CN116375470A - 一种萤石型高熵陶瓷制备方法 - Google Patents

一种萤石型高熵陶瓷制备方法 Download PDF

Info

Publication number
CN116375470A
CN116375470A CN202310337144.5A CN202310337144A CN116375470A CN 116375470 A CN116375470 A CN 116375470A CN 202310337144 A CN202310337144 A CN 202310337144A CN 116375470 A CN116375470 A CN 116375470A
Authority
CN
China
Prior art keywords
entropy ceramic
ceramic powder
metal salt
entropy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310337144.5A
Other languages
English (en)
Inventor
苗洋
孟子茜
任贝
郝睿鑫
刘宇峰
程富豪
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202310337144.5A priority Critical patent/CN116375470A/zh
Priority to ZA2023/04573A priority patent/ZA202304573B/en
Publication of CN116375470A publication Critical patent/CN116375470A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及高性能陶瓷技术领域,特别是涉及一种萤石型高熵陶瓷制备方法。通过将高熵陶瓷粉末进行煅烧处理,得到所述萤石型高熵陶瓷。高熵陶瓷粉末的制备方法包括以下步骤:将过渡金属盐与稀土金属盐和A物质分散于水中,得到混合溶液;向所述混合溶液中滴加沉淀剂至沉淀完全,静置后离心,所得沉淀洗涤后烘干,研磨,得到所述高熵陶瓷粉末。本发明采用共沉淀法制备高熵陶瓷前驱体粉末(高熵陶瓷粉末),所需实验设备简单,操作容易,便于规模生产,同时能够显著降低高熵陶瓷粉体的烧结温度,在1000~1400℃温度范围内即可实现陶瓷的快速烧结,获得具有萤石结构的高熵陶瓷。

Description

一种萤石型高熵陶瓷制备方法
技术领域
本发明涉及高性能陶瓷技术领域,特别是涉及一种萤石型高熵陶瓷制备方法。
背景技术
高熵氧化物是近年来出现的一种新的氧化物,它突破了常规的氧化物掺杂理论,由于其结构简单、性能优越等优点而引起了许多学者的重视。高熵氧化物材料由于多主元且各个单主元间的无序排列,容易产生晶格畸变效应和鸡尾酒协同效应,其材料特性往往高于传统单主元材料的特性,更容易产生不同分子结构的固溶物,也因此显示了良好的特性。
萤石的氧化物广泛应用在固体离子导体、高温涂料和催化剂等领域。目前应用最广的是氧化锆(ZrO2)、氧化铪(HfO2)或者氧化铈(CeO2)等,这些氧化物一般都是掺有氧化钇(Y2O3)或者多种其它氧化物(如氧化镁、氧化钙和其它氧化物)。这些氧化物物质一般都是高导氧性、低热导率、高硬度以及高的熔融温度。尤其是掺入了稀土元素的氧化锆,由于它们具有较高的离子性和较小的导热系数而受到了技术上的重视。
目前萤石型高熵陶瓷的研究较少,其制备工艺主要包括:固相反应法、溶胶-凝胶法、喷雾热解法和电弧熔炼、声波辐射辅助等,这些制备方法存在耗能高、生产周期长、设备要求高和工艺复杂等缺点。
因此,提供一种工艺简单、制备周期短的低温合成萤石型高熵陶瓷的方法,对于高性能陶瓷技术领域具有重要意义。
发明内容
基于上述内容,本发明提供一种萤石型高熵陶瓷制备方法,具有工艺简单、制备周期短、能耗低的特点。
为实现上述目的,本发明提供了如下方案:
本发明技术方案之一,一种高熵陶瓷粉末的制备方法,包括以下步骤:
将过渡金属盐与稀土金属盐和A物质分散于水中,得到混合溶液;
向所述混合溶液中滴加沉淀剂至沉淀完全,静置后离心,所得沉淀洗涤后烘干,研磨,得到所述高熵陶瓷粉末;
所述过渡金属盐为Zr(NO3)4、Y(NO3)3、Mo(NO3)3、Sc(NO3)3、Ti(NO3)4、VO2NO3、NbO(NO3)中的三种;
所述稀土金属盐为Gd(NO3)3、Eu(NO3)3、Sm(NO3)3、La(NO3)3、Ce(NO3)3、Yb(NO3)3中的三种;
所述A物质为Al(NO3)3或Ca(NO3)2
所述沉淀完全是指使混合溶液中的所有金属阳离子完全沉淀。
进一步地,所述过渡金属盐、稀土金属盐和A物质中的金属元素的总摩尔量与所述水的体积之比为0.8-1.2mol:1L。
进一步地,所述过渡金属盐、所述稀土金属盐和A物质的摩尔比为3:3:(0.08-0.25)。
进一步地,所述过渡金属盐为Zr(NO3)4、Y(NO3)3、Mo(NO3)3摩尔比1:1:1的混合物;
所述稀土金属盐为Gd(NO3)3、Eu(NO3)3、Sm(NO3)3摩尔比1:1:1的混合物。
所述过渡金属盐和稀土金属盐中的金属元素为等摩尔量,引入量允许在误差范围内上下浮动10%;A物质中的金属元素为其他各元素总摩尔量的1/8。
进一步地,向所述混合溶液中加入沉淀剂前先将所述混合溶液搅拌2-6h。
搅拌的目的是为了使过渡金属盐、所述稀土金属盐和A物质充分溶解以及充分混合均匀。
进一步地,所述沉淀剂为pH为7-8的氨水;向所述混合溶液中滴加氨水的过程持续进行搅拌,整个过程保持pH为7-8。
将混合溶液与氨水混合的具体操作为:在搅拌条件下向混合溶液中滴加氨水,整个过程中不断滴加氨水,以维持混合过程中的pH值始终为7-8;搅拌的时间为4-8h。
进一步地,所述静置的时间为6-10h;所述烘干的温度为50-80℃,时间为10-20h。
静置的目的是为了使反应产物完全沉淀。
本发明技术方案之二,利用上述的制备方法制备得到的高熵陶瓷粉末。
所述高熵陶瓷粉末的粒径为50-80nm。
本发明技术方案之三,一种萤石型高熵陶瓷的制备方法,包括以下步骤:
将上述的高熵陶瓷粉末进行煅烧处理,得到所述萤石型高熵陶瓷。
进一步地,所述煅烧处理的温度为1000-1400℃,时间为4-8h。
所述煅烧处理具体为:空气气氛下,以2℃/min的速率缓慢升温,随后在600-800℃保温2-4h,以5℃/min的速率升温至800-1200℃,之后以2℃/min的速率升温至1000-1400℃,保温4-8h。保温结束后以2℃/min的速率降温至800-1200℃,再以5℃/min的速率降温至300-500℃后随炉冷却。
常压烧结制备坯体时,主要在1000-1400℃发生物相转变和体积收缩,此时放缓升温速率并延长保温时间,可以有效提高坯体质量。
本发明技术方案之四,利用上述的制备方法制备得到的萤石型高熵陶瓷。
本发明公开了以下技术效果:
本发明采用共沉淀法制备高熵陶瓷前驱体粉末(高熵陶瓷粉末),所需实验设备简单,操作容易,便于规模生产,同时能够显著降低高熵陶瓷粉体的烧结温度,在1000~1400℃温度范围内即可实现陶瓷的快速烧结,获得具有萤石结构的高熵陶瓷。
离子掺杂技术是材料改性的重要手段,本发明在ZrO2的萤石结构内部引入大量稀土元素和其他过渡族金属元素,完成为无序萤石结构的高熵氧化物的设计及制备,大量质量较大的金属原子的存在,使得掺杂后的ZrO2无序萤石结构内部产生了大量的缺陷,减小了声子在其内部传播的平均自由程,增大了声子散射,大幅度降低了此种高熵氧化物材料的热导率。
本发明选用稀土元素Gd、Eu、Sm,过渡族金属元素Zr、Y和Mo等做为高熵氧化物的组分,各元素做为氧化物单独存在时,都具有热稳定高、抗氧化性好、耐腐蚀、耐蠕变、晶粒长大缓慢等优异性能。
本发明利用高熵陶瓷粉体进行烧结制备高熵陶瓷块体,可以降低烧结温度,弥补了传统YSZ材料的缺点(制备能耗高、生产周期长、烧结温度高、致密度低等),在1000℃就实现了高熵陶瓷块体的制备,且制备的高熵陶瓷块体晶粒细小。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的萤石型高熵陶瓷的X射线衍射图。
图2为实施例2制备的萤石型高熵陶瓷的X射线衍射图。
图3为实施例1制备的萤石型高熵陶瓷的SEM图。
图4为实施例2制备的萤石型高熵陶瓷的SEM图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中所用Zr(NO3)4、Gd(NO3)3、Eu(NO3)3、Sm(NO3)3、Y(NO3)3、Mo(NO3)3、Al(NO)3和Al(NO)3的纯度均为99.99%。
实施例1
步骤1,将Zr(NO3)4、Gd(NO3)3、Eu(NO3)3、Sm(NO3)3、Y(NO3)3、Mo(NO3)3和Al(NO)3按摩尔比为1:1:1:1:1:1:0.25混合后分散于水中(金属元素总摩尔数与水的体积之比为1mol:1L),得到混合溶液。将上述混合溶液置于磁力搅拌机搅拌两小时。
步骤2,将300mL氨水(pH为7-8)缓慢加入上述搅拌后的混合溶液中并不断搅拌,至沉淀完全(使混合溶液中所有金属阳离子完全沉淀),整个搅拌处理过程中保持溶液体系的pH为7~8。将沉淀放置六小时,利用离心机分离沉淀。分离所得沉淀用去离子水洗涤3次,无水乙醇洗涤2次。
步骤3,将沉淀从离心管取出,置于玻璃皿中。放于烘干箱中于50℃烘干10小时,之后研磨,得到高熵陶瓷粉末(粒径为50nm)。
步骤4,将上述高熵陶瓷粉末置于马弗炉中,以2℃/min的速率缓慢升温,随后在800℃保温2h,以5℃/min的速率升温至1200℃,2℃/min的速率升温至1400℃,保温4h。保温结束后以2℃/min的速率降温至1200℃,5℃/min的速率降温至500℃后随炉冷却,得到萤石型高熵陶瓷。该萤石型高熵陶瓷的X射线衍射图如图1所示,由图1能够看出,实施例1制备的萤石型高熵陶瓷为无序萤石结构高熵陶瓷。该萤石型高熵陶瓷的SEM图如图3所示,由图3能够看出,其晶粒细小。实施例1制备的萤石型高熵陶瓷的热导率为0.96W/(m·K),为单一萤石结构,空间群为Fm-3m。
实施例2
与实施例1不同之处仅在于,将Al(NO)3替换为Ca(NO3)2。制备得到的萤石型高熵陶瓷的X射线衍射图如图2所示,由图2能够看出,实施例2制备的萤石型高熵陶瓷为无序萤石结构高熵陶瓷。该萤石型高熵陶瓷的SEM图如图4所示,由图4能够看出,其晶粒细小。实施例2制备的萤石型高熵陶瓷的热导率为1.03W/(m·K),为单一萤石结构,空间群为Fm-3m。
实施例3
与实施例1不同之处仅在于,烧结过程为以2℃/min的速率缓慢升温,随后在600℃保温2h,以5℃/min的速率升温至800℃,2℃/min的速率升温至1000℃,保温4h。保温结束后以2℃/min的速率降温至600℃,5℃/min的速率降温至300℃后随炉冷却,得到萤石型高熵陶瓷。实施例3制备的萤石型高熵陶瓷的热导率为0.992W/(m·K),为单一萤石结构,空间群为Fm-3m。
本发明以ZrO2的萤石结构为基质,采用共沉淀法,在ZrO2的萤石结构的内部引入金属元素,进行非活性离子掺杂获得无序萤石结构的高熵氧化物粉末材料;所述金属元素包括稀土元素以及过渡族金属元素;本发明方法所需实验设备简单,操作容易,同时能够显著降低高熵陶瓷的烧结温度,在1000~1400℃温度范围内实现陶瓷的快速烧结,且本发明制备的高熵氧化物粉末材料弥补了传统YSZ材料的缺点(制备能耗高、生产周期长、烧结温度高、致密度低等)。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种高熵陶瓷粉末的制备方法,其特征在于,包括以下步骤:
将过渡金属盐与稀土金属盐和A物质分散于水中,得到混合溶液;
向所述混合溶液中滴加沉淀剂至沉淀完全,静置后离心,所得沉淀洗涤后烘干,研磨,得到所述高熵陶瓷粉末;
所述过渡金属盐为Zr(NO3)4、Y(NO3)3、Mo(NO3)3、Sc(NO3)3、Ti(NO3)4、VO2NO3、NbO(NO3)中的三种;
所述稀土金属盐为Gd(NO3)3、Eu(NO3)3、Sm(NO3)3、La(NO3)3、Ce(NO3)3、Yb(NO3)3中的三种;
所述A物质为Al(NO3)3或Ca(NO3)2
2.根据权利要求1所述的高熵陶瓷粉末的制备方法,其特征在于,所述过渡金属盐、所述稀土金属盐和A物质的摩尔比为3:3:(0.08-0.25)。
3.根据权利要求1所述的高熵陶瓷粉末的制备方法,其特征在于,所述过渡金属盐为Zr(NO3)4、Y(NO3)3、Mo(NO3)3摩尔比1:1:1的混合物;
所述稀土金属盐为Gd(NO3)3、Eu(NO3)3、Sm(NO3)3摩尔比1:1:1的混合物。
4.根据权利要求1所述的高熵陶瓷粉末的制备方法,其特征在于,向所述混合溶液中加入沉淀剂前先将所述混合溶液搅拌2-6h。
5.根据权利要求1所述的高熵陶瓷粉末的制备方法,其特征在于,所述沉淀剂为pH为7-8的氨水;向所述混合溶液中滴加氨水的过程持续进行搅拌,整个过程保持pH为7-8。
6.根据权利要求1所述的高熵陶瓷粉末的制备方法,其特征在于,所述静置的时间为6-8h;所述烘干的温度为50-80℃,时间为10-20h。
7.根据权利要求1-6任一项所述的制备方法制备得到的高熵陶瓷粉末。
8.一种萤石型高熵陶瓷的制备方法,其特征在于,包括以下步骤:
将权利要求7所述的高熵陶瓷粉末进行煅烧处理,得到所述萤石型高熵陶瓷。
9.根据权利要求8所述的制备方法,其特征在于,所述煅烧处理的温度为1000-1400℃,时间为4-8h。
10.根据权利要求8或9所述的制备方法制备得到的萤石型高熵陶瓷。
CN202310337144.5A 2023-03-31 2023-03-31 一种萤石型高熵陶瓷制备方法 Pending CN116375470A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310337144.5A CN116375470A (zh) 2023-03-31 2023-03-31 一种萤石型高熵陶瓷制备方法
ZA2023/04573A ZA202304573B (en) 2023-03-31 2023-04-20 A preparation method of fluorite-type high entropy ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310337144.5A CN116375470A (zh) 2023-03-31 2023-03-31 一种萤石型高熵陶瓷制备方法

Publications (1)

Publication Number Publication Date
CN116375470A true CN116375470A (zh) 2023-07-04

Family

ID=86960987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310337144.5A Pending CN116375470A (zh) 2023-03-31 2023-03-31 一种萤石型高熵陶瓷制备方法

Country Status (2)

Country Link
CN (1) CN116375470A (zh)
ZA (1) ZA202304573B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161883A (ja) * 2016-12-11 2018-10-18 ゼネラル・エレクトリック・カンパニイ 低い熱伝導率を有する遮熱コーティング
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
WO2022132883A1 (en) * 2020-12-15 2022-06-23 University Of Maryland, College Park Multi-element compound nanoparticles, and systems and methods of making and use thereof
CN114920559A (zh) * 2022-06-07 2022-08-19 西北工业大学 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161883A (ja) * 2016-12-11 2018-10-18 ゼネラル・エレクトリック・カンパニイ 低い熱伝導率を有する遮熱コーティング
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
WO2022132883A1 (en) * 2020-12-15 2022-06-23 University Of Maryland, College Park Multi-element compound nanoparticles, and systems and methods of making and use thereof
CN114920559A (zh) * 2022-06-07 2022-08-19 西北工业大学 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用

Also Published As

Publication number Publication date
ZA202304573B (en) 2023-11-29

Similar Documents

Publication Publication Date Title
Xu et al. Energy-storage properties of Bi0. 5Na0. 5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method
CN110467227A (zh) B位五元高熵的新型钙钛矿型高熵氧化物材料及制备方法
Theunissen et al. Effect of dopants on the sintering behaviour and stability of tetragonal zirconia ceramics
CN109319837B (zh) 一种含铝立方相石榴石Li7La3Zr2O12的制备方法
CN113248271A (zh) 高熵稀土铝酸盐-高熵稀土锆酸盐复合热障涂层材料及其制备方法和应用
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN113004035B (zh) 具有纳米核壳结构的稀土改性锆基氧化物
JP3997365B2 (ja) 酸化物イオン導電性単結晶及びその製造方法
JPH08208333A (ja) 酸素イオン導電体及びその製造方法
CN113248251B (zh) 一种陶瓷脉冲电容器、介质材料及其制备方法
US20200308060A1 (en) Al2O3-ZrO2-Y2O3-TiN Nancomposite Ceramic Powder And Preparation Method Thereof
CN114671683B (zh) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法
CN116375470A (zh) 一种萤石型高熵陶瓷制备方法
CN110976900A (zh) 一种复合合金钼粉的生产方法
Li et al. Reactive Ce0. 8RE0. 2O1. 9 (RE= La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering
CN111499380B (zh) 一种锆铝基多相复合陶瓷及其制备方法
JP2006248858A (ja) イットリア安定化ジルコニア質焼結体及びその製造方法
Chen et al. Effect of nanocrystallite structure on the lower activation energy for Sm2O3-doped ZrO2
CN110255614A (zh) 一种稳定氧化锆粉体及其制备方法与应用
JP2000095564A (ja) ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
JP4831945B2 (ja) ジルコニア−アルミナ系セラミックスおよびその製法
CN115433006B (zh) 一种铽基磁光陶瓷及其制备方法
JP2762508B2 (ja) ジルコニア焼結体およびその製造法
CN115925408B (zh) 一种透明闪烁陶瓷材料及其制备方法与应用
Sinha et al. Study on phase evolution of GdAl1− xGaxO3 system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination