原位热退火结束,关闭硒化锑束源炉挡板并降温,关闭衬底挡板,直至温度降至室温,得到厚度为1000nm的铜锑硒薄膜。
实施例4(对比实施例1,延长了第二阶段硒化锑气氛原位热退火的时间)
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃放置在多源热蒸发镀膜系统的衬底托盘,抽真空至1×10-4Pa。
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1220℃、硒化锑的束源炉升温至530℃,将镀钼玻璃升温至320℃,打开束源炉和衬底挡板,打开衬底旋转按钮,开始第一阶段镀膜,持续蒸镀12min。
(3)共蒸发镀膜第二阶段,关闭硒化亚铜束源炉挡板,并开始降温,同时维持硒化锑的束源炉和衬底上的镀钼玻璃温度不变,对薄膜进行第二阶段的硒化锑气氛的蒸发镀膜,即原位热退火处理20min。
(4)在第二阶段原位热退火结束,关闭硒化锑束源炉挡板并降温,关闭衬底挡板,直至温度降至室温,得到厚度为1000nm的铜锑硒薄膜。
实施例5(对比实施例4,进一步延长了第二阶段硒化锑气氛原位热退火的时间)
一种铜锑硒太阳能电池光吸收层的双源共蒸发制备操作步骤如下:
(1)将镀钼玻璃放置在多源热蒸发镀膜系统的衬底托盘,抽真空至1×10-4Pa。
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1220℃、硒化锑的束源炉升温至530℃,将镀钼玻璃升温至320℃,打开束源炉和衬底挡板,打开衬底旋转按钮,开始第一阶段镀膜,持续蒸镀12min。
(3)共蒸发镀膜第二阶段,关闭硒化亚铜束源炉挡板,并开始降温,同时维持硒化锑的束源炉和衬底上的镀钼玻璃温度不变,进行第二阶段的硒化锑气氛的蒸发镀膜,即原位热退火处理40min。
(4)在第二阶段原位热退火结束,关闭硒化锑束源炉挡板并降温,关闭衬底挡板,直至温度降至室温,得到厚度为1000nm的铜锑硒薄膜。
总结:参见图1,包括蒸发源温度曲线和衬底温度曲线,其中第一阶段为硒化亚铜和硒化锑源共蒸发,第二阶段硒化锑气氛的原位热退火则只蒸发硒化锑源。
参见图2,实施例1得到的铜锑硒薄膜的XRD谱图与标准粉末衍射卡片对比可见,铜锑硒薄膜物相较纯。
参见图3,可以看出薄膜的晶粒尺寸达到了微米级,晶界分明,平整致密。
参见图4,铜锑硒薄膜的拉曼谱图中最强峰为221cm-1,也对应为铜锑硒(CuSbSe2)相。
参见图5,可以看出随着硒化锑源蒸发温度的升高,实施例1、2、3得到的铜锑硒薄膜中硒化锑的含量逐步上升。
参见图6,可见第二阶段硒化锑气氛的原位热退火时间的延长可以进一步提升实施例1、5得到的铜锑硒薄膜的结晶性,实施例5中,原位热退火处理40min,得到的铜锑硒主峰(013)强度,明显高于实施例1中,原位热退火处理10min。
本领域的技术人员容易理解,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法,其特征在于,操作步骤如下:
(1)将镀钼玻璃置于多源热蒸发镀膜系统的衬底上,并且抽真空至1×10-4Pa以下;
(2)共蒸发镀膜第一阶段,将硒化亚铜的束源炉升温至1100-1300℃、硒化锑的束源炉升温至500-600℃,将镀钼玻璃升温至280-360℃,并保持恒定,使三者同时达到目标温度;在镀钼玻璃的表面同时蒸发沉积硒化亚铜和硒化锑,持续蒸镀10-30min;
(3)共蒸发镀膜第二阶段,停止蒸发硒化亚铜,继续保持原温度蒸发硒化锑,时间10-60min;
(4)降温至室温,在镀钼玻璃上得到铜锑硒薄膜;
所述铜锑硒薄膜的厚度为1100nm,薄膜平整致密,结晶性良好。
2.根据权利要求1所述一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法,其特征在于:步骤(1)中,所述多源热蒸发镀膜系统的蒸发源为硒化亚铜和硒化锑。
3.根据权利要求1所述一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法,其特征在于:步骤(2)中,所述镀钼玻璃升温的加热方式为非接触式加热,镀钼玻璃位于石墨加热器上方,石墨加热器与镀钼玻璃底部之间的间距为1-5毫米。
4.根据权利要求1所述一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法,其特征在于:步骤(2)中,硒化锑蒸发源采用双炉蒸发,即采用一对炉体和温度曲线完全相同的束源炉蒸发硒化锑。
CN202310658825.1A 2023-06-06 2023-06-06 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法 Active CN116377396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310658825.1A CN116377396B (zh) 2023-06-06 2023-06-06 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310658825.1A CN116377396B (zh) 2023-06-06 2023-06-06 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法

Publications (2)

Publication Number Publication Date
CN116377396A true CN116377396A (zh) 2023-07-04
CN116377396B CN116377396B (zh) 2023-08-01

Family

ID=86971684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310658825.1A Active CN116377396B (zh) 2023-06-06 2023-06-06 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法

Country Status (1)

Country Link
CN (1) CN116377396B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418072A (zh) * 2011-10-11 2012-04-18 中国科学院深圳先进技术研究院 铜铟镓硒薄膜太阳能电池的光吸收层的制备方法
CN102623571A (zh) * 2012-04-13 2012-08-01 山东大学 一种蒸发法制备铜铟镓硒太阳能电池吸收层的方法
US20140027775A1 (en) * 2012-07-24 2014-01-30 Micron Technology, Inc. Methods of forming a metal chalcogenide material, related methods of forming a semiconductor device structure, and a related semiconductor device structure
CN105244416A (zh) * 2015-10-27 2016-01-13 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的低温沉积工艺
CN106531825A (zh) * 2016-10-25 2017-03-22 河北大学 一种用于太阳能电池光吸收层的铜锑硒薄膜的制备方法
CN110819958A (zh) * 2019-11-28 2020-02-21 河北大学 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN115161610A (zh) * 2022-09-07 2022-10-11 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的制备方法
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418072A (zh) * 2011-10-11 2012-04-18 中国科学院深圳先进技术研究院 铜铟镓硒薄膜太阳能电池的光吸收层的制备方法
CN102623571A (zh) * 2012-04-13 2012-08-01 山东大学 一种蒸发法制备铜铟镓硒太阳能电池吸收层的方法
US20140027775A1 (en) * 2012-07-24 2014-01-30 Micron Technology, Inc. Methods of forming a metal chalcogenide material, related methods of forming a semiconductor device structure, and a related semiconductor device structure
CN105244416A (zh) * 2015-10-27 2016-01-13 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的低温沉积工艺
CN106531825A (zh) * 2016-10-25 2017-03-22 河北大学 一种用于太阳能电池光吸收层的铜锑硒薄膜的制备方法
CN110819958A (zh) * 2019-11-28 2020-02-21 河北大学 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN115161610A (zh) * 2022-09-07 2022-10-11 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的制备方法
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HONGBO YAN ET AL.,: "Structural, electrical and optical characteristics of CuSbSe2 films prepared by pulsed laser deposition and magnetron sputtering processes", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 31, pages 664 - 651 *
TIANZHEN GUO ET AL.,: "Preparation and characterization of CuSbSe2 thin films deposited by pulsed laser deposition", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》, vol. 127, pages 105716 *
VIKASH KUMAR ET AL.,: "Analysis of Se Co-evaporation and Post-selenization for Sb2Se3‑Based Solar Cells", ACS APPL. ENERGY MATER., vol. 04, pages 12479 - 12486 *
万磊 等: "铜锑硒(CuSbSe2)薄膜太阳能电池制备和研究", 《第十届新型太阳能材料科学与技术学术研讨会》, pages 251 *
任海芳;周艳文;肖旋;郑欣;: "真空热蒸发镀CIAS薄膜", 功能材料, no. 08, pages 08086 - 08089 *

Also Published As

Publication number Publication date
CN116377396B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US6323417B1 (en) Method of making I-III-VI semiconductor materials for use in photovoltaic cells
US8188367B2 (en) Multilayer structure to form absorber layers for solar cells
JP5923569B2 (ja) Cu−Ga系スパッタリングターゲット
EP1424735B1 (en) Method for forming light-absorbing layer
JP5730788B2 (ja) スパッタリングターゲット及びスパッタリングターゲットの製造方法
WO2014145177A1 (en) Method and apparatus for depositing copper-indiumgalliumselenide (cuingase2-cigs) thin films and other materials on a substrate
JP2013512576A (ja) 光起電力アプリケーション用カルコゲナイト吸収層、およびその製造方法
JP2014513413A (ja) 五元化合物半導体CZTSSeおよび薄膜太陽電池の製造方法
CN103343318B (zh) 太阳能电池的光吸收层的制备方法
CN1547239A (zh) 铜铟镓的硒或硫化物半导体薄膜材料的制备方法
Cheng et al. Chalcogenide solar cells fabricated by co-sputtering of quaternary CuIn0. 75Ga0. 25Se2 and In targets: Another promising sputtering route for mass production
WO2013129045A1 (ja) Czts系太陽電池用合金の作製方法
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
CN116377396B (zh) 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法
CN115161610B (zh) 一种铜锑硒太阳能电池光吸收层薄膜的制备方法
US9136423B1 (en) Method and apparatus for depositing copper—indiumgalliumselenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
KR100347106B1 (ko) 이원화합물의 진공증발 증착에 의한 CuInSe2박막의 제조방법
JPH06120545A (ja) 薄膜太陽電池の製造方法
CN104051577A (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
Lim et al. Influence of stacking order and intermediate phase at low temperature on Cu 2 ZnSnS 4 thin film formation for solar cell
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
CN101967624A (zh) Cu2ZnSnS4光伏薄膜的制备方法
CN116397200B (zh) 一种铜锑硒光吸收层的钼铜叠层衬底单源热蒸发制备方法
Yamaguchi et al. NaF Addition to Cu2ZnSnSe4 Thin films prepared by sequential evaporation from compound

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant